Problem Type 13.3a: Find the length of the curve \(r(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k} \), \(t_0 \leq t \leq t_1 \).

Example Problem 13.3a: Find the length of the curve \(r(t) = t^2 \mathbf{i} + 2t \mathbf{j} + \ln t \mathbf{k} \), \(1 \leq t \leq e \).

Steps

1. Compute the derivative
 \[
 r'(t) = x'(t) \mathbf{i} + y'(t) \mathbf{j} + z'(t) \mathbf{k} \, .
 \]
 \[
 r'(t) = (t^2)' \mathbf{i} + (2t)' \mathbf{j} + (\ln t)' \mathbf{k} = 2t \mathbf{i} + 2 \mathbf{j} + \frac{1}{t} \mathbf{k} \, .
 \]

2. Find the magnitude of \(r'(t) \),
 \[
 |r'(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, ,
 \]
 and use algebra and/or trig to simplify as much as you can.
 \[
 |r'(t)| = \sqrt{(2t^2 + 2^2 + \frac{1}{t^2})} = \sqrt{\frac{4t^4 + 4t^2 + 1}{t^2}} = \sqrt{\frac{(2t^2 + 1)^2}{t^2}} = \frac{(2t^2 + 1)}{t} = 2t + \frac{1}{t} \, .
 \]

3. Integrate the expression that you got in step 2 from \(t_0 \) to \(t_1 \).
 \[
 \int_{t_0}^{t_1} |r'(t)| \, dt
 \]
 \[
 = \int_{1}^{e} |r'(t)| \, dt = \int_{1}^{e} \left[2t + \frac{1}{t}\right] \, dt = e^2 + \ln e - \left(1^2 + \ln 1\right) = e^2 + 1 - (1 + 0) = e^2 \, .
 \]
 Ans.: The arc length of that curve is \(e^2 \).

Problem Type 13.3b: Reparametrize the curve with respect to arc length measured from the point when \(t = t_0 \) in the direction of increasing \(t \).

Example Problem 13.3b: Reparametrize the curve with respect to arc length measured from
the point when $t = 0$ in the direction of increasing t.

$$r(t) = 5 \sin t \, \mathbf{i} + 3 \, \mathbf{j} + 5 \cos t \, \mathbf{k}$$

Steps

1. Compute $r'(t)$, and then take its magnitude $|r'(t)|$.

 $r'(t) = (5 \sin t)' \, \mathbf{i} + 3' \, \mathbf{j} + (5 \cos t)' \, \mathbf{k}$

 $= (5 \cos t) \, \mathbf{i} - (5 \sin t) \, \mathbf{k}$

 So

 $$|r'(t)| = \sqrt{(5 \cos t)^2 + (-5 \sin t)^2} = \sqrt{25(\cos^2 t + \sin^2 t)} = 5$$

2. Integrate it from t_0 to t_1. Get an expression in terms of t_1 and call it s. Now change t_1 into t. Now solve for t in terms of s.

 $$s = \int_{t_0}^{t_1} 5 \, dt = 5t_1$$

 Changing the t_1 into t we get

 $$s = 5t$$

 and expressing t in terms of s, we get

 $$t = s/5$$

3. Go back to the original $r(t)$ and replace t by the expression in s that you found in step 2.

 $$r(t) = 5 \sin t \, \mathbf{i} + 3 \, \mathbf{j} + 5 \cos t \, \mathbf{k}$$

 becomes

 $$5 \sin(s/5) \, \mathbf{i} + 3 \, \mathbf{j} + 5 \cos(s/5) \, \mathbf{k}$$

 This is the **Ans.**
Problem Type 13.3c: Find the curvature for

\[\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k} . \]

Example Problem 13.3c: Find the curvature for

\[\mathbf{r}(t) = t \mathbf{i} + 2t \mathbf{j} + t^2 \mathbf{k} . \]

Steps

1. Compute \(\mathbf{r}'(t) \) and \(\mathbf{r}''(t) \).

 \(\mathbf{r}'(t) = \mathbf{i} + 2\mathbf{j} + 2t \mathbf{k} \).

 \(\mathbf{r}''(t) = 2 \mathbf{k} \).

2. Compute the cross product \(\mathbf{r}'(t) \times \mathbf{r}''(t) \).

 \[
 \begin{vmatrix}
 \mathbf{i} & \mathbf{j} & \mathbf{k} \\
 1 & 2 & 2t \\
 0 & 0 & 2 \\
 \end{vmatrix}
 = \begin{vmatrix}
 2 & 2t \\
 0 & 2 \\
 \end{vmatrix} \mathbf{i} - \begin{vmatrix}
 1 & 2t \\
 0 & 2 \\
 \end{vmatrix} \mathbf{j} + \begin{vmatrix}
 1 & 2 \\
 0 & 0 \\
 \end{vmatrix} \mathbf{k}
 = 4\mathbf{i} - 2\mathbf{j}

 \]

3. Find the magnitude of the vector that you found in step 2 (namely \(\mathbf{r}'(t) \times \mathbf{r}''(t) \)).

 Also find the magnitude of \(\mathbf{r}'(t) \), and finally use the formula for the curvature

 \[\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} \]

 \[
 |\mathbf{r}'(t)| = |\mathbf{i} + 2\mathbf{j} + 2t \mathbf{k}| \\
 = \sqrt{1^2 + 2^2 + (2t)^2} = \sqrt{5 + 4t^2}

 Finally,

 \[
 \kappa(t) = \frac{\sqrt{20}}{(\sqrt{5 + 4t^2})^3}

 This is the \textbf{Ans..}