1. Evaluate the integral

$$
\int x \sin x d x
$$

Sol. of 1: Start with a blank table

$$
\begin{array}{cc}
u= & u^{\prime}= \\
v= & v^{\prime}=
\end{array}
$$

It is reasonable to take u to be x, and hence v^{\prime} to be $\sin x$. Now our table looks like:

$$
\begin{array}{cc}
u=x & u^{\prime}=1 \\
v=-\cos x & v^{\prime}=\sin x
\end{array}
$$

Putting the above data into the Integration-by-parts formula

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get

$$
\begin{aligned}
& \int x \sin x d x=x(-\cos x)-\int 1 \cdot(-\cos x) d x= \\
& -x \cos x+\int \cos x d x=-x \cos x+\sin x+C
\end{aligned}
$$

Ans to 1: $-x \cos x+\sin x+C$.
Comment: About $\% 65$ of the students got the right answer. Most other students did it essentially the right way, but messed up the set-up, or the algebra (sign mistakes) or the fact that the antiderivative of $\sin x$ is $-\cos x$ (some people forgot the minus sign).
2. Evaluate the integral

$$
\int x^{2} e^{x} d x
$$

Sol. of 2: Start with a blank table

$$
\begin{array}{ll}
u= & u^{\prime}= \\
v= & v^{\prime}=
\end{array}
$$

It is reasonable to take u to be x^{2}, and hence v^{\prime} to be e^{x}. Now our table looks like:

$$
\begin{array}{ll}
u=x^{2} & u^{\prime}=2 x \\
v=e^{x} & v^{\prime}=e^{x}
\end{array}
$$

Putting the above data into the Integration-by-parts formula

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-\int(2 x) \cdot e^{x} d x \quad .=x^{2} e^{x}-2 \int x e^{x} d x
$$

We are now faced with a subproblem, to find $\int x e^{x}$. We also use Integration by Parts with $u=x, v^{\prime}=e^{x}$, giving $u^{\prime}=1, v=e^{x}$, and

$$
\int x e^{x} d x=x e^{x}-\int(1) \cdot\left(e^{x}\right) d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}=e^{x}(x-1)
$$

Going back to the main problem, we get

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2 \int x e^{x} d x=x^{2} e^{x}-2 e^{x}(x-1)=e^{x}\left(x^{2}-2 x+2\right)+C
$$

Ans to 2: $e^{x}\left(x^{2}-2 x+2\right)+C$.
Comment: About \%50 of the students got the right answer. Most other students did it essentially the right way, but messed up the algebra. Many people got as far as $x^{2} e^{x}-2 e^{x}(x-1)$ but then messed-up the algebra. PLEASE review your basic algebra skills, how to open-up parantheses correctly and to factor-out correctly!
3. Evaluate the integral

$$
\int x \ln x d x
$$

Sol. of 3: Start with a blank table

$$
\begin{array}{ll}
u= & u^{\prime}= \\
v= & v^{\prime}=
\end{array}
$$

It is reasonable to take u to be $\ln x$, and hence v^{\prime} to be x. Now our table looks like:

$$
\begin{array}{lr}
u=\ln x & u^{\prime}= \\
v= & v^{\prime}=x
\end{array}
$$

Completing the table, we get:

$$
\begin{array}{ll}
u=\ln x & u^{\prime}=\frac{1}{x} \\
v=\frac{x^{2}}{2} & v^{\prime}=x
\end{array}
$$

Putting the above data into the Integration-by-parts formula

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

we get

$$
\begin{aligned}
& \int x \sin x d x=(\ln x)\left(\frac{x^{2}}{2}\right)-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x \\
= & (\ln x)\left(\frac{x^{2}}{2}\right)-\int \frac{x}{2} d x=(\ln x)\left(\frac{x^{2}}{2}\right)-\frac{x^{2}}{4}+C
\end{aligned}
$$

Ans to 3: $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C$
Comment: About $\% 75$ of the students got the right answer. Another $\% 15$ did it the right way, but messed up the set-up, and about $\% 10$ were clueless.

