1. Find the area of the region that is bounded by the given curve and lies in the specific sector

\[r = \sin 2\theta \quad , \quad 0 \leq \theta \leq \pi/4 \n\]

Solution: The formula for the area bounded by a curve in polar \(r = f(\theta) \) between \(\theta = \alpha \) and \(\theta = \beta \) is

\[
\frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^2 \, d\theta .
\]

In this problem \(\alpha = 0, \beta = \pi/4 \) and \(f(\theta) = \sin 2\theta \). So our area is:

\[
\frac{1}{2} \int_{0}^{\pi/4} \sin^2 2\theta \, d\theta .
\]

So far most people got it right, but only a few people knew how to continue.

Remember that whenever you have to integrate a square-of-sine or square-of-cosine you use

\[
\sin^2 w = \frac{1 - \cos 2w}{2} ,
\]

or

\[
\cos^2 w = \frac{1 + \cos 2w}{2} .
\]

This is applicable to \(\sin^2 2\theta \) and even \(\sin^2 10000\theta \), since \(w \) can be whatever.

In our case \(w = 2\theta \), so

\[
\sin^2 2\theta = \frac{1 - \cos 4\theta}{2} .
\]

So our area is

\[
\frac{1}{2} \left[\int_{0}^{\pi/4} \sin^2 2\theta \, d\theta \right] = \frac{1}{2} \left[\int_{0}^{\pi/4} (1 - \cos 4\theta) \, d\theta \right] = \frac{1}{4} \left[(\pi/4 - 0) - (\sin(0) - \sin(\pi))/4 \right] = \frac{\pi}{16} .
\]

Ans.: The area of our region is \(\frac{\pi}{16} \) square-units.