1. Find the area of the region that is bounded by the given curve and lies in the specific sector

$$
r=\sin 2 \theta \quad, \quad 0 \leq \theta \leq \pi / 4
$$

Solution: The formula for the area bounded by a curve in polar $r=f(\theta)$ between $\theta=\alpha$ and $\theta=\beta$ is

$$
\frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^{2} d \theta
$$

In this problem $\alpha=0, \beta=\pi / 4$ and $f(\theta)=\sin 2 \theta$. So our area is:

$$
\frac{1}{2} \int_{0}^{\pi / 4} \sin ^{2} 2 \theta d \theta
$$

So far most peole got it right, but only a few people knew how to continue.
Remember that whenever you have to integrate a square-of-sine or square-of-cosine you use

$$
\sin ^{2} w=\frac{1-\cos 2 w}{2},
$$

or

$$
\cos ^{2} w=\frac{1+\cos 2 w}{2} .
$$

This is applicable to $\sin ^{2} 2 \theta$ and even $\sin ^{2} 10000 \theta$, since w can be whatever.

In our case $w=2 \theta$, so

$$
\sin ^{2} 2 \theta=\frac{1-\cos 4 \theta}{2}
$$

So our area is

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{\pi / 4} \sin ^{2} 2 \theta d \theta=\frac{1}{2} \int_{0}^{\pi / 4} \frac{1-\cos 4 \theta}{2} d \theta=\frac{1}{4} \int_{0}^{\pi / 4}(1-\cos 4 \theta) d \theta= \\
& =\left.\frac{1}{4}\left(\theta-\frac{\sin 4 \theta}{4}\right)\right|_{0} ^{\pi / 4}=\frac{1}{4}((\pi / 4-0)-(\sin (0)-\sin (\pi)) / 4)=\frac{\pi}{16} .
\end{aligned}
$$

Ans.: The area of our region is $\frac{\pi}{16}$ square-units.

