1. Use the integral test to determine whether the series is convergent or divergent.

\[\sum_{n=1}^{\infty} ne^{-n^2} \]

Sol. of 1: We consider the analogous improper integral:

\[\int_1^{\infty} xe^{-x^2} \, dx \]

We need to do a substitution \(u = x^2 \). We have \(\frac{du}{dx} = 2x \) so \(dx = \frac{du}{2x} \). Also \(x = 1 \) goes to \(u = 1 \) and \(x = \infty \) goes to \(u = \infty \). So our improper integral is

\[
\int_1^{\infty} xe^{-u} \cdot \left(\frac{du}{2x} \right) = \frac{1}{2} \int_1^{\infty} e^{-u} \, du =
\]

\[
= \frac{1}{2} \left(e^{-u} \right|_1^{\infty} = -\frac{1}{2} \left(e^{-\infty} - e^{-1} \right) = \frac{1}{2e} .
\]

Since we got a finite answer, the improper integral (analogous to the series) is convergent, and hence by the integral test the infinite series is convergent.

Ans. to 1: Convergent by the integral test.

Comments: Only about 20% of the 8:40am class got it right completely, but 50% of the 12:00 got it right (but I did a similar problem in class). Some people had trouble with the change of variable, and got (incorrectly) that the improper integral diverges.

2. Determine whether the series are convergent or divergent

\[(a) \sum_{n=1}^{\infty} \frac{5}{n^{.97}} \]

\[(b) \sum_{n=1}^{\infty} \frac{2}{n^{1.001}} \]

Sol. of 2: You can always take numbers in front of the \(\sum \), and it does not change the convergence status. (a) is a \(p \)-series with \(p = 0.97 \), and since this is \(\leq 1 \) it diverges. (b) is also a \(p \)-series, but with \(p = 1.001 \). This is \(> 1 \) so the series converges.

Ans. to 2: (a) is divergent and (b) is convergent (both because of the \(p \)-test).

Comments: Almost everyone got it right.