NAME: (print!) _____

Section: _____ E-Mail address: _____

MATH 152 (01-03, 07-09), Dr. Z. , Fifth Practice Exam for Second Midterm, Tue. Nov. 20, 2012.

WRITE YOUR FINAL ANSWER TO EACH PROBLEM IN THE INDI-CATED PLACE (right under the question) (when applicable) Explain your work! Do not write below this line

- 1. (out of 14)
- 2. (out of 14)
- 3. (out of 14)
- 4. (out of 14)
- 5. (out of 14)
- 6. (out of 14)
- 7. (out of 16)

----tot.

(out of 100)

1. (14 points, 7 each) Find the volume obtained by rotating the region bounded between y = x and $y = x^2$ around (a) the x-axis (b) the y-axis

Ans. (a)

(b)

2. (14 points) Find the Maclaurin polynomial of degree 5 of $f(x) = \sin 5x$, using the definition.

Ans.

. (14 points, 7 each) Evaluate

(a)
$$\int_{1}^{2} x e^{-x} dx$$
 (b) $\int_{1}^{2} (\ln x)^{2} dx$

4. (14 points) Use the sum of the first 3 terms to approximate the sum of the series. Estimate the error. ∞

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n} \quad .$$

Ans. Appx.=

Error Bound =

5. (14 points) Find the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{n^n}{2^n n!} x^n \quad ,$$

Ans. radius of convergence=

6. (14 points) Using any method, find the Maclaurin polynomial of degree 4 iof the function $f(x) = \sin x + e^{x^2} \cos x$

Ans.

7. (16 points) Evaluate the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} \quad ,$$

or state that it diverges. **Hint:** Use partial fractions.

Ans.