Problem Type P21.1: Show that $y = f(x)$ is a solution of the initial value problem

$$y' + A(x)y = B(x) \quad y(a) = b$$

Example Problem P21.1: Show that $y = \sin x \cos x - \cos x$ is a solution of the initial value problem

$$y' + (\tan x)y = \cos^2 x \quad y(0) = -1$$

Steps

1. Copy y, and compute y' (and y'' etc., if necessary)

 1. $y = \sin x \cos x - \cos x$

 $$y' = (\sin x \cos x - \cos x)'$$

 $$= (\sin x)'(\cos x) + (\sin x)(\cos x)' - (\cos x)'$$

 $$= (\cos x)(\cos x) + (\sin x)(\sin x) + \sin x = \cos^2 x - \sin^2 x + \sin x$$

2. Substitute y and y' (and if applicable, y'' etc.) into the diff. eq. and see if the right side equals the left side.

 2. $y' + (\tan x)y = \cos^2 x - \sin^2 x + \sin x + (\tan x)(\sin x \cos x - \cos x)$

 $$\cos^2 x - \sin^2 x + \sin x + \sin x (\sin x - 1) \cos x =$$

 $$\cos^2 x - \sin^2 x + \sin x + \sin x (\sin x - 1) =$$

 $$\cos^2 x - \sin^2 x + \sin x + \sin^2 x - \sin x$$

 $$= \cos^2 x$$

 which is as claimed.

3. Plug the initial condition $x = a$ into the function, and check that it is equal to b.

 3. When $x = 0$,

 $$y = (\sin 0)(\cos 0) - (\cos 0) = 0 - 1$$

 $$= -1$$

 as claimed.
Problem Type P21.2: For what value of r does the function $y = e^{rt}$ satisfy the differential equation $y'' + ay' + by = 0$?

Example Problem P21.2: For what value of r does the function $y = e^{rt}$ satisfy the differential equation $y'' + y' - 2y = 0$?

Steps

1. Pretend that r is a specific number, copy y, and compute y' and y''. These expressions involve r as well as t.

2. Substitute y, y' and y'' into the diff. eq. Then factor out e^{rt}.

3. Set this equal to 0 and solve for r. Plug these values of r into $y = e^{rt}$.

Example

1. $y = e^{rt}$, $y' = re^{rt}$, $y'' = r^2 e^{rt}$.

2. $y'' + y' - 2y = r^2 e^{rt} + re^{rt} - 2e^{rt} = (r^2 + r - 2)e^{rt}$.

3. Since e^{rt} is never zero, $(r^2 + r - 2)e^{rt} = 0$ means $r^2 + r - 2 = 0$, and factoring $(r + 2)(r - 1) = 0$ yields the roots $r = -2$ and $r = 1$. So the solutions of the given diff. eq. of the suggested form are $y = e^{-2t}$ and $y = e^{t}$.

Ans.: $y = e^{-2t}$ and $y = e^{t}$.

Problem Type P21.3: Solve the differential equation

$$y' = \frac{A(x)}{B(y)} \quad \text{or} \quad y' = A(x)B(y) \quad \text{etc.}$$

Example Problem P21.3: Solve the differential equation

$$y' = y^2 \sec x$$
Steps

1. If not already written like this, replace \(y' \) by \(\frac{dy}{dx} \). Treat \(dy \) and \(dx \) as algebraic quantities and separate the \(x \) part from the \(y \) part.

\[
\frac{dy}{dx} = \frac{A(x)}{B(y)} \quad \text{or} \quad \frac{dy}{dx} = A(x)B(y) \quad \text{etc.}
\]

implies

\[
B(y)dy = A(x)dx \quad \text{respectively}
\]

\[
\frac{dy}{B(y)} = A(x)dx \quad \text{etc.}
\]

2. Apply the Integral sign to both sides, and perform the integration. Only put the +C on one side.

\[
\int y^{-2} \, dy = \int \sec x \, dx ,
\]

gives

\[
-\frac{1}{y} = \ln |\sec x + \tan x| + C
\]

3. If possible, solve for \(y \). Otherwise leave it in implicit form. If there is an initial condition then plug it in and solve for \(C \). If nothing is mentioned (like in this problem), then leave \(C \) alone.

\[
y = \frac{-1}{\ln |\sec x + \tan x| + C}.
\]

Ans.: \(y = \frac{-1}{\ln |\sec x + \tan x| + C} \).

Problem Type P21.4: Find an equation of the curve that passes through the point \((a, b)\) and whose slope at \((x, y)\) is \(A(y)/B(x)\).

Example Problem P21.4: Find an equation of the curve that passes through the point \((1, 1)\) and whose slope at \((x, y)\) is \(y^2/x^3\).
1. Slope is derivative, so set it equal to \(\frac{dy}{dx} \). Treat \(dy \) and \(dx \) as algebraic quantities and separate the \(x \) part from the \(y \) part.

\[
\frac{dy}{dx} = \frac{A(y)}{B(x)}
\]

implies

\[
\frac{dy}{A(y)} = \frac{dx}{B(x)}
\]

2. Apply the Integral sign to both sides, and perform the integration. Only put the \(+C \) on one side.

\[
\int \frac{dy}{y^2} = \int \frac{dx}{x^3}
\]

which is the same as

\[
y^{-2} \, dy = x^{-3} \, dx
\]

3. Plug in the point \((x = a, y = b)\) and solve for \(C \). Plug back that value for \(C \) and try to express \(y \) in terms of \(x \) if possible. Otherwise leave it in implicit form.

\[
y^{-1} = \frac{x^{-2}}{-2} + C
\]

which gives

\[
\frac{-1}{y} = \frac{-1}{2x^2} + C
\]

3.
\[
\frac{-1}{1} = \frac{-1}{2 \cdot 1^2} + C
\]

giving \(C = -1/2 \). Incorporating that \(C \) gives

\[
\frac{-1}{y} = \frac{-1}{2x^2} - \frac{1}{2}
\]

and algebra gives

\[
y = \frac{2x^2}{1 + x^2}
\]

Ans.: \(\frac{2x^2}{1 + x^2} \).