NAME:

MATH 152, Dr. Z. , Practice for Second Midterm
Due: November 28 (you must bring it, or Exam II will not count).

1. (10 points [5 each]) For each of the two series below, determine whether they converge
or diverge .
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2. (10 points) Use the integral test to determine whether the series is convergent or
divergent. Explain everything!
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3. (10 points, 5 each)
Determine whether the following series converge or diverge. Explain what test(s) you are
using.
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4. Use an improper integral to find an integer NN, so that the partial sum
N1
SN = —
N Z n2
n=1

is within 107° of the sum of the whole infinite series > 7 # Be sure to explain why the
value of N you give is the correct answer. Do not evaluate Sy.
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5. (10 points: 3,3,4 resp.) Determine whether the following series converge or diverge

= sin’n = 1 > 1
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6. (10 points, 3,3,4, resp.) Determine whether the following series converge or diverge (a)
n 2
22021 (Z—g—illr)tm (b) 22021 éignv (C) 22021 (ngil—ii()il/s .
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7. (10 points) Use the sum of the first 3 terms to approximate the sum of the series.
Estimate the error.
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8. (10 points, 3,3,4, resp.) Determine whether the following series converge or diverge

— (—-1)" = (-1)"/n — (—-1)"
DXt OX TR OL far

n=2
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9. (10 points, 5 each) Determine whether the following series are absolutely convergent,
conditionally convergent or divergent.
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10. (10 points, 5 each) Determine whether the following series are absolutely convergent,
conditionally convergent or divergent.

0y E2
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11. (10 points) Find the radius of convergence and interval of convergence of the series

2 n?(x +2)"
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12. (10 points) Find the radius of convergence and interval of convergence of the series

(z+2)"
Z(;ﬂ)
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13. (10 points) Find a power series representation for the function and determine the

interval of convergence.
x

T 21 3244

f(x)
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14. (10 points) Evaluate the indefinite integral as a power series. What is the radius of

convergence?
5
5 dz
8 —x
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15. (10 points) Find the Maclaurin series for f(z) = 3cos2z using the definition of a
Maclaurin series.
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16. (10 points) Find the Taylor series for f(x) = sin 2z centered at a = 7 /4.
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17. (10 points) Use known Maclaurin series to obtain the Maclaurin series for f(z) = ze®?.
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18. (10 points) Find the first four non-zero terms of the Maclaurin expansion of

f(z) = e73%sin(2x)
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19. (10 points, 5 each) (a) Expand V1 + z as a power series. (b) Use part (a) to estimate
YV/1.01 correct to four decimal places.

page 19 of 20



20. (10 points, 5 each) (a) Use the binomial series to expand 1/v/1 + t2. (b) Use part (a)
to find the Maclaurin series for

r 1
0= [ e
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