Problem Type 9.3a: Solve the differential equation

\[y' = \frac{A(x)}{B(y)} \quad \text{or} \quad y' = A(x)B(y) \quad \text{etc.} \]

Example Problem 9.3a: Solve the differential equation

\[y' = y^2 \sec x \]

Steps

1. If not already written like this, replace \(y' \) by \(\frac{dy}{dx} \). Treat \(dy \) and \(dx \) as algebraic quantities and separate the \(x \) part from the \(y \) part.

\[\frac{dy}{dx} = \frac{A(x)}{B(y)} \quad \text{or} \quad \frac{dy}{dx} = A(x)B(y) \quad \text{etc.} \]

implies

\[B(y)dy = A(x)dx \quad \text{respectively} \]

\[\frac{dy}{B(y)} = A(x)dx \quad \text{etc.} \]

2. Apply the Integral sign to both sides, and perform the integration. Only put the \(+C\) on one side.

\[\int y^{-2} \, dy = \int \sec x \, dx \]

which is the same as

\[y^{-2} \, dy = \sec x \, dx \]

implies

\[\int \frac{dy}{y^2} = \int \sec x \, dx \]

\[y^{-1} = \ln |\sec x + \tan x| + C \]
3. If possible, solve for \(y \). Otherwise leave it in implicit form. If there is an initial condition then plug it in and solve for \(C \). If nothing is mentioned (like in this problem), then leave \(C \) alone.

3.
\[
y = \frac{-1}{\ln|\sec x + \tan x| + C}
\]

Ans.:
\[
y = \frac{-1}{\ln|\sec x + \tan x| + C}.
\]

Problem Type 9.3b: Find an equation of the curve that passes through the point \((a, b)\) and whose slope at \((x, y)\) is \(A(y)/B(x)\).

Example Problem 9.3b: Find an equation of the curve that passes through the point \((1, 1)\) and whose slope at \((x, y)\) is \(y^2/x^3\).

Steps

1. Slope is derivative, so set it equal to \(dy/dx\). Treat \(dy\) and \(dx\) as algebraic quantities and **separate** the \(x\) part from the \(y\) part.

\[
\frac{dy}{dx} = \frac{A(y)}{B(x)}
\]

implies

\[
\frac{dy}{A(y)} = \frac{dx}{B(x)}
\]

2. Apply the Integral sign to both sides, and perform the integration. Only put the +\(C\) on one side.

\[
y^2 \frac{dy}{y^2} = x^3 \frac{dx}{x^3}
\]

which is the same as

\[
y^{-2} \frac{dy}{x^{-3}} = dx
\]

1. \[
\frac{dy}{dx} = \frac{y^2}{x^3}
\]

implies

\[
\frac{dy}{y^2} = \frac{dx}{x^3}
\]

which is the same as

\[
y^{-2} \frac{dy}{x^{-3}} = dx
\]

2. \[
\frac{y^{-1}}{-1} = \frac{x^{-2}}{-2} + C
\]

which gives

\[
\frac{-1}{y} = \frac{-1}{2x^2} + C
\]
3. Plug in the point \((x = a, y = b)\) and solve for \(C\). Plug back that value for \(C\)
and try to express \(y\) in terms of \(x\) if possible. Otherwise leave it in implicit form.

\[
\frac{-1}{1} = \frac{-1}{2 \cdot 1^2} + C
\]
giving \(C = -1/2\). Incorporating that \(C\) gives
\[
\frac{-1}{y} = \frac{-1}{2x^2} - \frac{1}{2}
\]
and algebra gives
\[
y = \frac{2x^2}{1 + x^2}.
\]

Ans.: \(\frac{2x^2}{1 + x^2}\).