Dr. Z’s Math152 Handout #6.5 [Average Value of a Function]

By Doron Zeilberger

Problem Type 6.5a: Find the average value of a function \(f(x) \) in the interval \([a, b]\) and find \(c \) such that \(f(c) = f_{\text{ave}} \).

Example Problem 6.5a: Find the average value of \(f(x) = (x - 2)^2 \) in the interval \([1, 4]\) and find \(c \) such that \(f(c) = f_{\text{ave}} \).

Steps

1. Use the formula

\[
f_{\text{ave}} = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx
\]

Example

2. Evaluate the integral

\[
f_{\text{ave}} = \frac{1}{4 - 1} \int_{1}^{4} (x - 2)^2 \, dx
\]

\[
= \frac{1}{3} \left(\frac{(4 - 2)^3}{3} - \frac{(1 - 2)^3}{3} \right) = 1.
\]

3. Solve, for \(c \), \(f(c) = f_{\text{ave}} \). Only retain the solutions that lie in the interval \([a, b]\).

Example

3. We have to solve \((c - 2)^2 = 1\), i.e. \(c - 2 = \pm 1\) giving the solutions \(c = 3\) and \(c = 1\). In this case they both lie there, so

\[\text{Ans.}: f_{\text{ave}} = 1; c = 1 \text{ and } c = 3.\]