Dr. Z's Math152 Handout #6.5 [Average Value of a Function]

By Doron Zeilberger

Problem Type 6.5a: Find the average value of a function f(x) in the interval [a, b] and find c such that $f(c) = f_{ave}$.

Example Problem 6.5a: Find the average value of $f(x) = (x-2)^2$ in the interval [1, 4] and find c such that $f(c) = f_{ave}$.

Steps

Example

1. Use the formula

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

1. Set up the integral

$$f_{ave} = \frac{1}{4-1} \int_{1}^{4} (x-2)^{2} dx$$

2. Evaluate the integral

2.

1

$$\begin{split} f_{ave} &= \frac{1}{4-1} \int_{1}^{4} (x-2)^{2} dx = \frac{1}{3} \int_{1}^{4} (x-2)^{2} dx \\ &= \frac{1}{3} \left(\frac{(x-2)^{3}}{3} \Big|_{1}^{4} \right) \frac{1}{3} \left(\frac{(4-2)^{3}}{3} - \frac{(1-2)^{3}}{3} \right) = 1. \end{split}$$

3. Solve, for c, $f(c) = f_{ave}$. Only retain the solutions that lie in the interval [a, b].

3. We have to solve $(c-2)^2 = 1$, i.e. $c-2 = \pm 1$ giving the solutions c=3 and c=1. In this case they both lie there, so **Ans.**: $f_{ave} = 1$; c=1 and c=3.