Problem Type 10.2a: Find an equation of the tangent line to the curve at the point corresponding to the given value of the parameter

\[x = f(t) \quad , \quad y = g(t) \quad ; \quad t = a \quad , \]

where \(f(t), g(t) \) are expressions in \(t \) and \(a \) is some number.

Example Problem 10.2a: Find an equation of the tangent line to the curve at the point corresponding to the given value of the parameter

\[x = 2t^2 + 1, \quad y = \frac{1}{3}t^3 - t \quad ; \quad t = 3 \quad . \]

Steps

1. Compute \(\frac{dy}{dt} \) and \(\frac{dx}{dt} \), getting expressions in \(t \). Then divide the former by the latter to get \(\frac{dy}{dx} \), a certain expression in \(t \).

You use

\[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} \]

2. Plug-in \(t = a \) to get the slope at the point. Also plug-in \(t = a \) into \(x \) and \(y \) to get the point.

2. When \(t = 3 \), the slope is \(\frac{dy}{dx} = \frac{(t^2 - 1)/4t}{(t^2 - 1)/4t} \), that equals \((3^2 - 1)/(4 \cdot 3) = \frac{2}{3} \). So \(m = \frac{2}{3} \). To get the point we have \(x(3) = 2 \cdot (3)^2 + 1 = 19 \) and \(y(3) = (1/3) \cdot 3^3 - 3 = 6 \). So the point is \((19,6)\).

3. Use the famous point-slope equation from geometry to find the equation of the line: \((y - y_0) = m(x - x_0) \).

3. \(y - 6 = (2/3)(x - 19) \), that simplifies to \(y = \frac{2}{3}x - 20/3 \).

Ans.: The equation of the tangent line is \(y = \frac{2}{3}x - \frac{20}{3} \).

Problem Type 10.2b: Set-up, but do not evaluate, an integral that represents the length of the curve

\[x = f(t) \quad , \quad y = g(t) \quad ; \quad a \leq t \leq b \quad , \]
where \(f(t), \ g(t) \) are expressions in \(t \) and \(a \) and \(b \) are some numbers \((a < b)\).

Example Problem 10.2b: Set-up, but do not evaluate, an integral that represents the length of the curve

\[
x = 1 + e^t, \quad y = t^2 \quad ; \quad -3 \leq t \leq 3.
\]

<table>
<thead>
<tr>
<th>Steps</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compute (\frac{dy}{dt}) and (\frac{dx}{dt}), getting expressions in (t).</td>
<td>1. (\frac{dx}{dt} = e^t, \ \frac{dy}{dt} = 2t.)</td>
</tr>
</tbody>
</table>
| 2. Use the formula for the arclength \[
\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt
\] | 2. The arclength is \[
\int_{-3}^{3} \sqrt{(e^t)^2 + (2t)^2} \ dt = \int_{-3}^{3} \sqrt{e^{2t} + 4t^2} \ dt.
\] This is the **answer**! You were not asked to evaluate the integral. |