Math 152 Review Problems for Final Exam, Fall 2005

The final exam will be cumulative, and the problems below are only samples of some of the types of problem which may be asked on the final. You should also study the review sheets for the two midterms, as well as your lecture notes, homework problems, midterm exams and the workshop problems for the course.

1. Let \(C \) be the curve \(y = x^4/4 \), with \(0 \leq x \leq 1/2 \).
 (a) Set up an integral for the length of \(C \).
 (b) Using the binomial series and term-by-term integration, express the integral in part (a) as a convergent infinite series. Give numerical values for the first three terms in the series and a formula for the general term of the series.
 (c) Explain why the method of (b) wouldn’t work to find the length of the same curve extending from \(x = 0 \) all the way to \(x = 2 \). Give an approximate value for this length, using the trapezoidal rule with \(n = 4 \) divisions.
 (d) Given that \(\frac{d^2}{dx^2} \sqrt{1 + x^6} \leq 13 \) for all \(0 \leq x \leq 2 \), estimate the error in your approximation in (c).

2. The curve with parametric equations
 \[
 x = 8 - 2t^2, \quad y = \sin \pi t, \quad -4 \leq t \leq 4
 \]
crosses itself at the origin. Find the \(t \) values at which it crosses the origin. Find the equations of both tangent lines at the origin.

3. Find the solution of the differential equation \(\frac{dy}{dx} = y \left(\frac{x^3 - 4x - 9}{x^2 - 1} \right) \) with \(y(2) = 3 \). Give an explicit formula for \(y \) as a function of \(x \). Graph the solution and determine the largest interval \(A < x < B \) for which the solution exists.

4. Let \(R \) be the region in the second quadrant which is bounded by the curves \(y = e^x \) and \(y = 0 \).
 (a) Sketch the region \(R \) and find its area.
 (b) Find the volume of the solids which result when the region \(R \) is revolved (1) about the \(x \)-axis; (2) about the \(y \)-axis. (Note that these integrals are improper.)

5. Calculate the following indefinite integrals:
 \[
 (a) \int \frac{e^x}{1 + e^{2x}} \, dx \quad \text{(b) } \int \sqrt{x} \sin(\sqrt{x}) \, dx \quad \text{(c) } \int \sqrt{5 - 4x - x^2} \, dx
 \]
 (Suggestions: in (b), start by substituting \(u = \sqrt{x} \); in (c), start by completing the square.)
6. Find \(\int_0^{\pi/4} \tan^4 x \, dx \) and \(\int_0^{\pi/6} \sin^3 x \cos^4 x \, dx \).

7. Use geometric series to write the repeating decimal 2.171717\ldots as a fraction.

8. A certain radio active substance is known to have half-life 1000 years and to decay at a rate which is always proportional to the amount present. If a sample contains 4 grams of the substance today, how much will be left in 500 years? How much was present in the sample 500 years ago? Give exact answers, not decimal approximations.

9. (a) Does \(\lim_{n \to \infty} \frac{\ln n}{n^2} \) exist? Explain your reasoning.

(b) Prove that \(\sum_{n=2}^{\infty} \frac{\ln n}{n^2} \) converges.

(c) Show that \(\sum_{n=3}^{\infty} \frac{\ln n}{n^2} < \int_2^{\infty} \frac{\ln x}{x^2} \, dx \) by drawing areas related to the graph of \(y = \frac{\ln x}{x^2} \).

10. Suppose you need numerical values of function \(f(x) \) defined by a very complicated formula. You know, however, that \(f(3) = 1 \), \(f'(3) = -2 \) and \(f''(3) = 20 \). Moreover you know that the third derivative of \(f(x) \) satisfies \(|f'''(x)| \leq 24 \) for all \(x \) in the interval \(2 \leq x \leq 4 \). Compute the second-degree Taylor polynomial \(T_2 \) for \(f \) centered at 3. Use it and Taylor’s Inequality to solve the following problems.

(a) Calculate the best approximate value for \(f(3.3) \) that you can from this information, and then estimate the error.

(b) Find a number \(B > 0 \) so that \(|f(x) - T_2(x)| \leq 1/10 \) for all numbers \(x \) in the interval \(3 - B \leq x \leq 3 + B \).

11. Let \(f(x) = \cos(3x) \) and \(g(x) = e^{x/2} \).

(a) Find the coefficients \(a_0, a_1, a_2 \) in the Maclaurin series \(f(x)g(x) = a_0 + a_1 x + a_2 x^2 + \cdots \).

(b) Find the coefficients \(b_0, b_1, b_2 \) in the Maclaurin series \(\frac{f(x)}{g(x)} = b_0 + b_1 x + b_2 x^2 + \cdots \).

(You may obtain your answers either by algebraic manipulation of known power series or by the definition of the Maclaurin series.)

12. Use the formula for the sum of a geometric series to calculate the Maclaurin series for the function \(f(x) = \frac{1}{3 + 2x^3} \).

Write your answer in sigma notation. Use the result to find an infinite series representation for \(\int_0^1 f(t) \, dt \). Estimate the size of the difference between this integral and the 3rd partial sum of the series.
13. Determine if the following series are absolutely convergent, conditionally convergent, or divergent. In each case give details to support your answer and indicate which convergence test you are using.

(a) \[\sum_{n=2}^{\infty} (-1)^{n-1} \frac{n}{\ln n} \]
(b) \[\sum_{n=2}^{\infty} (-1)^n \frac{n}{n^3 + 4} \]
(c) \[\sum_{n=1}^{\infty} \frac{(2n)!}{5^n \cdot (n!)^2} \]

14. Use comparisons to determine whether the following improper integrals are convergent or divergent.

(a) \[\int_0^{\infty} \frac{dx}{(x+1)(x+3)} \]
(b) \[\int_0^{\infty} \frac{dx}{(4 + x^2)^{3/2}} \]

15. Verify your answers to (a) and (b) in the preceding problem by calculating the integrals.

16. Show that \[\sum_{n=1}^{\infty} \left(\sin^2 \frac{1}{n} + \cos^2 \frac{1}{n+1} - 1 \right) = \sin^2(1). \]

17. Determine the radius and interval of convergence of each of the following power series. In addition, determine those points at which each series is absolutely convergent.

(a) \[\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{\ln(n+2)} \]
(b) \[\sum_{n=1}^{\infty} \frac{(x+1)^n}{n^3 10^n} \]