
Dr. Z’s Solutions to Dr. Scheffer’s Math 152
Review Problems for Final Exam, Fall 2005

Corrected Dec. 16, 2012 [Thanks to Taylor Picillo, who corrected b2 in(11b)]
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1. Let C be the curve y = x4/4, with 0 ≤ x ≤ 1/2.
(a) Set up an integral for the length of C.
(b) Using the binomial series and term-by-term integration, express the integral in part (a) as

a convergent infinite series. Give numerical values for the first three terms in the series
and a formula for the general term of the series.

(c) Explain why the method of (b) wouldn’t work to find the length of the same curve extending
from x = 0 all the way to x = 2. Give an approximate value for this length, using the
trapezoidal rule with n = 4 divisions.

(d) Given that
∣∣∣∣ d2

dx2

√
1 + x6

∣∣∣∣ ≤ 13 for all 0 ≤ x ≤ 2, estimate the error in your approximation

in (c).
Sol. to 1
(a): Using the formula for the arclength

L =
∫ b

a

√
1 + [f ′(x)]2 dx ,

with f(x) = x4/4 and a = 0, b = 1/2, we get
Ans. to 1(a): ∫ 1/2

0

√
1 + x6 dx ,

(b): Using the binomial series

(1 + w)k =
∞∑

n=0

(
k

n

)
wn = 1 + kw +

k(k − 1)
2!

w2 + . . . +
k(k − 1) · · · (k − n + 1)

n!
wn + . . . ,

(valid for |w| < 1), with k = 1/2 and w = x6, we get

(1 + x6)1/2 =
∞∑

n=0

(
1/2
n

)
(x6)n = 1 + (1/2)x6 +

(1/2)(1/2− 1)
2!

(x6)2+

. . . +
(1/2)(1/2− 1) · · · (3/2− n)

n!
(x6)n + . . . ,

(valid for |x| < 1)

= 1 + (1/2)x6 − (1/8)x12 + . . . +
(1/2)(1/2− 1) · · · (3/2− n)

n!
x6n + . . . ,

(valid for |x| < 1). Integrating term by term we get∫ 1/2

0

√
1 + x6 =

∫ 1/2

0

(
1 + (1/2)x6 − (1/8)x12 + . . . +

(1/2)(1/2− 1) · · · (3/2− n)
n!

x6n + . . .

)
dx
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x + (1/2)
x7

7
− (1/8)

x13

13
+ . . . +

(1/2)(1/2− 1) · · · (3/2− n)
n!

x6n+1

6n + 1
+ . . . |1/2

0

= 1/2 + (1/2)
(1/2)7

7
− (1/8)

(1/2)13

13
+

. . . +
(1/2)(1/2− 1) · · · (3/2− n)

n!
(1/2)6n+1

6n + 1
+ . . .

=
1
2

+
1

28 · 7
− 1

216 · 13
+

. . . +
(1/2)(1/2− 1) · · · (3/2− n)

n!
(1/2)6n+1

6n + 1
+ . . .

This is the Ans. to 1(b).
c): The radius of convergence of the Maclaurin series for

√
1 + x6 is 1, so it is only valid

for the interval −1 < x < 1, and x = 2 is outside it. The arclength is now∫ 2

0

√
1 + x6 dx .

Using the Trapezoid rule with n = 4, we get ∆x = (2− 0)/4 = 1/2 and the appx. is∫ 2

0

√
1 + x6 ≈ 1/2

2

(√
1 + 2

√
1 + (1/2)6 + 2

√
1 + (1)6 + 2

√
1 + (3/2)6 + 1

√
1 + (2)6

)
=

1
4

(
1 +

√
65
4

+ 2
√

2 +
√

793
4

+
√

65

)
.

This is the ans. to 1(c).
(d): Using

|ET | ≤
K(b− a)3

12n2
,

with K = 13 (given by the problem), n = 4, a = 0 and b = 2, we get

|ET | ≤
13(2− 0)3

12 · 42
=

13
24

Ans. to 1(d): |error| ≤ 13
24 .
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2. The curve with parametric equations

x = 8− 2t2, y = sinπt, −4 ≤ t ≤ 4

crosses itself at the origin. Find the t values at which it crosses the origin. Find the equations
of both tangent lines at the origin.

Sol. to 2. Solving x = 0 gives 8− 2t2 = 0 which gives t = −2 and t = 2. Now you have
to check that y is also 0 for t = −2 and t = 2 (since we are talking about the origin). This is
true. Now

dx

dt
= −4t ,

dy

dt
= π cos πt ,

So the slope, dy/dx is
dy

dx
=

dy
dt
dx
dt

==
π cos πt

−4t
.

Plugging-in t = −2 and t = 2 we get that the two slopes are π cos π2
−4·2 and π cos π(−2)

−4·(−2) which are
−π/8 and π/8. Using

(y − y0) = m(x− x0) ,

for the equation of a line with slope m passing through a point (x0, y0), we get that the equations
of the two tangents are

(y − 0) = (π/8)(x− 0) , (y − 0) = (−π/8)(x− 0) ,

Ans. to 2: y = (π/8)x and y = (−π/8)x.
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3. Find the solution of the differential equation
dy

dx
= y

(
x2 − 4x− 9

x2 − 1

)
with y(2) = 3. Give an

explicit formula for y as a function of x. Graph the solution and determine the largest interval
A < x < B for which the solution exists.

Sol. to (3): Separating variables, we have

dy

y
=

x2 − 4x− 9
x2 − 1

dx

Integrating both sides we have ∫
dy

y
=
∫

x2 − 4x− 9
x2 − 1

dx

The integral on the left is easy: ln y. The integral on the right requires first “long division”
and then partial-fraction decomposition.

x2 − 4x− 9
x2 − 1

= 1− 4x + 8
x2 − 1

.

Now write:
4x + 8
x2 − 1

=
4x + 8

(x− 1)(x + 1)
=

A

(x− 1)
+

B

(x + 1)
=

A(x + 1) + B(x− 1)
(x− 1)(x + 1)

.

Equating numerators, we get:

4x + 8 = A(x + 1) + B(x− 1) .

Plugging-in “convenient values” x = 1 and x = −1 gives A = 6 and B = −2 so going back to
the integrand on the right

x2 − 4x− 9
x2 − 1

= 1− 6
x− 1

+
2

x + 1
.

Integrating,∫
x2 − 4x− 9

x2 − 1
dx = x−6 ln(x−1)+2 ln(x+1) = x−ln(x−1)6+ln(x+1)2 = x+ln

(x + 1)2

(x− 1)6
+C

So we have

ln y = x + ln
(x + 1)2

(x− 1)6
+ C .

Exponentiating,

y = ex · eln
(x+1)2

(x−1)6
+C = ex · eln

(x+1)2

(x−1)6 · eC = Cex (x + 1)2

(x− 1)6
.

(Remember that eC = C). Plugging-in x = 2 y = 3, we get

3 = Ce2 (2 + 1)2

(2− 1)6
= 9Ce2 .

Solving for C, we get: C = 1/(3e2). Going back we get the solution

y = ex (x + 1)2

3e2(x− 1)6
.

This function blows up at x = 1 so any interval avoiding x = 1 would do. Since the initial
condition was y(2) = 3, our interval must contain x = 2 so the largest interval is 1 < x < ∞.
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4. Let R be the region in the second quadrant which is bounded by the curves y = ex and
y = 0.
(a) Sketch the region R and find its area.
(b) Find the volume of the solids which result when the region R is revolved (1) about the

x-axis; (2) about the y-axis. (Note that these integrals are improper.)
Sol. to (4a): You do the sketching! (remember that second quadrant means x < 0 and

y > 0. The area is ∫ 0

−∞
ex dx = ex|0−∞ = e0 − e−∞ = 1− 0 = 1

Ans. to (4a): The area is 1.
Sol. to (4b)(1): The volume of the solid which results when the region R is rotated

around the x-axis is

π

∫ 0

−∞
(ex)2 dx = π

∫ 0

−∞
e2x dx = π(

e2x

2
)|0−∞ = π(

e0

2
− e−∞

2
) = π(

1
2
− 0

2
) = π/2

Sol. to (4b)(2): The volume of the solid which results when the region R is rotated
around the y-axis is

2π

∫ 0

−∞
(−x)(ex) dx = −2π

∫ 0

−∞
xex dx

(Note that we have −x instead of x since we are in the second quadrant where x is negaive.)
So we have to evaluate the improper integral

∫ 0

−∞ xex dx. By integration by parts∫
xex dx = xex − ex + C

So ∫ 0

−∞
xex dx = lim

R→−∞

∫ 0

R

xex dx = lim
R→−∞

(xex − ex)|0R =

lim
R→−∞

[(0e0 − e0)− (ReR − eR)] = −1 + lim
R→−∞

(ReR − eR)

−1 + lim
R→−∞

R

e−R
− lim

R→−∞
eR = −1 ,

by L’Hôspital and ‘pluging-in’. Combining we get
Ans. to (4b)(2): The volume of the solid which results when the region R is rotated

around the y-axis is 2π.
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5. Calculate the following indefinite integrals:

(a)
∫

ex

1 + e2x
dx (b)

∫ √
x sin(

√
x) dx (c)

∫ √
5− 4x− x2 dx

(Suggestions: in (b), start by substituting u =
√

x; in (c), start by completing the square.)
Sol. to 5a). Do the substitution u = ex, and det du = exdx and so∫

ex

1 + e2x
dx =

∫
du

1 + u2
= tan−1 u ,

Going back to the x-language, we have
Ans. to 5a): tan−1(ex) + C.
Sol. to 5b) Let’s use t rather than u, since later on we need u for the integration-by-parts.

With t = x1/2 we get dt/dx = (1/2)x−1/2 so dx = 2x1/2dt = 2tdt and the integral becomes∫ √
x sin(

√
x) dx =

∫
2t2 sin t

This calls for integration by parts (twice!) First with u = 2t2, v′ = sin t, we get u′ = 4t and
v = − cos t so∫

2t2 sin t dt = 2t2(− cos t) +
∫

4t cos t dt = −2t2 cos t +
∫

4t cos t dt .

We need integration-by-parts one more time:∫
4t cos t dt .

With u = 4t and v′ = cos t, we get u′ = 4 and v = sin t, so∫
4t cos t dt = 4t sin t−

∫
4 sin t dt = 4t sin t + 4 cos t .

Going back to the previous integral, we have∫
2t2 sin t dt = −2t2 cos t + 4t sin t + 4 cos t .

and now, finally, we substitute t =
√

x and get Ans. to 5b):

−2x cos
√

x + 4
√

x sin
√

x + 4 cos
√

x + C .

(Note: don’t forget to add +C at the very end).
Solution to (c).

5− 4x− x2 = −[x2 + 4x− 5] = −[(x + 2)2 − 4− 5] = −[(x + 2)2 − 9] = 9− (x + 2)2 .
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So ∫ √
5− 4x− x2 dx =

∫ √
9− (x + 2)2 dx .

A natural substitution is u = x + 2 with du = dx so∫ √
5− 4x− x2 dx =

∫ √
9− u2 .

This calls for a trig. subsitution. u = 3 sin θ. We have du = 3 cos θdθ and√
9− u2 =

√
9− 9 sin2 θ = 3

√
1− sin2 θ = 3 cos θ

We get ∫ √
9− u2 du =

∫
(3 cos θ)3 cos θdθ = 9

∫
cos2 θdθ .

Using the trig. identity

cos2 θ =
1 + cos 2θ

2
,

we get
9
2

∫
(1 + cos(2θ)) dθ =

9
2
(θ +

sin(2θ)
2

) =
9
2
(θ + sin θ cos θ)

(using yet another trig. identity: sin 2θ = 2 sin θ cos θ) Going back to the u-language we get

9
2
(sin−1(u/3) + (u/3)

√
1− (u/3)2) =

9
2

sin−1(u/3) +
u

2

√
9− u2

Finally, going back to the x-language (recall that u = x + 2)
Ans. to 5c):

9
2

sin−1((x + 2)/3) +
x + 2

2

√
9− (x + 2)2 =

9
2

sin−1((x + 2)/3) +
x + 2

2

√
5− 4x− x2 + C .
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6. Find (a)
∫ π/4

0

tan4 x dx and (b)
∫ π/6

0

sin3 x cos4 x dx.

Sol. of 6(a): We use the trig. identity tan2 x = sec2 x− 1 to write

tan4 x = tan2 x(sec2−1) = tan2 x sec2 x− tan2 x

tan2 x still has an even power, so we use the above trig identity (tan2 x = sec2 x− 1) one more
time to write

tan4 x = tan2 x(sec2−1) = tan2 x sec2 x− (sec2 x− 1) = tan2 x sec2 x− sec2 x + 1

For the first piece, we use the subsitution u = tan x giving du = sec2 xdx, so∫
tan2 x sec2 x dx =

∫
u2du =

u3

3
=

1
3

tan3 x + C∫
sec2 x dx is just tanx (for the formula sheet or from your memory) and

∫
1 dx is x of course,

so ∫
tan4 x dx =

∫
tan2 x sec2 x dx−

∫
sec2 x dx +

∫
dx

=
1
3

tan3 x− tanx + x + C

Now inserting the limits of integration∫ π/4

0

tan4 x dx =
1
3

tan3 x− tanx + x|π/4
0 =

(
1
3

tan3(π/4)− tan(π/4) + π/4)− (
1
3

tan3 0− tan 0 + 0) =
1
3
− 1 + π/4 = π/4− 2

3
.

Ans. to 6(a): π
4 −

2
3 .

Sol. to 6(b): Here sin is raised to an odd power, so we make the substitution u = cos x.
Now du = − sinxdx and so we write∫

sin3 x cos4 x dx = −
∫

sin2 x cos4 x(− sinxdx) = −
∫

sin2 xu4 du .

Using the famous trig identity sin2 x = 1− cos2 x we get that this equals

−
∫

(1− u2)u4 du =
∫

(u6 − u4) du =
u7

7
− u5

5
=

cos7 x

7
− cos5 x

5
+ C .

Now putting-in limits-of-integration∫ π/6

0

sin3 x cos4 x =
cos7 x

7
− cos5 x

5
|π/6
0 =

cos7(π/6)
7

− cos5(π/6)
5

− (
cos7(0)

7
− cos5(0)

5
)

=
(
√

3/2)7

7
− (

√
3/2)5

5
− (

cos7(0)
7

− cos5(0)
5

)

=
(
√

3/2)(3/4)3

7
− (

√
3/2)(3/4)2

5
− (

1
7
− 1

5
) =

2
35
− 117

√
3

4480
.

Ans. to 6b): 2
35 −

117
√

3
4480 .
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7. Use geometric series to write the repeating decimal 2.171717 . . . as a fraction.
Sol. to 7):

2.171717 . . . = 2 +
17
100

+
17

10000
+

17
1000000

+ . . . =

= 2 +
17
100

(
1 +

1
100

+
1

1002
+ . . .

)
Since 1/100 < 1 we can use the famous geometric series sum

1 + r + r2 + r3 + r4 + . . . =
1

1− r
,

and we get

2.171717 . . . = 2 +
17
100

· 1
1− 1

100

= 2 +
17
100

· 1
99
100

= 2 +
17
99

= 2
17
99

=
215
99

.

Ans. to 7): 215
99 .

8. A certain radio active substance is known to have half-life 1000 years and to decay at a
rate which is always proportional to the amount present. If a sample contains 4 grams of the
substance today, how much will be left in 500 years? How much was present in the sample 500
years ago? Give exact answers, not decimal approximations.

Sol. to 8.: Recall that the amount at time t, M(t) is given by

M(t) = M0(1/2)t/HalfLife .

So in this problem:
M(t) = 4(1/2)t/1000 .

In 500 years will be left

M(500) = 4(1/2)500/1000 = 4(1/2)1/2 = 4/
√

2 = 2
√

2

500 years ago the amount was

M(−500) = 4(1/2)−500/1000 = 4
√

2 .

Ans. to 8.: 2
√

2 and 4
√

2 respectively.
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9. (a) Does lim
n→∞

lnn

n2
exist? Explain your reasoning.

(b) Prove that
∞∑

n=2

lnn

n2
converges.

(c) Show that
∞∑

n=3

lnn

n2
<

∫ ∞

2

lnx

x2
dx by drawing areas related to the graph of y =

lnx

x2
.

Sol. to 9. a) Yes, since the corresponding limit with x replaced by n

lim
x→∞

lnx

x2

exists, by L’Hôpital and equals 0.
b) You could invoke Dr. Z’s (p-q) test with p = 2 and q = −1, and since p > 1 it converges,

but they want you to use the integral test. So let’s consider the corresponding improper integral∫ ∞

2

lnx

x2
dx =

∫ ∞

2

(lnx)(x−2) .

First use integration by parts to do the indefinite integral. With u = ln x and v′ = x−2, we
have u′ = 1/x and v = −1/x, so∫

(lnx)(x−2) = (lnx)(−1/x) +
∫

x−2 dx = − lnx

x
− 1

x

So ∫ ∞

2

lnx

x2
dx = lim

R→∞

∫ R

2

lnx

x2
dx = lim

R→∞
− lnx

x
− 1

x
|R2

lim
R→∞

(
− lnR

R
− 1

R

)
+

ln 2
2

+
1
2

= 0 +
ln 2
2

+
1
2

,

By L’Hôpital and limR→∞ 1/R = 0. Since this is a finite number the integral converges, and
by the integral test, the series converges.
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10. Suppose you need numerical values of function f(x) defined by a very complicated formula.
You know, however, that f(3) = 1, f ′(3) = −2 and f ′′(3) = 20. Moreover you know that the
third derivative of f(x) satisfies |f ′′′(x)| ≤ 24 for all x in the interval 2 ≤ x ≤ 4. Compute the
second-degree Taylor polynomial T2 for f centered at 3. Use it and Taylor’s Inequality to solve
the following problems.
(a) Calculate the best approximate value for f(3.3) that you can from this information, and

then estimate the error.
(b) Find a number B > 0 so that |f(x) − T2(x)| ≤ 1/10 for all numbers x in the interval

3−B ≤ x ≤ 3 + B.
Sol. to 10

T2(x) = f(3)+f ′(3)(x−3)+
f ′′(3)

2
(x−3)2 = 1−2(x−3)+

20
2

(x−3)2 = 1−2(x−3)+10(x−3)2 .

Plugging-in M = 24, n = 2 and a = 3 in

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1 ,

we get

|R3(x)| ≤ 24
6
|x− 3|3 ,

that simplifies to
|R3(x)| ≤ 4|x− 3|3 ,

Sol. to 10a): Plugging in x = 3.3 we get

f(3.3) ≈ 1− 2(3.3− 3) + 10(3.3− 3)2 = 1.3

|error| ≤ |R3(3.3)| ≤ 4|3.3− 3|3 =
27
250

.

Sol. to 10b): We need 4B3 ≤ 1/10 so B3 ≤ 1/40 and we have
Ans. to 10b): B = 1

3√40
.
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11. Let f(x) = cos(3x) and g(x) = ex/2.
(a) Find the coefficients a0, a1, a2 in the Maclaurin series f(x)g(x) = a0 + a1x + a2x

2 + · · ·.

(b) Find the coefficients b0, b1, b2 in the Maclaurin series
f(x)
g(x)

= b0 + b1x + b2x
2 + · · ·.

(You may obtain your answers either by algebraic manipulation of known power series or
by the definition of the Maclaurin series.)

Sol. to 11): We only need to carry things up to x2, and replace by . . . everything else.

f(x) = cos(3x) = 1− (3x)2

2
+ . . . ; g(x) = ex/2 = 1 + (x/2) +

(x/2)2

2
+ . . .

Simplifying:

f(x) = 1− 9
2
x2 + . . . ; g(x) = 1 +

1
2
x +

1
8
x2 + . . .

Multiplying:

f(x)g(x) = (1− 9
2
x2 + . . .)(1+

1
2
x+

1
8
x2) = (1+

1
2
x+

1
8
x2)− 9

2
x2(1+ . . .) = 1+

1
2
x− 35

8
x2 + . . .

Ans. to (a): a0 = 1, a1 = 1
2 , a2 = −35

8 .
b): Division is much more complicated than multiplication, hence whenever you have

a division, like here, try to make it multiplication. In this case it is possible: f(x)/g(x) =
cos(3x)e−x/2, and things are very similar to the above.

f(x)/g(x) = (1− 9
2
x2+ . . .)(1− 1

2
x+

1
8
x2) = (1− 1

2
x+

1
8
x2)− 9

2
x2(1+ . . .) = 1− 1

2
x− 45

8
x2+ . . .

Ans. to (b): b0 = 1, b1 = − 1
2 , b2 = −45

8 .
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12. Use the formula for the sum of a geometric series to calculate the Maclaurin series for the
function

f(x) =
1

3 + 2x3
.

Write your answer in sigma notation. Use the result to find an infinite series representation for∫ 1

0

f(t) dt. Estimate the size of the difference between this integral and the 3rd partial sum of

the series.
Sol. to 12 Using

1
1− w

=
∞∑

n=0

wn

with w = −2x3/3 we get

1
3 + 2x3

=
1

3(1 + (2x3/3)
=

1
3

1
(1− (−2x3/3)

=
1
3

∞∑
n=0

(
−2x3

3
)n

∞∑
n=0

(−2)n

3n+1
x3n .

Integrating from 0 to 1, we get∫ 1

0

1
3 + 2t3

dt =
∞∑

n=0

(−2)n

3n+1

∫ 1

0

t3n dt =
∞∑

n=0

(−2)n

3n+1

1
3n + 1

=
∞∑

n=0

(−2)n

(3n + 1)3n+1
.

The first four terms, spelled-out are

(−2)0

(3 · 0 + 1)30+1
+

(−2)1

(3 · 1 + 1)31+1
+

(−2)2

(3 · 2 + 1)32+1
+

(−2)3

(3 · 3 + 1)33+1

=
1
3

+
−1
18

+
4

189
− 4

405

The difference between the integral (which is the sum of the series) and the sum of the first
three terms is the next-in-line, i.e. the fourth term, namely: 4

405 .
Ans. to second part of 12: the difference is ≤ 4/405.
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13. Determine if the following series are absolutely convergent, conditionally convergent, or
divergent. In each case give details to support your answer and indicate which convergence test
you are using.

(a)
∞∑

n=2

(−1)n−1 n

lnn
(b)

∞∑
n=2

(−1)n n

n3 + 4
(c)

∞∑
n=1

(2n)!
5n · (n!)2

Sol to 13a): By L’Hôpital,
lim

n→∞

n

lnn
equals ∞, hence

lim
n→∞

(−1)n−1 n

lnn
does not exist, and the series diverges by the divergence test.

Ans. to 13a): series diverges by the divergence test.
Sol to 13b): First consider the absolute version

∞∑
n=2

n

n3 + 4
.

By the limit-comparison test this has the same convergence status as
∞∑

n=2

n

n3
=

∞∑
n=2

1
n2

,

which converges by the p-test (p = 2). Since the absolute version is convergent, we have
Ans. to 13b): absolutely convergent.
Sol. to 13c): This calls for the ratio test.

an =
(2n)!

5n(n!)2

Then

an+1 =
(2n + 2)!

5n+1(n + 1)!2

The ratio is
an+1

an
=

(2n+2)!
5n+1(n+1)!2

(2n)!
5n(n!)2

=
(2n + 2)!

(2n)!
· n!2

(n + 1)!2
· 5n

5n+1

= (2n + 1)(2n + 2) · 1
(n + 1)2

· 1
5

=
(2n + 1)(2n + 2)

5(n + 1)2

This is the simplified ratio. Taking the limit, we get

ρ = lim
n→∞

(2n + 1)(2n + 2)
5(n + 1)2

= lim
n→∞

(2n)(2n)
5(n)2

= lim
n→∞

4n2

5(n)2
=

4
5

.

Since |ρ| < 1, we get
Ans. to 13c): Converges by the ratio test.
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14. Use comparisons to determine whether the following improper integrals are convergent or
divergent.

(a)
∫ ∞

0

dx

(x + 1)(x + 3)
(b)
∫ ∞

0

dx

(4 + x2)3/2

Sol. to 14a): By the limit-comparison test for integrals∫ ∞

0

dx

(x + 1)(x + 3)

has the same convergence status as∫ ∞

1

dx

(x)(x)
=
∫ ∞

1

dx

x2
,

and this converges by the p-test for integrals (p = 2). Hence the original integral converges.
Sol. to 14b): By the limit-comparison test for integrals∫ ∞

0

dx

(4 + x2)3/2

has the same convergence status as ∫ ∞

0

dx

(x2)3/2
=
∫ ∞

0

dx

x3

and this converges by the p-test for integrals (p = 3). Hence the original integral converges.
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15. Verify your answers to (a) and (b) in the preceding problem by calculating the integrals.
Sol. of 15a): By partial-fractions

1
(x + 1)(x + 3)

=
1
2

(
1

x + 1
− 1

x + 3

)
Integrating,∫

dx

(x + 1)(x + 3)
=

1
2

(∫
dx

x + 1
−
∫

dx

x + 3

)
=

1
2
(ln(x + 1)− ln(x + 3)) =

1
2

ln
(

x + 1
x + 3

)
Now ∫ R

0

dx

(x + 1)(x + 3)
=

1
2

ln
(

x + 1
x + 3

)
|R0 =

1
2

ln
(

R + 1
R + 3

)
− 1

2
ln
(

0 + 1
0 + 3

)
−

=
1
2

ln
(

R + 1
R + 3

)
+

ln 3
2

Finally ∫ ∞

0

dx

(x + 1)(x + 3)
=

ln 3
2

+ lim
R→∞

1
2

ln
(

R + 1
R + 3

)
=

ln 3
2

+
1
2

ln
(

R

R

)
=

ln 3
2

+ 0 =
ln 3
2

+ 0 =
ln 3
2

.

Ans. to 15a): (ln 3)/2.
Sol. to 15b) Let x = 2 tan θ, then dx = 2 sec2 θdθ and 4 + x2 = 4 + 4 tan2 θ = 4(1 +

tan2 θ) = 4 sec2 θ, and (4 + x2)3/2 = (4 sec2 θ)3/2 = 8 sec3 θ. Also when x = 0, θ = 0 and when
x = ∞, θ = π/2, so the integral becomes∫ ∞

0

dx

(4 + x2)3/2
=
∫ π/2

0

2 sec2 θ

8 sec3 θ
=
∫ π/2

0

1
4 sec θ

=
∫ π/2

0

cos θ

4
=

sin θ

2
|π/2
0 =

sin(π/2)
4

− sin(0)
4

=
1
4

.

Ans. to 15b): 1
4 .
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16. Show that
∞∑
1

(
sin2 1

n
+ cos2

1
n + 1

− 1
)

= sin2(1).

Sol. to 16): Somehow you have to make it a telesoping series. By the famous trig.
identity 1− cos2 x = sin2 x, we have

sin2 1
n

+ cos2
1

n + 1
− 1 = sin2 1

n
− (1− cos2

1
n + 1

) = sin2 1
n
− sin2 1

n + 1

It follows that
∞∑

n=1

sin2 1
n

+ cos2
1

n + 1
− 1 =

∞∑
n=1

(sin2 1
n
− sin2 1

n + 1
) =

sin2 1− sin2(1/2) + sin2(1/2)− sin2(1/3) + sin2(1/3)− sin2(1/4) + . . .

the partial sum is sin2 1− sin2 1
n+1 and since the second term goes to 0, the sum of the series

is the first term of the first term, namely sin2 1.

17. Determine the radius and interval of convergence of each of the following power series. In
addition, determine those points at which each series is absolutely convergent.

(a)
∞∑

n=0

(−1)nxn

ln(n + 2)
(b)

∞∑
n=1

(x + 1)n

n310n

Sketch of the Sol. to 17a): By the ratio test, the limit of the ratios is −x, and setting
its absolute value to be < 1, we get |x| < 1 and we get radius of convergence equals 1
and the tentative interval of convergence is (−1, 1). Plugging x = −1 gives you a (p,q)
series with p = 0 and q = 1, and it follows by Dr. Z’s p-q test that −1 is a point of divergence.
When x = 1 then the series does not converge absolutely (for the same reason) but by the
Alternating Series Test it converges conditionally.

Ans. to 17a): Radius of convergence=1, interval of convergence (−1, 1]. interval of
absolute convergence (−1, 1).

Sketch of the Sol. to 17b): By the ratio test, the limit of the ratios is (x + 1)/10, and
setting its absolute value to be < 1, we get |x + 1| < 10 and we get radius of convergence
equals 10 and the tentative interval of convergence is (−1 − 10,−1 + 10) = (−11, 9).
Plugging x = −11 gives you the series

∞∑
n=1

(−1)n

n3

which is absolutely convergent by the p-test (p = 3), and hence, of course, convergent.
Plugging x = 9 gives you the series

∞∑
n=1

1
n3

which is absolutely convergent by the p-test (p = 3), and hence, of course, convergent (since
right now the series is positive, it is the same thing).

Ans. to 17b): Radius of convergence=−1, interval of convergence [−11, 9]. interval of
absolute convergence [−11, 9].
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