Solutions to the “QUIZ” for Nov. 25, 2008

1. Compute
\[\int e^{\cos 2x} \sin 2x \, dx . \]

Solu. to 1: The natural substitution is \(u = \cos 2x \) (note: not \(u = 2x \)). Differentiating, we get (by the chain rule)
\[\frac{du}{dx} = -2 \sin 2x , \]
So here is the “dictionary”
\[u = \cos 2x , \quad dx = \frac{-du}{2 \sin 2x} . \]
Performing the translation, we get:
\[\int e^u \sin 2x \left(\frac{-du}{2 \sin 2x} \right) \]
Lo and behold, the \(x \)-stuff disappears, and we get that this equals
\[- \int e^u \left(\frac{du}{2} \right) = -\frac{1}{2} \int e^u du = -\frac{1}{2} e^u \]
Going back to the \(x \)-language, this equals:
\[-\frac{1}{2} e^{\cos 2x} \]
and finally, add +C. Ans. to 1:
\[-\frac{1}{2} e^{\cos 2x} + C . \]

Comments: Most people got it right, but quite a few people lost the 2 either when they did \(du/dx \), or later.

2. Compute
\[\int_0^{\pi/4} \sin^4 2x \cos 2x \, dx . \]

Solu. to 2: First, let’s rewrite this as:
\[\int_0^{\pi/4} (\sin 2x)^4 \cos 2x \, dx \]
The natural candidate for \(u \) is what’s inside the power, namely
\[u = \sin 2x . \]
Now differentiate:
\[\frac{du}{dx} = 2 \cos 2x . \]

Cross multiplying, we get
\[dx = \frac{du}{2 \cos 2x} . \]

Our “dictionary” is:
\[u = \sin 2x , \quad dx = \frac{du}{2 \cos 2x} . \]

Since this is a **definite integral**, it is a good idea to also find the limit-of-integration in the \(u \)-language. When \(x = 0 \), \(u = \sin(2 \cdot 0) = \sin 0 = 0 \). When \(x = \pi/4 \), \(u = \sin(2 \cdot \pi/4) = \sin \pi/2 = 1 \).

Doing the complete translation, we get
\[
\int_{0}^{\pi/4} (\sin 2x)^4 \cos 2x \, dx = \int_{0}^{1} (u)^4 \cos 2x \frac{du}{2 \cos 2x} = \frac{1}{2} \int_{0}^{1} u^4 \, du = \frac{u^5}{10} \bigg|_{0}^{1} = \frac{1^{10} - 0^{10}}{10} = \frac{1}{10} .
\]

Ans. to 2: \(\frac{1}{10} \).

Comment: Another way of doing it is to just do the “anti-derivative”, i.e. indefinite integral with respect to \(x \) first, and then plug-in the original limits. You would get
\[
\int_{0}^{\pi/4} (\sin 2x)^4 \cos 2x \, dx = \frac{10}{10} (\sin 2x)^5 \bigg|_{0}^{\pi/4} = \frac{1^{10} - 0^{10}}{10} = \frac{1}{10} .
\]

The same thing, of course.

Further Comments: Only about a half of the people got it completely right. Some people picked the wrong \(u \) (for example \(u = 2x \) or \(u = \sin^4 2x \), neither of them succeed). Some people forgot to translate the limit-of-integration to the \(u \)-language and plugged in \(u = \pi/4 \) and \(u = 0 \) instead of \(u = 1 \) and \(u = 0 \). So watch out!