Problem Type 4.9.1: Find the most general antiderivative of the function \(f(x) \).

Example Problem 4.9.1: Find the most general antiderivative of the function \(f(x) = 5e^x + 8\sec^2 x \).

<table>
<thead>
<tr>
<th>Steps</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. You have to memorize the differentiation table in reverse. An antiderivative of (x^n) if (x^{n+1}/(n+1)) (except when (n = -1)). The antiderivative of (\cos x) is (\sin x), The antiderivative of (\sin x) is (-\cos x), The antiderivative of (\sec^2 x) is (\tan x), etc.</td>
<td>1. An antiderivative of (e^x) is (e^x), and that of (\sec^2 x) is (\tan x). Hence an antiderivative of (f(x)) is (5e^x + 8\tan x).</td>
</tr>
<tr>
<td>2. To find the most general antiderivative, you add (C) (an arbitrary constant) to the above answer.</td>
<td>2. Ans.: (5e^x + 8\tan x + C).</td>
</tr>
</tbody>
</table>
Problem Type 4.9.2: Find \(f \) if \(f'(x) = \text{Expression}(x) \) and \(f(a) = \text{Number} \).

Example Problem 4.9.2: Find \(f \) if \(f'(x) = 6x - 2/x^2, x > 0 \) and \(f(1) = 4 \).

<table>
<thead>
<tr>
<th>Steps</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Find the most general antiderivative, like in problem 4.9.1, featuring (C).</td>
<td>1. (f'(x) = 6x - 2/x^2) so (f(x) = 3x^2 + 2x^{-1} + C)</td>
</tr>
<tr>
<td>2. Plug-in (x = a) and solve for (C) the equation (f(a) = \text{Number}).</td>
<td>2. (f(x) = 3x^2 + 2x^{-1} + C), so (f(1) = 3 \cdot 1^2 + 2/1 + C = 5 + C). But, on the other hand, from the data, (f(1) = 4). So we have the equation (5 + C = 4). Solving it yields (C = -1).</td>
</tr>
<tr>
<td>3. Plug-in the specific (C) that you got in step 2 into the answer of step 1.</td>
<td>3. Ans.: (f(x) = 3x^2 + 2x^{-1} - 1).</td>
</tr>
</tbody>
</table>

A problem from a Previous Final (Spring 2008, #8 (10 points)).

Find \(y = y(x) \) if \(\frac{d^2y}{dx^2} = 4x, \frac{dy}{dx}(0) = 1 \) and \(y(0) = 0 \).

Solution:

We know that \(y'' = 4x \). To get \(y' \), we take the anti-derivative of \(y'' \)

\[
y' = \int 4x \, dx = 4 \frac{x^2}{2} = 2x^2 + C .
\]

Next we need to find the value of \(C \). Plugging-in \(x = 0 \), we get, since the problem tells us that \(y'(0) = 1 \)

\[
1 = 2 \cdot 0^2 + C
\]

which is

\[
1 = C
\]

and this gives \(C = 1 \).

Intermediate answer: \(y'(x) = 2x^2 + 1 \).
To find \(y(x) \), our ultimate goal, we find the **anti-derivative** of \(2x^2 + 1 \).

\[
y(x) = \int (2x^2 + 1) \, dx = \frac{2x^3}{3} + x + C = \frac{2x^3}{3} + x + C ,
\]

(note that this \(C \) is a **different** \(C \) than the one above).

To find this new \(C \) we plug-in \(x = 0 \). The problem tells us that \(y(0) = 0 \), so

\[
0 = \frac{2 \cdot 0^3}{3} + 0 + C
\]

which means

\[
0 = C .
\]

So \(C = 0 \). Going back, above we have

\[
y(x) = \frac{2x^3}{3} + x + 0 = \frac{2x^3}{3} + x .
\]

Final Ans.: \(y(x) = \frac{2x^3}{3} + x . \)