
Dr. Z’s Math151 Handout #4.3 [The Mean Value Theorem and Monotinicity]

By Doron Zeilberger

Problem Type 4.3.1 : Verify that the function f(x) satisfies the hypothesis of the Mean Value
Theorem on the interval [a, b]. Then find all numbers c that satisfy the conclusion of the Mean
Value Theorem.

Example Problem 4.3.1: Verify that the function f(x) = x3 + x − 1 satisfies the hypothesis of
the Mean Value Theorem on the interval [0, 2]. Then find all numbers c that satisfy the conclusion
of the Mean Value Theorem.

Steps Example

1. Verify that the function f(x) is con-
tinuous on [a, b] and differentiable on (a, b).
For polynomials, exponential, and the ‘nice’
trig functions (sinx and cosx) this is al-
ways true. You only have to watch out
for rational functions, where the bottom
might vanish in the interval, and any ex-
pression containing division and/or radi-
cals. For example, for the functions f(x) =
(x − 1)/(x + 2) in the interval [0, 2] ev-
erything is fine, since the ‘trouble-maker’
x = −2 does not lie in the interval [0, 2].
But if the interval would have been, say,
[−3, 0], then the function is not continu-
ous in that interval and the MVT is not
applicable.

1. f(x) = x3 + x − 1 is a polynomial
so it is continuous and differentiable ev-
erywhere, and there is nothing to worry
about, and MVT can be used.
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2. Find f ′(x) and set-up the equation

f ′(c) =
f(b)− f(a)

b− a
.

where c is still a symbol, but a and b are
the endpoints of the designated interval.

2.
f ′(x) = (x3 + x− 1)′ =

3x2 + 1 .

The interval is [a, b] = [0, 2] so the equa-
tion is

3c2 + 1 =
f(2)− f(0)

2− 0
=

(23 + 2− 1)− (03 + 0− 1)
2− 0

=

10
2

= 5

3. Solve for c the equation from step 2,
and retain the number(s) that lie in the
interval (a, b).

3.
3c2 + 1 = 5 ,

means that c2 = 4/3, hence

c = ±2/
√

3 = ±2
√

3/3 .

The equation has two roots c = −2
√

3/3,
and c = 2

√
3/3, but the former does not

belong to [0, 2], while the latter does.

Ans.: c = 2
√

3/3.

Problem Type 4.3.2 : Show that the equation f(x) = Expression has exactly one root.

Example Problem 4.3.2: Show that the equation f(x) = 1 + 5x+ 4x3 + 11x5 + 9x7 has exactly
one root.

Steps Example
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1. First check that

lim
x→−∞

f(x) = −∞ ,

lim
x→∞

f(x) =∞ ,

or the other way around (i.e. it goes to∞
when x→ −∞ and to −∞ when x→∞).
It follows by the intermediate value theo-
rem that it must cross the x-axis at least
once, so there must be at least one root to
the equation f(x) = 0. The present sce-
nario always happens when the degree of
the polynomial is an odd integer. If the
degree is an even integer, then the present
method does not apply.

1. f(x) is a polynomial of odd degree,
hence the conditions apply and f(x) = 0
has at least one real root.

2. Find f ′(x) and try to prove that it
is always positive (in the former case) or
always negative (in the latter case). This
happens, in particular if all the terms of
f ′(x) are of even degree and the coeffi-
cients are all positive.

2.

f ′(x) = (1 + 5x+ 4x3 + 11x5 + 9x7)′ =

5 + 12x2 + 55x4 + 63x6 .

This is obviously always positive.

3. Conclude by Rolle’s Theorem that there
can’t be more than one real root. Since
we know from step 1 that there is at least
one real root. We can conclude that there
is exactly one root.

3. If there would have been two real roots,
let’s call them x = a and x = b that
solve f(x) = 0, then it would follow by
Rolle’s Theorem that there must be a c in
(a, b) such that f ′(c) = 0. But in step 2
we showed that f ′(x) is always positive,
hence this is a contradiction. Since we
know from step 1 that there is at least
one real root, and we have just shown
that there is at most one real root, we
conclude that there is exactly one real
root.
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Problem Type 4.3.3 : If f(a) = A and f ′(x) ≥ C for a ≤ x ≤ b, how small can f(b) possibly be.

Example Problem 4.3.3: If f(2) = 3 and f ′(x) ≥ 4 for 2 ≤ x ≤ 5, how small can f(5) possibly
be.
Steps Example

1. By MVT we have that there is a c

such that

f ′(c) =
f(b)− f(a)

b− a
=

f(b)−A
b− a

.

But we are told that f ′(x) ≥ C for all x,
so in particular for that c, whatever it is.
It follows that we have the inequality:

f(b)−A
b− a

≥ C.

1. By MVT we have that there is a c

such that

f ′(c) =
f(5)− f(2)

5− 2
=

f(5)− 3
3

.

But we are told that f ′(x) ≥ 4 for x, so
in particular for that c, whatever it is. It
follows that we have the inequality:

f(5)− 3
3

≥ 4.

2. Solve the inequality of step 1 for f(b). 2.
f(5)− 3

3
≥ 4

means
f(5)− 3 ≥ 12 ,

which implies

f(5) ≥ 15 .

Ans.: the smallest that f(5) can possibly
be is 15.

4



Problem from a Previous Final (Spring 2008 #11 (12 points))

Suppose that f(x) is differentiable everywhere and we know that f(−2) = −1 and f ′(x) ≥ 3 for all
x.

a) (6 points) What is the least possible value for f(2) ?

b) (6 points) Show that f(x) has a root in [−2, 2].

Solution

(a) By the Mean Value Theorem, there must be a c in the interval (-2,2) such that

f ′(c) =
f(2)− f(−2)

2− (−2)
=
f(2)− f(−2)

4
.

Since f(−2) = −1, this means that

f ′(c) =
f(2)− (−1)

4
.

We are told that f ′(x) ≥ 3 for all x, in particular for our lucky c so we have

f(2) + 1
4

≥ 3

Multiplying both sides by 4 and moving the 1 to the left, gives

f(2) ≥ 11 .

Ans. to (a): The least possible value for f(2) is 11.

b) f(−2) = −1 is clearly negative (less than 0). f(2) ≥ 11 is clearly positive (greater than 0),
since 0 is intermediate, and the function f(x) is continuous (it is even differentiable, so it must
be continuous) it follows by the Intermediate Value Theorem that somewhere in the interval
(−2, 2) the function has the value 0, in other words it must have a root.
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