Problem Type 2.4.1: Explain why the function is discontinuous at $x = a$:

$$f(x) = \begin{cases}
 \text{Expression}(x), & \text{if } x \neq a; \\
 \text{Number}, & \text{if } x = a.
\end{cases}$$

Example Problem 2.4.1: Explain why the function is discontinuous at $x = 1$:

$$f(x) = \begin{cases}
 \frac{x^2 - x}{x^2 - 1}, & \text{if } x \neq 1; \\
 3, & \text{if } x = 1.
\end{cases}$$

Steps

1. Find

$$\lim_{x \to a} \text{Expression}(x),$$

let’s call it b.

Example

1.

$$\lim_{x \to 1} \frac{x^2 - x}{x^2 - 1} = \lim_{x \to 1} \frac{x(x - 1)}{(x + 1)(x - 1)} = \lim_{x \to 1} \frac{x}{x + 1} = \frac{1}{2}.$$

2. If the function $f(x)$ would have been continuous at $x = a$ then Number should have been the limit from part 1, what we called b. Since they are not the same, $f(x)$ is discontinuous at $x = a$.

2. If the function $f(x)$ would have been continuous at $x = 1$ then 3 should have been equal to 1/2. Since they are not the same, $f(x)$ is discontinuous at $x = 1$.

Problem Type 2.4.2: If \(f(x) = Expression(x) \), show that there is a number \(c \) such that \(f(c) = Number \).

Example Problem 2.4.2: If \(f(x) = x^3 - x^2 + 3x \), show that there is a number \(c \) such that \(f(c) = 20 \).

Steps

1. Assuming that the function is continuous (and usually it is), you have, by trial and error (or by plotting), find two numbers \(a \) and \(b \) such that \(Expression(a) < Number \) and \(Expression(b) > Number \).

2. Since \(Number \) is between \(f(a) \) and \(f(b) \), we know for sure that there is a number \(c \) such that \(f(c) = 20 \). In fact there must be at least one such \(c \) between \(a \) and \(b \).

Example

1. Since \(f(x) = x^3 - x^2 + 3x \), \(f(0) = 0 \) and \(f(10) = 930 \) (there are many other possibilities, of course).

2. Since 20 is between 0 and 930, we know for sure that there is a number \(c \) such that \(f(c) = 20 \). In fact there must be at least one such \(c \) between 0 and 10.
Problem Type 2.4.3: Explain why the function is discontinuous at \(x = a \):

\[
f(x) = \begin{cases}
\text{LeftExpression}(x), & \text{if } x < a; \\
\text{RightExpression}(x), & \text{if } x \geq a.
\end{cases}
\]

Example Problem 2.4.3: Explain why the function is discontinuous at \(x = 0 \):

\[
f(x) = \begin{cases}
e^x, & \text{if } x < 0; \\
x^2, & \text{if } x \geq 0.
\end{cases}
\]

Steps

1. Find the limit from the left at \(x = a \),

\[
\lim_{x \to a^-} f(x) = \lim_{x \to a^-} \text{LeftExpression}(x),
\]

and the limit from the right there:

\[
\lim_{x \to a^+} f(x) = \lim_{x \to a^+} \text{RightExpression}(x).
\]

Example

1. In this problem, the limit from the left at \(x = 0 \) is:

\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} e^x = e^0 = 1,
\]

and the limit from the right is

\[
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0.
\]

2. If \(f(x) \) would have been continuous, then these two numbers should have been the same. Since they are not, the function \(f(x) \) is discontinuous at \(x = a \).

2. Since these two numbers (1 and 0) are not the same, the function is discontinuous at \(x = 0 \).
Problem from a past Final [Spring 2008, #3 (8 points)]: For what value of the constant c is the function f continuous for all x? Here

$$f(x) = \begin{cases} \, cx^2 + 3, & \text{if } x \geq 5; \\ \, cx - 3, & \text{if } x < 5. \end{cases}$$

Solution: The limit from the left at $x = 5$ is

$$\lim_{x \to 5^-} f(x) = \lim_{x \to 5^-} cx - 3 = 5c - 3.$$

The limit from the right at $x = 5$ is

$$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} cx^2 + 3 = c(5)^2 + 3 = 25c + 3.$$

If the function is going to be continuous at $x = 5$, we must have that the limit from the left equals the limit from the right, so we must have:

$$5c - 3 = 25c + 3.$$

Solving for c we get: $20c = -6$, So $c = -3/10$.

Ans.: The value of c that makes the function f continuous for all x is $c = -\frac{3}{10}$. **