Dr. Z's Math151 Handout \#3.8 [Derivatives of Logarithmic Functions]

By Doron Zeilberger
Problem Type 3.8.1 : Differentiate the function $f(x)=\operatorname{Expression}(x)$, where the expression involves $\ln x$ or $\log _{a} x$.

Example Problem 3.8.1: Differentiate the function $f(x)=x(\ln x)^{1 / 5}$.

Steps

1. All the differentiation rules are still applicable! We just have a brand new function $\ln x$ whose derivative is simply $1 / x$. The derivative of $\log _{a} x$ is $1 /(x \ln a)$ (since $\log _{a} x=\ln x / \ln a$). But, before we differentiate $\ln ($ COMPLICATED), you should use the \ln simplification rules to break the function into simple pieces [whenever possible, in this particular example, the argument of \ln is just x, so there is nothing to simplify].

Example

1. First we must use the product rule:

$$
f^{\prime}(x)=\left(x(\ln x)^{1 / 5}\right)^{\prime}=x^{\prime}(\ln x)^{1 / 5}+x\left((\ln x)^{1 / 5}\right)^{\prime} .
$$

Using the chain rule for the second term, we get
$1 \cdot(\ln x)^{1 / 5}+x \cdot(1 / 5) \cdot(\ln x)^{-4 / 5} \cdot(\ln x)^{\prime}$
which equals

$$
\begin{gathered}
(\ln x)^{1 / 5}+(x / 5) \cdot(\ln x)^{-4 / 5} \cdot(1 / x)= \\
(\ln x)^{1 / 5}+\frac{(\ln x)^{-4 / 5}}{5} .
\end{gathered}
$$

Problem Type 3.8.2 : Use logarithmic differentiation to find the derivative of the function $f(x)$ which is a product of complicated powers and possibly exponentials.

Example Problem 3.8.2: Use logarithmic differentiation to find the derivative of the function $f(x)=(2 x+1)^{6}\left(x^{3}-4\right)^{11}$.

Introduction. For such functions you don't need logarithmic differentiation but it helps! You use the fact that $(\ln f(x))^{\prime}=\frac{f^{\prime}(x)}{f(x)}$ hence $f^{\prime}(x)=f(x)(\ln f(x))^{\prime}$. The point is that in these cases it is much easier to differentiate $\ln f(x)$ (after simplification!), then $f(x)$.

Steps

Example

1. Using the rules of \ln, simplify $\ln f(x)$ as much as possible.
2. Differentiate each piece of the result of step 1.
3.

$$
\begin{gathered}
(\ln f(x))^{\prime}=6(\ln (2 x+1))^{\prime}+11\left(\ln \left(x^{3}-4\right)\right)^{\prime}= \\
6 \frac{(2 x+1)^{\prime}}{2 x+1}+11 \frac{\left(x^{3}-4\right)^{\prime}}{x^{3}-4}= \\
\frac{12}{2 x+1}+\frac{33 x^{2}}{x^{3}-4}
\end{gathered}
$$

3. Multiply the answer from step 2 by $f(x)$ in order to get $f^{\prime}(x)$.

Do not Simplify!.
3. Ans.
$f^{\prime}(x)=\left(\frac{12}{2 x+1}+\frac{33 x^{2}}{x^{3}-4}\right)(2 x+1)^{6}\left(x^{3}-4\right)^{11}$.

