By Doron Zeilberger

Problem Type 2.4.1:

Use the given graph of \(f(x) \) to find a number \(\delta \) such that \(|f(x) - f(a)| < \epsilon \) whenever \(|x - a| < \delta \).

(A graph is given with dashed lines at \(x = a \) and \(y = f(a) \), and red lines at \(y = f(a) \pm \epsilon \), and \(x = ? \) continued down. [see ex. 6, sect. 2.4, p. 122, for an example].)

Example Problem 2.4.1: Ex. 6, sect. 2.4, p. 122. Use the given graph \(f(x) = x^2 \) to find a number \(\delta \) such that

\[
|x^2 - 1| < \frac{1}{2} \quad \text{whenever} \quad |x - 1| < \delta.
\]

[Refer to the book for the diagram].

Steps

1. Find the values of the question marks on the \(x \)-axis. In other words, solve \(f(x) = f(a) - \epsilon \) and \(f(x) = f(a) + \epsilon \), let’s call them \(x_1 \) and \(x_2 \). [Note that this only works if the function goes up, or goes down in the given interval].

2. Take \(\delta \) to be the smaller of the two numbers \(|x_1 - a| \) and \(|x_2 - a| \).

Example

1. The solution of

\[
x^2 = 1 - 1/2
\]

is

\[
x = 1/\sqrt{2} = .707\ldots
\]

The solution of

\[
x^2 = 1 + 1/2
\]

is

\[
x = \sqrt{3/2} = 1.224\ldots
\]

2. \(|.707\ldots - 1| = |-.292\ldots| = .292 \)

\(|1.224\ldots - 1| = |.224| = .224 \).

Hence \(\delta = .224 \), the smallest of these two numbers.
Problem Type 2.4.2: Prove the statement using the ϵ, δ definition of limit.

$$\lim_{x \to a} f(x) = A .$$

Example Problem 2.4.2: Prove the statement using the ϵ, δ definition of limit.

$$\lim_{x \to 4} \frac{x}{2} = 2 .$$

Steps

1. ‘Guess’ the value for δ (as an expression in ϵ), by manipulating

 $$|f(x) - A| < \epsilon ,$$

 and trying to make it look like

 $$|x - a| < \text{something} .$$

 The resulting ‘something’ (that depends on ϵ) is your ‘guessed’ δ.

2. Using the ‘guessed’ δ prove that

 $$|x - a| < \delta \quad \text{implies} \quad |f(x) - A| < \epsilon .$$

Example

1.

 $$|\frac{x}{2} - 2| < \epsilon$$

 is equivalent to

 $$|x - 4| < 2\epsilon ,$$

 so the ‘something’ is 2ϵ. Hence the ‘guessed’ δ is 2ϵ.

2. Dividing the inequality

 $$|x - 2| < 2\epsilon$$

 by 2 yields

 $$|\frac{x}{2} - 2| < \epsilon ,$$

 which is the desired conclusion.