By Doron Zeilberger

Problem Type 2.4.1 :

Use the given graph of f(x) to find a number δ such that $|f(x) - f(a)| < \epsilon$ whenever $|x - a| < \delta$.

(A graph is given with dashed lines at x = a and y = f(a), and red lines at $y = f(a) \pm \epsilon$, and x =? continued down. [see ex. 6, sect. 2.4, p. 122, for an example].)

Example Problem 2.4.1: Ex. 6, sect. 2.4, p. 122. Use the given graph $f(x) = x^2$ to find a number δ such that

$$|x^2-1| < rac{1}{2}$$
 whenever $|x-1| < \delta$.

[Refer to the book for the diagram].

1. Find the values of the question marks

on the x-axis. In other words, solve f(x) =

 $f(a)-\epsilon$ and $f(x) = f(a)+\epsilon$, let's call them x_1 and x_2 . [Note that this only works if

the function goes up, or goes down in the

Steps

given interval].

Example

1. The solution of

$$x^2 = 1 - 1/2$$

is

$$x = 1/\sqrt{2} = .707\dots$$

The solution of

$$x^2 = 1 + 1/2$$

is

$$x = \sqrt{3/2} = 1.224\dots$$

2. Take δ to be the smaller of the two numbers $|x_1 - a|$ and $|x_2 - a|$.

2. |.707...-1| = |-.292...| = .292|1.224...-1| = |.224| = .224.

Hence $\delta = .224$, the smallest of these two numbers.

Problem Type 2.4.2 : Prove the statement using the ϵ , δ definition of limit.

$$\lim_{x \to a} f(x) = A$$

•

.

Example Problem 2.4.2: Prove the statement using the ϵ , δ definition of limit.

$$\lim_{x \to 4} \frac{x}{2} = 2$$

1.

Example

1. 'Guess' the value for δ (as an expression in ϵ), by manipulating

$$|f(x) - A| < \epsilon \quad ,$$

and trying to make it look like

Steps

$$|x-a| < something$$
 .

The resulting 'something' (that depends on ϵ) is your 'guessed' δ . $\left|\frac{x}{2} - 2\right| < \epsilon$

is equivalent to

$$|x-4| < 2\epsilon$$

so the 'something' is 2ϵ . Hence the 'guessed' δ is 2ϵ .

2. Using the 'guessed' δ prove that

2. Dividing the inequality

$$|x-a| < \delta$$
 implies $|f(x) - A| < \epsilon$.

$$|x-2| < 2\epsilon$$

by 2 yields

$$|\frac{x}{2} - 2| < \epsilon \quad ,$$

which is the desired conclusion.