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Abstract. In this paper we revisit the stopping problem of Shepp’s Urn,

extending the body of knowledge concerning moments of urn random variables
by adapting a methodology encountered in Medina and Zeilberger’s paper

[7]. We then offer generalizations of these random variables by altering the

strategy used to decide when to stop, and provide an experimental analysis of
the results.

1. Preamble

In [8] L.A. Shepp posed the following stopping problem:

Problem 1.1 (Shepp’s Urn). An urn contains a known number of balls with value
−1, say m, and a known number of balls with value +1, say p. If you are allowed
to draw from this urn without replacement as many times (including 0) as you
desire, which m and p have drawing strategies where the expected total value of
the balls drawn is positive, what is the maximum expected value obtainable, and
which strategy attains it?

Such a problem is of interest due to its links to the ‘ESP problem’ posed by
Breiman [1], its relationship to a larger class of ‘random urn problems’ studied in
mathematical finance [3], and more generally as an intriguing question by itself.

After introducing the problem, Shepp concluded that an optimal strategy for
playing these urns is to draw so long as the maximum expected value (often simply
called the value V (m, p)) is positive, and that these values could be computed by
a simple recursive formula. Shepp also proved some basic monotonicity results for
the values of related urns, as well as an asymptotic formula for β(p), the largest
m such that V (m, p) ≥ 0. Boyce then elaborated on these results in [2], improving
the monotonicity bounds, providing an exact algorithm for computing β(p), and
tabulating data on this ‘stopping boundary’ for p up to 100.

Work has continued on Shepp’s Urn in recent years, providing generalizations to
the original problem by introducing new parameters (a fixed starting fortune for the
player) [4], reducing the amount of information available (the number of positive
balls is uniformly random) [6], or giving extra layers of decision making to the player
(deciding before hand whether or not to accept or reject the next ball drawn) [5].
However, little work seems to have been done on extending knowledge of the original
problem purely in the context of the higher moments of these urns. There is a great
deal of information on expectation, but what about variance, skewness, or kurtosis?
What about a complete description of the probability distribution?
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In this paper we attempt to address these questions by adapting a methodology
encountered in Medina and Zeilberger’s paper [7] to construct probability gener-
ating functions for the random variables associated with playing Shepp’s strategy
on the urns with m minus balls and p plus balls, denoted by U(m, p). By having
access to these probability generating functions we may (in principle) compute any
moment for any urn random variable, giving insight beyond what expectation can
reasonably provide for the question of whether or not to play an urn. We then
generalize our study of Shepp’s Urn by choosing new stopping strategies, based
not on the expected value, but rather on an arbitrary functional on the probability
generating function. Interpreting the value of each ball monetarily, we choose to
study strategies that are shortsightedly risk averse in the following sense: if the
probability of losing d or more dollars while playing an urn is greater than q, or if
the probability of gaining at least 1 dollar is 0, then stop playing.

2. Beyond Expectation

For Shepp’s Urn, there is a very simple recursive formula for the computation
of V (m, p). First, note that V (m, 0) = 0, since a player would never want to draw,
and V (0, p) = p, since a player would always want to draw. Confronted with an urn
U(m, p), the player can compute the expected value of drawing at least one ball:

E(U(m, p)) =
m

m+ p
(−1 + V (m− 1, p)) +

p

m+ p
(1 + V (m, p− 1))

The expected value of an urn is the probability that you draw a plus or minus ball
times the value of the resulting urn, plus or minus one accordingly. In other words,
we assume that the future actions of the player are in line with the strategy we are
computing, in this case the strategy which optimizes expectation. Thus, we know
the value of V (m, p); it is either the expected value of U(m, p) or 0, whichever is
larger.

(2.1) V (m, p) = max(E(U(m, p)), 0)

We may write equation (2.1) in a slightly different form to emphasize the depen-
dence of Shepp’s strategy on the expectation of U(m, p):

(2.2) V (m, p) =

{
E(U(m, p)) if E(U(m, p)) > 0

0 otherwise

This recursive formula loses some information, however. Instead of tracking just
the value of the urns V (m, p), we may track the probability generating functions
in the exact same recursive manner. Let us define g(x;m, p) to be the Laurent
polynomial such that coefficient of xk is the probability that, under play governed
by Shepp’s strategy, the player earns the value k. By identical reasoning to the
base cases for V (m, p), we know that g(x;m, 0) = 1, since the player would never
want to draw, and g(x; 0, p) = xp, since the player would always want to draw.
Confronted with an urn U(m, p), the player can compute an auxiliary probability
generating function h(x;m, p) associated with the strategy “draw one ball, and then
obey Shepp’s strategy”:

h(x;m, p) =
m

m+ p
(x−1 · g(x;m− 1, p)) +

p

m+ p
(x1 · g(x;m, p− 1))
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This probability generating function encodes exactly what was promised in the
same manner as above; after one draw, the strategy we are attempting to compute
dictates our possible outcomes. Thus, we know what g(x;m, p) must be:

(2.3) g(x;m, p) =

h(x;m, p) if
d

dx
h(x;m, p)

∣∣∣∣
x=1

> 0

1 otherwise

If the expected value of the random variable dictated by our auxiliary strategy
is positive, we have in fact found the probability generating function for U(m, p)
under Shepp’s strategy, and otherwise we should not play the urn.

Armed with a complete description of the urn random variables associated with
Shepp’s strategy, we may compute any moments we desire. The reader may deem
some computations more interesting than others, and may utilize the Maple package
produced along with this paper in order to investigate urns of their choosing (see
Section 5). We will focus on one case here: linear families of urns of the form
U(k1m, k2m).

3. Experimental Results on Higher Moments

In attempting to understand the higher moments of the urn random variables
given by playing Shepp’s strategy, our approach is rather straight forward; since
we have a recursive formula for the probability generating functions g(x;m, p) for
these random variables, we may compute the moments by use of the rather basic
fact that the rth moment about the mean (or the central moment) mr is a function
of the so called factorial moments about the mean:

mr =

r∑
k=1

S(r, k)
dk

dxk

(
g(x;m, p)

xµ

)
Here S(r, k) are the Stirling numbers of the second kind, and µ is the expected
value of g(x;m, p). Furthermore, since central moments beyond the variance are
typically proportional to a power of the variance, we will focus primarily on the
standardized moments m̂r = mr/

√
mr

2.
So which urns deserve special attention? The answer is purely a matter of taste

or convenience; for the purposes of this paper, we choose to focus on linear families
of urns, that is to say urns of the form U(k1m, k2m) for some choice of naturals
k2 ≥ k1 ≥ 1. Other interesting families, particularly the family U(β(p), p), will
be amenable to this experimental analysis, but we will not address those cases
here. Using the Maple code produced with this paper, we computed probability
generating functions of urn random variables U(m, p) for m + p ≤ 1450, and have
included a small selection of data in Table 1 for five linear families of urns, with
(k1, k2) = (1, 3), (1, 2), (2, 3), (3, 4) and (1, 1).

While the raw data obviously provides a more complete picture, it is almost
reasonable just from the table below to guess that along linear families the stan-
dardized moments converge to some limit, at least for the lower moments; m̂5 and
larger are very sensitive to the choice of (k1, k2), and take a great deal longer to
settle down. This experimental analysis leaves us with an interesting, if difficult,
open problem.
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Table 1.

U(k1m, k2m) (k1, k2) m̂3 m̂4 m̂5

U(1, 3) (1, 3) 1.154701 2.333333 3.849001

U(120, 360) (1, 3) 1.830120 6.471945 23.982616

U(480, 1440) (1, 3) 1.859808 6.676403 25.322562

U(1, 2) (1, 2) 0.707107 1.500000 1.767767

U(120, 240) (1, 2) 1.633647 5.725296 19.487670

U(725, 1450) (1, 2) 1.727688 6.314074 23.161534

U(2, 3) (2, 3) 0 1 0

U(120, 180) (2, 3) 1.435910 4.795781 14.187846

U(960, 1440) (2, 3) 1.680557 6.136094 21.834381

U(3, 4) (3, 4) 0.537288 2.246558 3.206770

U(120, 160) (3, 4) 1.269851 4.058409 10.548121

U(1080, 1440) (3, 4) 1.648803 5.914477 20.400577

U(1, 1) (1, 1) 0 1 0

U(120, 120) (1, 1) 0.024085 1.547509 0.142672

U(1450, 1450) (1, 1) 0.033575 1.540495 0.174673

Problem 3.1. Provide rigorous asymptotics for the sequence of standardized mo-
ments m̂r of the urn random variables U(k1m, k2m).

If these moments do converge, it would be clear that they do not define the
standard Gaussian random variable, as the standardized moments do not follow
the very well known formula m̂r = (r− 1)!! for even r, and 0 for odd r. While it is
much less certain, we suspect that the limiting values for the standardized moments
of linear families of urns correspond to ‘novel’ random variables, in the sense that
no typically used random variable determined completely by its moments has these
values.

Finally, still under the assumption that the moments do converge, a description
of the random variables at hand would be complete if we could understand the
limiting behavior of the variance of the linear families. Experimental evidence does
little to inform us at this point as to what the dependence of this behavior is on
(k1, k2), but at least for (k1, k2) = (1, 1) we can conject that σ2 = o(

√
m ln(m)4)

and σ2 = ω(
√
m ln(m)2), using the standard Landau notation. This open problem

may be easier than our earlier example.

Problem 3.2. Provide rigorous asymptotics for the variance of the urn random
variables U(m,m).
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4. New Strategies and Experimental Results

In our development of the recursive formula for the probability generating func-
tions of Shepp’s strategy on the urns U(m, p), we took some pains to highlight the
exact places where the strategy actually entered the computation. Looking again
at equation (2.3),

g(x;m, p) =

h(x;m, p) if
d

dx
h(x;m, p)

∣∣∣∣
x=1

> 0

1 otherwise

we see that Shepp’s strategy truly only appears during the evaluation of our con-
ditional, and perhaps in the base cases where either m or p is 0. This focus on
expectation can be slightly misguided in practice. Consider the scenario in which
you are not able to play a given urn U(m, p) many times in sequence, or the sce-
nario in which you must actually cover any negative results of playing that urn by
paying money. Should we still follow Shepp’s strategy of maximizing expectation,
or is there a more prudent strategy to obey? While we make no final judgments
on that question, we can quite easily explore natural families of strategies without
altering our computational framework.

The act of taking the expected value of h(x;m, p) is, at its heart, simply the
application of some functional to the probability generating function. Were it not
for the stated goal of finding an expectation maximizing strategy, that choice of
functional is arbitrary. So the most natural extension of the Shepp Urn problem to
consider is that of new strategies completely determined by some fixed functional on
the space of probability generating functions. We will focus on the two parameter
family of functionals given below:

(4.1) F (g; d, q) = q −
−d∑

i=−∞
coeff(g, x, i)

Here, coeff(g, x, i) is the coefficient of the term xi in the Laurent polynomial g.
These functionals essentially compute “the probability q, offset by the probability
of losing d or more dollars”. This form is chosen so that when the conditional
d
dxh(x;m, p)|x=1 > 0 is replaced by F (g; d, q) > 0 our new strategy reads “if the
probability of losing d or more dollars is greater than q, do not play the urn”.
Leaving our choices of base cases for g(x;m, p) unchanged from Shepp’s case then
completes the description of our strategy: “if the probability of losing d or more
dollars while playing an urn is greater than q, or if the probability of gaining at least
1 dollar is 0, then stop playing.”. We may now (in principle) compute probability
generating functions for any urn under this new strategy in the same manner that
we did for Shepp’s strategy.

How do these shortsighted, risk averse strategies behave when compared to
Shepp’s strategy in the context of one time urns or when the player has limited
resources to cover the potential costs of an urn? The most immediate comparison
to be made is in the stopping boundary for each strategy. While Shepp’s strat-
egy has a well behaved boundary β(p), the corresponding function βF (p) for these
strategies exhibits erratic behavior, as can be seen in the figures below:
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Figure 1. Shepp’s
Stopping Boundary

Figure 2. F (g; 1, 1/2)
Stopping Boundary

Figure 3. F (g; 1, 1/4)
Stopping Boundary

Figure 4. F (g; 1, 1/8)
Stopping Boundary

The striking feature is that for some urns and some levels of acceptable risk,
adding a plus ball may cause a player to decline playing the resulting urn, which
seems highly irrational. This is an emergent phenomenon of the recursive demands
of the new strategies, and by our estimation should not be read into too much. We
note that when the player is willing to accept small losses (i.e. when d > 1), the
stopping boundary is not well defined as stated; the player will always draw at least
once.

The primary result these strategies accomplish is a shift in the probabilities
of specific payouts. For example, for the strategy given by F (g; 2, 1/16) > 0 on
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the urn U(20, 20), the player’s probability of winning 2 or more units of value is
approximately 81%, compared to an approximate 61% offered by Shepp’s strategy
(which has an expected value of approximately 2.3). Similarly, the strategy given
by F (g; 1, 1/8) > 0 gives an approximate 71% chance to win 3 or more units of value
on the urn U(50, 50), compared to an approximate 60% offered by Shepp’s strategy
(which has an expected value of approximately 3.7). While there is no clear pattern
as yet for which of the strategies F (g; d, q) > 0 will optimize a particular chance
of earning at least some value, generally speaking the probability mass functions
behave in a manner the reader would expect; when compared to Shepp’s strategy
on an urn U(m, p), probability mass is more concentrated, and it is concentrated
around a point slightly lower than the value V (m, p). While this does reduce the
maximum possible earnings from any given play, it is clear that there are benefits
to exploring alternate strategies in the cases where the player has a limited number
of opportunities to play an urn. The reader is encouraged to use the Maple package
produced with this paper to explore these strategies to their fullest.

5. Maple Code

Throughout this paper, several references have been made to Maple packages
and data related to the problem at hand. These files may be downloaded from the
following website: http://sites.math.rutgers.edu/~rzv2/Shepp

Instructions for how to use the Maple packages and data files are listed on that
page. If you discover broken code or corrupted data, please use the author addresses
listed in the footer of the first page of this paper to submit a small report.
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