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1. Introduction.

; Rademacher’s perspective upon J (7).
1939 Hans Rademacher presented a new construc-
on of the modular invariant J(1) in a seminal—yet
indation) itle known—paper. This note examines Rademacher's
& inthe ekl ruction from‘thc perspective of a half-century of
. important ) lher advances in thc theory of mgdular and auto-
ingused atifie’d Wphic forms, Especially important is the connection

i (he Eichler cohomology theory [3], developed some

ty years later.

e modular group I'(1), is the group of linear

gictional transformations V't = (at + b)/(ct + d),
plex, with @,b,c,d € Z (Z is the set of rational

8t1s) and ad — be = 1. The absolute modular invariant

)_13 defined, for 7 in the upper half-plane #, by

J(1) = 20G4(1)*/(20G4(1)? — 49G4(1)?),

Gi(1) = }:‘ (mt+n) > keZ k>3,

mneZ

nstein series of weight k. (The notation ¥’
Omission of the term for m = n = 0.) The well-
havior of Gi(7) under I'(1) implies directly that
ariant with respect to I'(1) : J(V'7) = J(z), for

all 7 in H and V" € I'(1). (See [1, Chapter 1], [32, Chapter
3] and §L.2). Furthermore, among modular invariants
J(1) has the distinction that it generates the whole field
of modular functions over the complex field C [17,
Theorem |E, p. 345]. It has the Fourier series expansion

o
(3) 12Y(r)=e ™"+ 744+ e 1E N,

n=1

where the ¢, are rational integers [33, p. 56].

In 1938 Rademacher, unaware that Petersson [25]
had already done so, published an exact formula for ¢,
[30]. (For specifics see (12).) Starting with that formula,
in [31] he adopts an entirely fresh viewpoint concerning
J(7), taking it to be defined (anew) by (3) and the exact
formula (12). He poses the problem: to show from this
new definition that J(z) is a modular invariant. Since
the two transformations St = v+ 1, Tt = — /7 generate
I'(1) [12, p. 7] and since J(t+ 1) = J(7) follows directly
from (3), this problem reduces (an odd word, considering
the difficulty involved) to that of deriving, from (3) and
(12) alone, the equation J(—1/1) = J(t), now far from
obvious. Rademacher solves this problem by carrying
out a profound transformation of the function defined
by (3) and (12), representing J(7) as what we may now
term a “modified Poincaré series.”

2, Poincaré’s construction of automorphic functions.
Poincaré series appear for the first time in Poincaré’s cel-
ebrated 1882 memoir on Fuchsian functions [28]. They
provide a perspective indespensible for understanding
Rademacher’s construction and the later work [8, 9, 10,
11, 21, 35] based directly upon it.

Paincaré deals with groups of linear fractional trans-
formations acting on the unit disc, in particular, with
the construction of their invariant functions. For consis-
tency with our introductory remarks we consider instead
groups I' of linear fractional transformations acting on
the upper half-plane *; that is, we assume that I is
a discrete group of mappings V't = (at + b)/(ct + d),
with a, b, ¢, d real and ad — be > 0. If T is finite, it
is an easy matter to construct a meromorphic function
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F(1), automorphic (that is, invariant) with respect fo T,
by forming the finite sum

(4) F(r)=Y_ f(¥Vz),

Vel

with [ chosen meromorphic in H. That F does not
reduce to a constant can be guaranieed by a suitable
choice of f.

When I is infinite, in contrast, this simple construc-
tion does not suflice, because the scries in (4) may
fail 1o converge. To overcome this difficulty, Poincaré
introduced the series which bear his name:

(5) Flmfy=y %% Vt=(at+b)/(ct+4d),

Ver

in (5) [ is a rational function and k a positive integer
chosen large enough to guarantee absolute-uniform con-
vergence of the series (5) in compact subsets of M. (The
existence of such k follows from the discreteness of I'.)
The function F,(7; f ) so formed, while meromorphic in
', fails to have the desired simple automorphic property

(6) F(Mt)=F(t), al M €T,

characteristic of functions F defined by (4). However,
the absolute convergence of (5) implies readily that for

all M= (;;) €T,

(7) Fe(Mt,f) = (y1+8)Fu(zn: f),

since (¥7 + 8) (Mt + d)* = (c't + d")%, where 't +
d' is the lower row of VM. A function satisfying
the transformation formulae (7) and certain regularity
conditions is called an automorphic form of weight k on
I'. (We note that the Eisenstein series G, (1), defined by
(2), is virtually the same as the Poincaré series (5), with
f=1and I'=T(1). In any event, Gi(z) is a modular
form—that is an automorphic form on I'(1)—of weight
k, since G,(1) satisfies (7) for M € I'(1).) A function
satisfying (6) is called an automorphic function on T,

To reach his original goal, construction of nontrivial
meromorphic functions possessing the (absolute) invari-
ance property (6) with respect to I, Poincaré forms
the quotient Fi(t, f1)/Fi(t; f2), with rational f; and f5
chosen to have distinct singularities in H. The latter
condition ensures that this quotient does not reduce 10 a
constant. ‘

This work of Poincaré on the problem of constructing
automorphic (he called them “Fuchsian™) functions pro-
vides the context for the well-known story of his sudden
revelation while stepping on a bus to go on an excursion,
and in the midst of an unrelated conversation. The un-
expected insight was the relationship of his (Poincaré)
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series (5) to the rigid motions of hyperbolic geoma
This revelation took place immediately following 5 i
week period during which he thought intensely aboyg#
question, but with inconclusive partial results. Pojneg
ultimately obtained a complete solution, but only g
several further similar occurrences, equally unexpeg,
and sudden. Of particular interest is Poincaré’s impy
ate recognition, in each instance, that the new idea
be fruitful, before working through any of the de;
For Poincaré’s own account see [29, pp. 52-55]. Thery
a discussion of this episode as well in [5, pp. 12-15] 3 ."-,mm Cy is a cc
A o, the sacrifice
 fuinction (E2(—2)
that Cy = 0 for
dlliptic function,
s the well-known

ere, E' has t
“ﬁ'ygrgencc of (
'a pole of ord
L ectablishing co1
ivariance with
“fact, that invarial
onal equatn

iy Ex(Vz2)

3. Elliptic functions and Eisenstein series.
A problem different in technical detail, but vir
identical in spirit, is one resolved before Poincy
birth: that of constructing elliptic functions, that isy
say, functions meromorphic in the complex plane
and automorphic with respect to a group of translaty ol 4, Remarks on au
in two independent directions. Suppose @; and #§ The modular inva
are complex numbers with Im(w,/w,) # 0. Then ") and, independent
“lattice™ L = {ma + nan|m.n € Z} is discrete in {f sfter the develops
and when &k > 3 the "Mitlag-Leﬂler sum”, I after, Picard uset
1 i prove his famou
pmitting more th
onstant, Nowad:
represents a function (in fact, the simplest one) withif proved using ins
pole of order k at each of the lattice points. When k 2} ivariant with re
the series (8) obviously converges to a function mesj &oup of level 2,
morphic in C, but much more is true. The Mittag-Lefig} (4(7) has a simpl.
construction, designed only to produce meromorpti} tliptic functions
functions with poles at a prescribed discrete set of poulf H. A. Schwarz ar
(with prescribed principal parts, as well), actually yied P!UC functions ir
elliptic functions invariant with respect to the groil d‘ﬂffﬂ‘mial equat
G = G(w,,w;) = {z — z+ w|w € L}. This obtains siif = This was th
(8) can be rewritten, in analogy with (4) and (5), as | “ork [28], which
_ of automorphic
9) Ew(z) =) K(V2), filz) = 27 tespect to Fuch
VeG fractional transfi
Here, once again, the Eisenstein series G (1) coméh In the backgroun
mind, for defining the contemporar
i Riemann surface
E}(z; 0, 0;) = Eg(z; 0, 00;) — —, heorem, prove:
z of effort by a nu
we have E;(0;1;1) = Gy(1). Riemann surfac:
For k = 2 the nice convergence (absolute-unifo theory of Fuchsi
on compact subsets of C which do not contain # Wo theories is ¢
of the lattice points mw, + nw,) of (9) fails, bul—4 Xting on a disc
is well understood—this difficulty is inessential, €3} Ratura] (opology
overcome by subtraction of “convergence terms” % %ay that the sir
the summands: 32 Riemann su
1 ’ 1 " § correspon
Bafz)= =+ Z {(z»{- ma, + nw;)? ®pect to T, th
(10) mAER @omorphic for
: The problem
tse: given an a

—

(8) Ei(2)= Ex(ziwi, @)= )

R T ) _[,LV
Z m =+ nan s
mnez &+ mw) l'} 3

1
" mon +nw3}3}r
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lic geometry, (! (Here, 5 has the same meaning as in (2).) “Nice”

lowing a twg
sely about the
alts. Poincarg
wt only after
y unexpected
1ré’s immed;.

convergence of (10) follows readily, and E;(z) clearly
pas @ pole of order 2 at each lattice point. However, in
e-establishing convergence we apparently have sacrificed
jvariance with respect to ((w;,w;). It appears, in
fact, that invariance has given way to the characteristic
functional equation of an elliptic integral:

'w idea woulg

f the details, |(11) E)(Vz)=Ez)+ Cy.V € Glw, w2),

-55]. Thereis

p. 12-15), where C'» 18 @ constant dependent upon V. As it turns
out, the sacrifice is only apparent, since E,(z) is an even
'funclion (E3(—z) = E3(2)) and this fact implies directly

but virtually Jhat Cy = 0 for all ¥ € G. Thus, E;(z) is a genuine

re Poincaré’s | yliptic function, not an elliptic integral. Of course, E5(z)

ns, that is 10 | js the well-known Weierstrass function g(z) [7,59].

slex plane C

if translations | ¢ Remarks on automorphic forms.
w; and oy ;1’_.1113 modular invariant J(7) was first studied by Dedekind
0. Then the | nd, independently, by Klein in 1877, about fifty years
liscrete in C, | after the development of elliptic functions. Shortly there-
sfter, Picard used J(t) and the monodromy theorem to
1 prove his famous “little” theorem: an entire function

— % | omitting more than one complex value from its range is
01 +nap)t o} . o T ]

onstant. Nowadays Picard’s little theorem is most often
t onc) with @ { proved using instead of J(z) the related function i(z),
. When k23 Zinvarianl with respect to the principal congruence sub-

Foup of level 2, a normal subgroup of index 6 in I'(1).
(j(r has a s;mph, expression in terms of the Weilerstrass
tic functions p(z) and p'(z).) About the same time
. Schwarz and Poincaré used the theory of automor-
hic functions in studying ordinary second-order linear
rential equations.

This was the context for Poincaré’s fundamental
k (28], which effectively initiated a systematic theory
fautnmorphu. forms and automorphic functions with
gpect to Fuchsian groups, discrete groups of linear
ional transformations acting on a half-plane or disc.
he background of Poincaré’s work (and dominant in
% contemporancous work of Klein) is the idea of a
stmann surface. In light of the later “uniformization
orem,” proved completely in 1912 after thirty years
tffort by a number of mathematicians, the theory of
Hemann surtaces can be viewed as contained in the
=0y of Fuchsian groups. The relationship between the
0 theories is close at hand: given a Fuchsian group I’
on a disc or half-plane D, one can introduce a
13l topology on the set of orbits § = I'\D in such a
& Ihat the structure is analytic, the topological space
#Riemann surface. Then the meromorphic functions
S correspond to the automorphic functions with
110 T, the (first-order) differentials on § to the
A 0rphic forms of weight 2 with respect to T

#1¢ problem of uniformization deals with the con-
ven an arbitrary Riemann surface is there a pair

inction merc: |
Mittag-Leffler:
meromorphic
e set of points
actually yields s
to the group

fails, bu
;senliﬂl,“
» terms; £

(T', D) as above, such that § is conformally equivalent to
I'\D? The affirmative answer given by the uniformization
theorem means that the theory of Fuchsian groups is co-
extensive with the theory of Riemann surfaces. However,
there does not seem to be a simple, natural interpreta-
tion of automorphic forms of arbitrary real weights on a
Fuchsian group in terms of the corresponding Riemann
surface.

For further details about the history of automorphic
forms and their role in contemporary mathematics, I
refer the reader to the Historical Development chapter
(chapter 1) of [17] and to the references supplied there.

I1. Rademacher’s work on J(1),
1. J(7) as a parabolic Poincaré series.
The exact formula of Petersson and Rademacher for the
coefficients ¢, in the expansion (3) of J(7) is

Cu = \/_Zf ' A (m)1, (4”‘/_) i

Here, 4;(n) is a Kloosterman sum defined by
(13)

Ae(n) = Z exp[ 7 nh+h)},hh’-=—] (mod?),

Atmod r}
nsy=i

(12)

while 7, is the modified Bessel function of the first kind,
given by the power series

S (x/2)2i+1
h9 =3 Sy

J=0

(14)

Rademacher obtains this formula in [30] by a refinement
of his own variant [32] of the Hardy-Ramanujan “circle
method” (in contrast to Petersson’s entirely different
approach involving modular forms of weight 2). In [31]
he proves the following result, which brings to light a
completely new way of viewing the fundamental modular
invariant J(z).

Theorem 1. [31, (4.1)]. J(7) has the representation

(15)
1237 (1) =e~2%i% 4 250/ 4 73]
}]l
+ lim Z b {exp(—hmu)
K=o o i“;|"’ll<l" £T—
—cxp(—lnim’/f)}.
where m’

is any integral solution of the congruence
mm' = —1(mod¢) and £' is the rational integer defined
by =’ = (mm' + 1)/¢.

In the historical introduction to his influential work,
Discontinuous groups and automorphic functions, J. Lehner
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has expressed the opinion that this formula for J(r) “is
as striking and elegant as the classic identities of Euler
and Jacobi”. [17, p. 41] Lehner further refers to the for-
mula (15) as “an expansion of J into partial fractions,”
and he compares it with the definition (10) of the Weier-
strass function p, noting in particular, “the subtracted
‘convergence summand’ in each case” [17, pp. 40-41].
To appreciate more fully the insight which informs this
remark, we rewrite (13) to resemble closely a modified
form of the Poincaré series (5), namely, the “parabolic
Poincaré series” introduced by Petersson [24]:

¥ e-mvl T/

(16) Gi(uv)=), EET I

Here, » is an arbitrary integer, k is an integer, A > 0
is the minimal width of a translation in T (eg., 4 =
for I' = T'(1)) and the notation ¥." indicates that—in
contrast to the summation over all ¥ € I" as in (5)—in
(16) the sum is confined to V € I" with distinct lower
row ¢, d. This restriction arises naturally as a necessary
condition for convergence since the tational function
/ of (5) has given way in (16) to the exponential
function e?***/2, For, the periodicity of e?*"/* implies
that the numerator ¢?**¥*/* in (16) is independent of
the upper row of ¥, and from this it follows directly
that, regardless of the size of k, the full sum on all
V € I' cannot converge, since each summand would then
occur infinitely often. On the other hand, the assumption
k > 2 assures absolute uniform convergence of the series
in (16) on compact subsets of H [17, pp. 276-277].

As with the Poincaré series (5), Petersson’s modified
Poincaré series (16) are automorphic forms of weight k
on I' as long as k 1s an integer greater than two. The
proof is the same 1n both cases. The parabolic Poincaré
series have two clear advantages over the Poincaré series
(5): (i) the analytic behavior of G (7; ») can be controlled
completely at the parabolic cusps of I'; (ii) the Gy (1, v)
behave well with respect 1o the Petersson inner product,
well enough, indeed, to make possible a direct inference
that they form a basis for all automorphic forms of
weight k on I” which are holomorphic in H and at the
finite cusps [17, pp. 284-289].

To compare the expression (15) with the parabolic
Poincaré series (16) we begin by recalling that the
full modular group I'(1) is the group of invariance
for J(1). Furthermore, ¢t + d occurs as the lower row
of a transformation in I'(1) precisely when ¢ and 4
are relatively prime integers. With a simple change of
notation the double sum in (15) becomes

(17)
ex ( I_t)_ —Irial
p|—2ni : exp(—-2rmia/c) ¢,

2, 2

1S0<K 1€d1<k

(e,d)=1

Lt e D R T A W N AT s L
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where a and b are so chosen that V,; = (45) -
’ cd) €

We next take advantage of the fact that the Summang
(17) are unchanged under replacement of the pair (c
by the pair (—c, —d), to rewrite the sum (17) ag

Z Y {exp(—2miV, 47) — exp(— 2:-n'a/c)}_

Islr|<.‘( |‘: 1=K
But, the condition (c.d) = | implies that ¢ = ( o

only with d = 1, and 4 = 0 only with ¢ = %], [
former case we can choose the matrices to be + (1

and in the latter, + (” ") Thus, with the dehmuon,‘.

‘,-mah C#:O
He,dy= {0, e=0,

the expression (15) becomes

Y |
3 =
12 J(T)—732+Khm - E
(18)

{exp(—2mriV, 41) — s(c,d)}.

Comparison of (18) with (16) now clearly justifi
our viewing the right-hand side of (18) as a paraboli
Poincaré series of weight k = 0 on the group I'(1), for v
—1, but with the order of summation prescribed explicitl
(lattice points in expanding squares) and modified by th

subtracted convergence summands s(c,d). We stress that -

without this prescription and modification, there can be

no hope of convergence for a Poincaré series of weight

= 0. (For I'(1) absolute convergence occurs only if

k > 2.) Even with them, convergence remains far from &=

obvious. The proof comes naturally out of Rademachers
development.

2. Invariance of J(z).

As we remarked earlier in reference to the definition
(10) of p(z) (= £3(z)), modification by the convergenct
summands 5(c,d) seems to disturb the invariance undet

I'(1) of the right-hand side of (18), leading to the.

introduction of additive periods in the lransfbrmatio.n
formulae (as in (11)). At first glance, then, Radcmacheﬂ

formula (18) appears to imply only that J(z) is an

abelian integral with respect to I'(1), but not necessarily
a modular invariant (i.e. that the periods vanish). But, &
in the case of p(z), invariance does follow quite directly
from the structure of the formula (18). y
To see this, recall that invariance under all of I'(1) Wil
result from the single transformation formula J(- 1/1)2
J(7). We note from (18) that to prove this it will suffic
to demonstrate the invariance under t — —1/1 of ¢

finite sum
Zx(r) =Y ) exp(-2niV,47).
c|<K 1di<k

(e )=l
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= (25) e Ty, |

| However,
ie summands i

f the pair (¢, S (U= 30 D exp{=2mik y(~1/1))

17) as el <K laix

= N Z exp(—=2niVy _ 1),

(—2mia/c)}. Seae

(=1
at ¢ = 0 oceury | . ab) fo=1\ _ (& _
e 2t ma foe (32) 0):(H) Varce |
%GBS & (lﬂ. Now we infer » . (—1/7) = > (r) by matching the
d 0 1)* qair (¢,d) with the pair (d, —c).

ie definition .
1 Sketch of the proof of Theorem 1.
e present a very brief account of Rademacher’s deriva-
~ |on of the expression (15) from the definition of J(r)
{gven by (3) and (12). At the heart of the method is a
| fificult technical lemma justifying rearrangement of a
_ tgrtain conditionally convergent double series.
i . Rademacher begins by inserting the expressions (12)
=1 wd (13) into (3), and then inverting the order of
— s(e, d)}. {wmmation in the double sum so obtained. The validity
clearly justiohs :ﬁ;fthls step relies crucially upon the estimate of Weil
) as a parabolic :_fl35]

wp [(1), forv= { Ae(n) = O(£177),€ > 0,
scribed explicitly

; : ﬁ*umforrnlv in n. (Actually, any nontrivial estimate A4;(n) =
~modified by the G(l’ %),d > 0, would suffice for the purpose.) The inter-
). We stress th;l —:@ﬂﬂgc of summations implies that 122.J(z), as defined
on, there can by, 3y 54 (12), equals
series of weigh )

> occurs only lf"' ) : s
nit 2 =2nih' /¢
+744 + 2n E 7 E .£’
£=1  h(mod?)

i , 1 dn/n
b4 ;exp[Zmn(T = h/g)]ﬁll (—8—_) i

t, he replaces I, by the power series (14), performs
lother interchange of summations and—in the salient

Wlure of his calculation—makes use of the Lipschitz
3 formula [12, p. 65],
|

27

B &
ad}
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At this point Rademacher divides the multiple sum
in (21) into the two parts

Z lim e e ’*’{ (ff—.m)}

|| <N
()=

+z im, 3 ¢ :mﬂz s |

(mr’;:!

a step justified on the grounds that the second is abso-
lutely convergent as a triple sum and first is convergent
by virtue of its appearance as the left-hand side in

Rademacher’s Lemma. [31, p. 238, (2.1)]. Suppose
T € H. Then,
(22)
& exp(—2nim' /1)
{Z:;A}’_Ecgﬁ,{ i(tt—m)

{enfy=|

K
= Jim 3 > {},

#=1 |m|Sk
{imd =

with m' defined as in the statement of Theorem 1.
(Convergence of the right-hand side of (22) implies
directly the convergence of (18), the (modified) parabolic
Poincaré series of weight k = 0.)

Applying the Lemma to the first sum and absolute
convergence to the second, he obtains

(23)
K
123J(x) =e™ " +.732 + lim 3~ -

f:l m| <K
{m. =1

P
—2 1"
'mrt’zp‘{ ZT_ )}
=g~ L 732 4 [1m Z Z

=] Iml<K
f n = =]

o} 2ni
=2aim' j¢ =i
st oo (e ) - 1}

Finally, (15) results from (23) upon separation of the
single term for m = 0 (with ¢ = 1), and application of
the simple identity

1 _ =mlr =4

J
m!eJrf(_Er m)  ft—m

(m', £ defined as in the statement of Theorem 1)
and the invariance of the summand under the map
(E’m) b (—f._—m).

]
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II1. Connection with Eichler cohomology.
1. Generalization to modular forms of nonpositive weight.
A number of mathematicians have developed Rade-
macher’s ideas further, extending them (1) to discrete
groups of real linear fractional transformations other
than I'(1); (ii) to automorphic forms of weights k& < 0.
(See §1.2, following (7), for the definition.) Here we
emphasize the generalization to forms of negative weight,
as this leads directly to the Eichler cohomology theory.

We confine our attention to the case of automorphic
forms ' on I'(1) (that is, modular forms) of weight
f < 0, with k& an even integer and with “multiplier
system” identically one. This means F satisfies (7), with
k even and < 0, for all Af € I'(1). (For a definition
and discussion of multiplier sysiems, see [12, pp. 12—
13] or [17, pp. 267-268].) The definition of modular
form requires, as well, that F be holomorphic in H and
expressible there as an exponential series of the form

(24) Flt)= Y ane?.

n==—ju

(Note that periodicity of I follows from (7), with

”—(.u))

Rademacher derived the exact formula (12) for the
coefficients in the expansion of J(7) by refining a method
he and Zuckerman [32] had devised earlier to calculate
the coefficients a, in the exponential series (24) for an
arbitrary modular form F of negative weight k (“positive
dimension™—k in the terminology of [32]). The formula
of Rademacher and Zuckerman for the a,, in the special
case when k is even (and the multiplier system is
identically one), is

H 00
ay = (~1)(2m) ) ja_. )
(25) v=1 i=1

£—114ﬂlutn}(1}/'1}r—k+ll;'El_k-H {47[

TV‘HV},HE l,

where
(26)

Aiu(n)= ) exp[

Mmod )
(=1

2ni
(nh+vh' )] Jhh = —=1(mod £),
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This can be proved for k < 0 without invoking (25) ( fr—m) (=
pp. 24-30] or [17, pp. 166-176]). B or £(ft—m) C

2. When k =0, 4= 1 and a_, = 1, then (25) rcdu s no clarifical
to the series (12) for the coefficient of J(7). i reduces to (!

3. Both Lehner [19, 20] and Petersson [23] pauiiag) can be Tewri
derived (25) in the broader setting in which a ey .

H-group I" [17, p. 266] replaces I'(1). In this more gep
case, the structure of the series for @, remains unchap (1) — v = lin
in its essentials,

The Rademacher-Zuckerman formula (25) mg
available in the wider context of modular forms i {
weights k < 0 precisely the same viewpoint that R ]
macher adopts in [31] toward J(t). Specifically, one ca
define the function F(r) by the series (24) and (2§
and ask—as Rademacher did concerning J(t)—how (og 3 B
more tentatively, whether) it is possible to show from§8 . &) = B
this definition that F(r) does in fact satisfy (7), g
characteristic functional equation for a modular formofll’
weight k. This perspective, indeed, forms the basis f
much of the work | undertook in the early 1960% [8,
10, 11, 13, 14]. As it turns out, it is impossible to shg
that all functions F(1) so defined are modular forms, n 1
because of a defect in the method, but rather because § 2, The Eichler co
they are not all modular forms. We shall comment upon § Since F, (t + 1) =
this further in §1I1.2, below. \f ton of F, (witht

Rademacher’s method yields: showing that F(

Theorem 2. [11, p. 28, (3.07)]. For © € H define the § (1) reduces 10
Junction | mula

+(=14220) Y aa(w)e™ ™, (SR

=1

he “convergence
ppearing in (1§
reduces 10 s(c.d)

!'}z(r} = e—?ﬂu t

However, the pi
fr;e,d) in (29)
formula of a mo

with v a positive integer and a,(v) the infinite sum o
£ occurring in (25). Put r = —k, a positive even integen
Then, F,(t) is holomorphic in H and it there has the
representation (32) ¢k
with p,(7) a poly
In contrast to
k< 0 these poly
In fact, the ide:
lhe parameters
2(1) does not

Ft)=e ™ 4a,+1 {cxp[lziu/r}

—i :-](231;»/1)’}

- that p,(7) =
(28) - lun Z z (b1 —m) ind p_rz) anf;l
£ I 1<|m|<K 1 .
= this list, (Verific

. ' {-’ .
{exp (—2muu+—) While the exact |
bt—m

and ; i"hﬂws that ever
00 A2 j—k+1 i i 2niv , near combinat
(27) I R____l(x):z_(*""_/"—)f_ ‘ — exp(—2mim "’”‘)Zﬁ (g(f-r_;n)) ] - 8ot true (at le
T -k 1) =0 tourse, with fixc
where o, is a constant depending only upon v and r. (5 of sufficiently m
Remarks. 1. The expression (25) implies that a mod- [11, p. 27], where a,, is denoted ¢, .) the additive poly
ular form of weight & < 0 which is bounded at ;oo (that The proof of (28) requires that a generﬂi i Ihere are string
i, 4.y =a-;=-=a.,=0in (24)) is identically zero. ization of the Rademacher Lemma in whith § Balions, explain
|

o ey TR
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(et —m) (= £'7%(¢t — m)) replaces the denomi-
ator £(f1 — m) of (19). The analogy of (28) with (15)
hen (25) reduc |geeds no clarification; when v = 1 and k = 0 (so r = 0),
(7). (28) reduces to (15). Like the expression (15) for J(7),
srsson [23] haye |(28) can be rewritten as a modified parabolic Poincaré
which a genery |ries of weight k& < 0 on I' (1), comparable to (18):
this more generg| | (29)
mains unchangeq | f,(r) — @ = lim Y 3

le|<K 1I<K

voking (25) ({12,

wla (25) makes
lular forms wip
point that Rade.
:cifically, one cap
s (24) and (25) |

{(ct +d) exp(—2mivV.,1) —q(1;¢,d)},

where g(t:c,d) is the polynomial of degree r = —k given

g J(1)—how (or, [10) ,
sle 10 show from | Ve, d) = e L WP (=’§i]f(cr+d)r". c#0,
 satisfy (7), the f _ 0, =0,

modular form of
rms the basis for | he “convergence terms” g(7; ¢, d) here replace the s(c, d)
arly 1960's [8, 9, § gppearing in (18); when » = 1 and k = 0, ¢(1;¢,d)
1possible to show § educes to s(c, d).

odular forms, not
ut rather because 2. The Eichler cohomology theorem,

l comment upon §Since £, (t + 1) = F, (1) follows directly from the defini-
Llion of F, (without regard tp the nature of the a,(r)),
: wing that F,(t) is a modular form of weight & on
T € M define the §1 (1) reduces to proving the single transformation for-
| mula

"rlm

an(v)e” ¥ F,(=1/1) = F,(3).

Howe\er the presence of the subtracted polynomials
;e,d) in (29) gives rise instead to a transformation
ormula of a more general kind, namely,

¢ infinite sunt ot
itive even Integ
] it there has the

17%F,(-1/1) = F,(1) + p.(7),

In contrast to the case of J(7)(k = 0and v = 1), when
#< 0 these polynomial periods do not always disappear.
ffaCl. the identical vanishing of p,(7) depends upon
i parameters k and v, and in the generic situation
1) does not vanish. This, notwithstanding the fact
dp(t)=0forallv e Z* when k =0,-2,—4, -6, -8
~12. Conspicuously, k = 10 daes not belong on
15, (Verification of these facts is left aside.) Thus,
e the exact formula (25) of Rademacher-Zuckerman

$ that every modular form of weight k¥ < 0 is a

2riv ¢ombination of the functions F, (1), the converse
{lt—m) Tue (at least for £ = —10 and even k < —14). Of
3¢, with fixed & one can form a linear combination

upon v and Ciently many F, (1) to force the disappearance of
itive polynomial and thus obtain a modular form.

that a &S are stringent conditions upon such linear combi-
mma &% eXplained by Petersson through his “principal

Rademacher, Poincaré Series and Eichler Cohomology

parts condition™ [23, Theorems 1 and 3] and his “gap
theorem™ for automorphic forms [26, Theorem 1].

This state of affairs has made inevitable the frequent,
prominent appearance of functions having transforma-
tion laws like (32) - that is, with additive polynomials -
observable in the recent (since (1957)) study of modular
and automorphic forms. These “Eichler integrals” - as
they are called - are functions F(7) holomorphic in H
and satisfying
(33) (yr+8)"*F(M1) = F(1) + pu(1),
for all M = (§5) € I', a discrete group of real linear
[ractional transformations. Here, k& is an even integer
< 0, called the weight of the integral F(r), and py (1) is
a polynomial in 7 of degree at most —k. The py (1) are
the period palynomials of F(z). Combining (32) and the
fact that F,(t + 1) = F.(t), we find that the functions
F,(t) are Eichler integrals on I'(1), since T — 7+ 1 and
7 — —1/7 generate the group. Naturally, if py(t) = 0 for
all M €T in (33), then the Eichler integral F is really an
automorphic form on I'.

Of crucial importance in establishing a further non-
trivial link between Eichler integrals and automorphic
forms is the differentiation formula of G. Bol [2],

(34)

DR (pr 4 8) K F(M1)} = (pr+ )¢ 2FU R (MT),

where M = (’.{ff), with ad — fy = 1. Clearly, (34) implies
that the (—k + 1)*' derivative of an Eichler integral of
weight k on T is an automorphic form on T of weight
2 — k. (34) follows for differentiable F by induction on
—k and for analytic F by the Cauchy integral formula.

An immediate consequence of (33) is the (cocycle)
consistency condition

(35) Purv, = Pag, | Ma + par,, forall My, M; €T,

where for convenience we have introduced the slash
operator
(@|M)(1) = (y1 + ) p(M7),

for M = ( ) When ¢ is a polynomial of degree < —k,

so is ¢|M. A collection of polynomials {py|M € '}
satisfying (35 - thus, necessarily of degree < —k - forms

a (weight —k) cocycle on I'. Given a fixed polynomial p
nf degree < —k it generates the cocycle {py|M € I'} by
means of py = p|M — p. We call a cocycle of this special
form a coboundary and define the FEichler cohomology
group H' (T") as the quotient vector space of weight —k
cocycles modulo weight —k coboundaries.

The identity (34) suggests a direct relationship be-
tween H', (I') and automorphic forms of weight 2 — k
on I', which we can establish as follows. Let G be such a
form and F a (—k + 1)-fold anti-derivative of G. Then
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by (34) F satisfies (33), with py(7) a polynomial of
degree < —k for each M € I'. This produces a mapping
into H!' (I, if we attach 1o G the cohomology class in
H!,(T') of the cocycle {py|M € I'}. Indeed, Eichler’s
classic paper [3], which initiated the study of H!,(I),
identifies a distinguished subspace of Hlk(f"'} with a di-
rect sum of two spaces of automorphic forms of weight
2—konI:

Eichler Cohomology Theorem. For k € Z. k < 0,
H! (T) is isomorphic to the direct sum C*(I,2 - k) &
CYUT,2 — k), provided T is an H-group [17, p. 266].

Remarks 1. C*(T',2 — k) is the (finite-dimensional)
space of entire automorphic forms on I' of weight 2 — k,
those forms for which at each parabolic cusp of T
the exponential expansion has no terms with negative
exponents. C°(I',2 — k) is the subspace of cusp forms in
C*(I',2—=k), those entire forms such that each expansion
contains only terms with positive exponents.

2. For simplicity [ have stated only a restricted form
of the version of Eichler's theorem given in [6]. However,
this form of the theorem exhibits the essence of the full
result. Other versions include Eichler’s original result [3]
and [34, 4, 16, 18, 15].

The proof of the Eichler theorem given in [6] depends
strongly upon Theorem 2, extended to general H-groups
I'. This generalization applies directly to establish a
strong connection between the cocycle {py, } arising from
F, and the cocycle {p},} arising from F_, (the result of
replacing » by —v in the Fourier series definition of F,):

(36) Pae(T) = py (7).

(See [10, (4.8)].) Then, for a linear mapping suitably
defined from automorphic forms of weight 2 — k into
H! (T'), the relation (36) yields a proof that the mapping
is one-to-one [6, pp. 570-571). (This mapping necessarily
keeps C* and C° disjoint, even though C” ¢ C+.) The
proof that the range of this mapping consisis of the entire
space H' (I') requires Petersson’s generalized Riemann-
Roch Theorem [27, Theorem 9].

The Eichler cohomology theorem may be regarded as
stating that every polynomial cocycle arises as the system
of period polynomials of some Eichler integral, and
that this Eichler integral is uniquely determined by the
cohomology class of the given cocyele. Like the Riemann-
Roch theorem (more properly, Petersson’s generalization
of it), the Eichler cohomology theorem establishes a
profound connection - only hinted at by (34) - between
automorphic forms of weight 2 — k(k € Z, k < 0) and
those of weight k. It shows that each entire automorphic
form of weight 2 — k gives rise 1o an “obstruction” to the
existence of forms of weight k, and that each cusp form
in fact gives rise to two such obstructions.

Rademacher, Poincaré Series and Eichler Cohomology

IV. Concluding Remarks P
Although appearing eighteen years after [31], E,C 0
work did not find its motivation in Rademacher’s
proach to J(7). This is clear both from the iy
evidence (Eichler's article itself) and from the facy
the necessary link is established not in Radema
work, but in the exiensions of it to negative weigh
[8, 10, 11], published between 1960 and 1962 T
one can consider Eichler cohomology an outgrow
Rademacher’s work on J(1) is an instance of hindsi
an example illustrating the familiar, yet striking, f;
that developments which seem unrelated at first can ¢
out with time to be aspects of the same mathemat
phenomenon.

1 have not described all of the applications now
the literature of Rademacher’s method. These include
(i) the use of the method to construct Poincaré s
of weight 2 (in which case convergence problems

construction of automorphic forms of real (not neces
sarily integral) nonpositive weights [22]. In [21] Lehner
restricted his attention to Poincaré series of weight 2
on I'(1), while Smart [35] carried out a generalizatior

to certain subgroups of finite index in I'(1). The work{

of Niebur [22], while significant principally for its
tension of Rademacher’s method to nonintegral weights,

provdies new insights even for negative integral weight
when the weight is an integer the results of [22] do a0l

reduce to those of [10], but strengthen them instead.
According to Paul Bateman, Rademacher tried with:

out success to extend his method of [31] to nonintegral |
weights, in particular to the function 1/#y(t), which has f

weight —1/2. We may therefore safely assume that, could
he have known of it, Rademacher would have been most
interested in Niebur's work. In the spring of 1963, wel
before that work was begun, I had the opportunity to tell
Professor Rademacher about by own generalization 10
negative integral weights. As we walked alone, near the
university campus in Madison, Wisconsin, I broached
the subject and he siezed upon it with apparent interesk

But, within moments, something distracted us; 10 ™ |

later regret, we never returned to the subject.
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