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Statistics of the Two-Dimensional Ferromagnet. Part I
H. A. KRAMERs, O'perversity of L,eiden, Ieiden, Holland

G. H. W.&NNIER, University of Texas, Austin, Texas'
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In an effort to make statistical methods available for
the treatment of cooperational phenomena, the Ising
model of ferromagnetism is treated by rigorous Boltzmann
statistics. A method is developed which yields the partition
function as the largest eigenvalue of some finite matrix, as
long as the manifold is only one dirnensionally infinite.
The method is carried out fully for the linear chain of
spins which has no ferromagnetic properties. Then a
sequence of finite matrices is found whose largest eigen-
value approaches the partition function of the two-
dimensional square net as the matrix order gets large.

It is shown that these matrices possess a symmetry prop-

erty which permits location of the Curie temperature if it
exists and is unique. It lies at

J/kT. =0.8814

if we denote by J the coupling energy between neighboring

spins. The symmetry relation also excludes certain forms

of singularities at T„as, e.g. , a jump in the specific heat.
However, the information thus gathered by rigorous

analytic methods remains incomplete.

RANSITION temperatures of various types
are a well-known phenomenon in the study

of matter, and the statistical distribution laws
form a generally accepted piece of theory. It is
also generally believed that the former are a
consequence of the latter. This is, however, by
no means immediately obvious and an examina-
tion of the literature shows that there is not
more than one case in which a proof of this fact
has been attempted. The case which has received
successful treatment is the condensation of
vapors. ' This paper wishes to carry out a
similar treatment for the Curie transition of
ferromagnets.

The problem has a mechanical and a statistical
aspect. On the mechanical side we wish to
improve our understanding of the responsible
coupling forces. On the statistical side we wish
to derive with certainty the thermal properties
from a reasonably accurate mechanical model.
Both aspects have received extensive attention.
Quantum theory has explained satisfactorily
the origin and nature of the coupling forces.
There are also several theories available which
explain in terms of them the thermal behavior

' Owing to communication difhculties, one of the
authors (G. H. W.) is entirely responsible for the printed
text.

~ J. E. Mayer, J. Chem. Phys. 5, 67 (1937);J. E. Mayer
and Ph. G. Ackermann, J. Chem. Phys. 5, 74 (1937);
M. Born, Physica 4, 1034 (1937); B. Kahn, Dissertation
Utrecht, 1938. The last paper has the most rigorous
treatment of the matter.
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FIG. 1. Building up the linear chain. The elementary
step consists in placing a spin in position |Pj, whose
sign depends only on the spin Q.

'For a detailed discussion of various approximations
see Part II.

of ferromagnets. Not one, however, applies just
straight statistics to the mechanical data. '
Generally some simplifying assumption is intro-
duced to facilitate the evaluation of the partition
function. It follows that the results obtained are
not necessarily a consequence of the mechanical
model, but may well be due to the statistical
approximation.

The present paper is an attempt to gain sound
statistical information about some model of a
ferromagnet. The Ising model has been chosen
because its extreme simplicity makes it particu-
larly suitable for such a purpose.

In Part I, we shall show that the task of finding
the state sum can be reduced to finding the
largest eigenvalue of some matrix. The matrix
will be very simple in the case of the linear
chain and we shall re-derive by this method
the results of Ising. No such simple solution
wi11 be possible for the two-dimensional square
net where the matrix is infinite. However, some
precise information can still be gained which
will be collected in the latter sections of this
paper.
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FIG. 3. Building up the in6nite screw. Elementary step

IPj demands knowledge of spins Q, partly for the step
itself, but mostly for later similar steps to follow'.

FIG. 2. Building up the in6nite strip. Elementary step
consists in filling all positions i Pjwhose situation depends
on each other and the spins Q.
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In Part II, we shall complement this knowledge
by approximate treatments. Some of them are
already well known, as for instance the power
series approximations, - the Heisenberg method,
the order-disorder method of Bethe. In addition,
we wish to add two treatments of our own.
Both are based on the matrix method. One mill

be a semi-numerical treatment to answer a
specihc question left open in Part I, the other a
new approximation method giving results in
closed form. It will be shown that this latter is
very much superior to the older procedures.

1. TI-IF A&IECHwxrcAL MODEL

The Ising model can be explained as follows.
Assume a set of spIns pi, p~, p3 ~ py arranged In

some regular order. Let each of the spins be.
capable of two orientations which we characterize
by p; = + i and p; = —1. Then the Ising model
assumes that the forces on each spin depend
only on the orientation of its inlmediate neigh-
bors in addition to an eventually applied
magnetic held. In particular, if a11 direct neigh-

FIG. 4. Numbering of spins in the infinite screw problem.

bors of a given spin are equivalent the model

contains only two parameters, namely the
magnetic moment m of each spin and a quantity
J which is the energy gained if two neighbors

change from an antiparallel to a parallel position.
With these two deFinitions the total energy 8
takes the form

where here as in the future Q shall mean that
(', I)

the sum is carried out over all pairs (i, k) which

are direct neighbors.
Most statistical questions concerning (1) can

be considered solved if we can evaluate the
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so-called partition function f explicitly as

Pi=+1 @1=&1P2=&1 @3=&1 pN=~l

with
K =-', J'/k T

C= mH/kT.

(3)

(4)

Once f is obtained most important physical
consequences can be derived from it. We obtain
for instance the total magnetization M and the
total energy E:

The bold face summation sign X is to be
&i=~~

understood to extend over all possible states of
the system, i.e., it would have to be written

and
3f=m 8 log f/BC

8= MIX -', J—8 log—f/8K

2. THE LINEAR CHAIN

Ising himself carried out the calculation (2) for the linear chain. ' However, we shall reconsider
this problem since it forms an easy introduction for the eigenvalue method of evaluating f.

Let us suppose first the chain to be finite with n members yo, p~, p2, ~ p ~, as indicated in Fig. 1.
Then, by Boltzmann's theorem, the probability for a particular arrangement of spins @0=+1,
p& ——+1, pm ———1, ya

——+1, p„&———1 is proportional to exp ( 8/kT), bec—ause every arrangement
has weight 1. Since the energy E is given by (1) this probability is proportional to

exp[K(p081+plll+p2p 3+ ' ' ' +pa ''&pm 1) +—C(+—0+pl+ 02+ ' ' ' +pm —2+ pm —1)]

where K and C are given by (3) and (4). Exactly the same consideration is possible if wc add one
extra spin in the position [P] of Fig. 1. The resulting expression is the same as above except that
both sums extend to p„. It follows that the two probabilities differ from each other only through
the factor

exp[Kg„,p„+Cp„].

From these all-over probabilities others answering more simple questions can be obtained by suni-
mation. Let us determine for example from our first expression the probability P(p„&) that p„—g

has either value regardless of the values of po, p, &, p&, . p„&. This is easily found to be

P(p~—~)
Po~ Fl ~

' 'Pn-2
exp[K(lllApl+plg2+ ' ' ' Pe—2Pn —1)+C(AD+Pl+ ' PnI)]~,—

By summing the second probability containing p„over the same p's a probability P(p„&, p„) can
be obtained giving the chance for any one of the four combinations ++, +—,—+, ——.The
quantities P(p &) and P(IJ,„&,p„) still diA'er by the same factor, vis

~P(v —~ w ) =P(w -~) exp[Km —~v +Cv )
the unknown factor X entering because the Boltzmann exponentials are only proportional to
probabilities.

If we sum both sides in the above expression over p„&——+1 we get the probability P(p„) for y„
having either value in terms of the same probabilities for p„~ before p„was added. However, if
eke chain is eery long, the physical situation described by the two P's is identical. Hence P(p„) and
P(p„q) must be the same mathematical functions of their argument

These two linear equations have the form of a matrix eigenvalue problem. If we symmetrize the
4 E, Ising, Zeits. f. Physik 31, 253 (1925).



TWO —D I M ENSIONAL FE RROMAGNE'I 2SS

matrix by the substitution

the problem takes the form
Il(p) =P(p) exp 2Cp

g SC(P, P') a(P') =X a(P) (7a)

with
X(P, P') =exp[KPP'+ 2CP+-2CP' j-. (7b)

We shall consider the solutions of (7) later on.
Before doing so let us clear up the significance of the two eigenvalues X~ and P2. '" 'I'his can 'be

done most easily by using the fundamental theorem which develops any matrix in terms of its
eigen vectors:

3C(PI, P2) = F161(PI)431(P2)+l4282(PI)432(P2)

where III(P) and a2(P) denote the eigenvectors belonging to XI and X2, respectively. They are or-
thogonal and may be assumed normalized

2 43'(P)433(P) = ~'2
y=+1

This permits us to unite two 3C's as follows

2 ~(PI P2)~(P2 P3) l41 143( lP) 143( P)3+l42 432(PI)432(P3)

and next
~(PI P2)K(P2 P3)X(P3 P4) ~1 1(43PI) 1(43P )+4~2 432(PI)132(P4)

H2 P3

and so o» until finally

~(PI~ P2)~(P2i P3)+(P3y P4) ' ' '~(PN~ PN+I) ~1 131(PI)431(PiV+I)+~2 II2(PI)132(PN+I).
P» P3

If we close the ring of spins by the assumption p&+&= p& and sum over this last spin we get

+ 3C(Ply P2)~(P2, P3) ' ' ' 3C(PN, Pl) =XI +X2'

Substituting for the matrices K their va. lues as given by (7) we verify that the expression on the
left-hand side is exactly the partition function f, as defined by (2), for a closed ring of N spins

fN
—y N+742N

Finally, if the length N of the chain tends to infinity the smaller root X2 may be neglected.
What is the value of this larger root? The eigenvalue problem (7) reads

f'e 4+e e N
&l

t'43(+)
l

&II(+)&l
l(e—A el4 —'I') (4l( )J $13( )j

el»0 henc»
g = el~ cosh C+ (e'-'x sinh C+e 2x) ~.

(7c)

It has already. been pointed out by Ising himself4 that a linear chain of spins is not ferromagnetic.
'l'his can easily be verified by calculating the total magnetization with the help of (5) and (8):

cV=II2N sinhC/(sinh'C+e ' )' (10a)

an expression which, because of (4), vanishes with H. The initial molecular paramagnetic suscepti-
bility comes out to be

x = (2332/kT) exp(J/kT). (lOb)
' The elegant form of procedure used here is due to Mr. F. Montroll who applied it first to the theory of molecular

chains.



At low temperatures this value is very much larger than without the cooperative coupling J, but it
is still finite.

In the absence of a magnetic field we have

X=2 coshE

which gives for the energy as a function of temperature

j'= ——,'ATJ tanhE= ,'NJ—t—anh(J/2kT).

This is a smooth increase froni ——.,NJ to 0 as the temperature rises.

3. M. ATRIX & ORM OY THE SQUARE N El'. PROBLEM

The successful calculation of Section 2 has unfortunately no bearing upon ferromagnetism since
the model proves to be paramagnetic only. The situation is entirely different if we consider the
still simplified case of a square net of spins having two infinite dimensions. Peierls' has proved that
this model is ferromagnetic in the sense that it has a non-zero magnetization at absolute zero.
We can conclude from that result that the spontaneous magnetization cannot possibly be represented

by a single analytic function of temperature since it vanishes identically in the high temperature
range. This in turn would make us suspect the existence of a singular point at which the magnetization
ceases to vanish identically. It follows that the two-dimensional Ising model is a fair test case for
the general statistical theory of ferromagnets.

The reduction of the linear chain problem can be described in a qualitative way as follows. It is

possible to build up a chain by repeating constantly one and the same operation, namely adding
another spin beyond the one just placed previously. In fact, if the chain is really very long no physical
change takes place through the addition of one more spin. The successful mathematical treatment
is based on this identity on the one hand and on the other on the fact that the state of the lest spin
p„is only dependent upon tIM state of its predecessor y„~. It follows that the function P(p„) depends
operationally on P(y„&), yet is the same mathematical function of its argument. Exactly this is

expressed in Eq. (7).
A strip of spins having infinite length but finite width can obviously be built up in an analogous

manner. Let us recall brieHy the steps with the help of Fig. 2. First we write down two probability
expressions, one referring to all spins marked by crosses and rings (we assume the positions fPj
to be vacant), and the other to all crosses, rings and positions LP]. Both expressions follow directly
from Boltzmann's theorem, that is they are proportional to exp ( F/kT), P. be—ing given by (I).
In interpreting (I) we must remember that the neighborhood in P is now both horizontal and

(i, I)
vertical, as expressed by the connecting rods in Fig. 2. As a consequence, the factor by which the
probabilities differ is equal to

expLX(pl pl ++2 ps + ' ' '+ye —1 pm )+It(Nlpl +@2@2+ ' ' 'pwca )+/{@1++2 + ' '+pe )$t

where the indices of the p's refer to the column number. Only the p, 's of the two top lines are involved

in the expression, the very top one being indicated by p;, the next one by y, (see Fig. 2). Probabilities

referring only to the two lines just mentioned can be gained by summing over all crossed spins.

We are left with a function P(g,) of e variables and P(p;, p; ) of 2n variables. The two probabilities

still differ from each other by the same factor

pP(w' w'') =P(u') expL& Z u''u'+~+& Z we*+~ Z u' j
' R. Peierls, Proc. Camb. Phil. Soc, 32, 477 (1936}.Ising's erroneous conclusions for the two-dimensional case are

still quoted in some papers, e.g. , Lamek. Hulthen, Arkiv fOr Matematil& Astronomi och Fysik 26A, No. 1l (1940).
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t he constant p appearlIlg for the same reason as above ()2) I' lllally 1f the btl lp Is vel y long P(pp),
= X P(p; p ) must be the same function of its variables as P(p;). The substitution

a(p') =&(p') exp[i& Z pa '+i+kC Z p~j

will make the resulting eigenvalue problem symmetncal. It reads then.

To find the significance of p we turn again to the matrix development theorem. We have this
time 2 roOts ps 8111CC the matrIX 18 Of that OrdeI'. AS a Starting po1nt, We uSC thC tWO ba81C Statements

If we consider now a finite ring which is n spins wide and ns spins in circumference wc find that its
partition function can be written in terms of the "nuclei" X thus

f g~(p—.1 p.2)~(p.2 p,S)~(p.ll 'p.4). . .~(p,m—1 p.m)~(pea p.i)

Putting in the development for each matrix BC, interchanging summations and remembering the
orthogonality conditions we find

f +pm (13)

If we make the strip very long while keeping the width the same, m will become very large and all
but the largest root p can be neglected. It is well known from the theory of matrices that the largest
root has an eigenvector a(p) with only positive components. This must be so, of course, because
of their probability significance.

The doubly infinite square net results from (12) and (13) only in the limit when the width I of
the strip tends to infinity as well as m. It has therefore been our endeavor to find a way of connecting
n and n+1 just as our Eq. (12) carries out the reduction from m+1 to m. It has been impossible
so far to do this in a rigorous manner. However, a very powerful 'approximation method can be
based upon Eq. (12) which will be discussed in Part II, Section 7.

In spite of this failure some exact results can be obtained for the two-dimensional case; they are
based on certain matrix identities. In order to obtain them we have to take up once more our basic
steps which led to the eigenvalue problem (12). For it is possible to use instead of the matrix K
another equivalent onc w41ch docs Hot have soIIlc of its lnconvcn1cIiccs. Thc ITlatrix X, 18 of ordcI 2";
it is filled solidly with elements which take up various values in a more or less haphazard way.
In addition, its largest eigenvalue changes its meaning as n increases because it does not refer
to one spin but to a whole line of them, i.e., we do not have p""=f, but only p =f The reason fo. r
these features is that we built up the strip in large steps, filling a large number of vacant positions
[P] at one time (Fig. 2).

This situation can be amended partly by arranging the spins along the thread of a screw instead
of a simple strip. For this purpose we dispose of the free right- and left-hand edges in Fig. 2 by
bringing together each left end spin with the right end spin of the next line; the resulting order is
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visualized in Fig. 3. Its advantage is that the whole net can now be built, up through the simple
operation of placing a new spin immediately beside its predecessor as we move along the thread
of the screw. Figure 3 indicates this operation by a [P) as in the two previous figures.

The mathematical build-up of the eigenvalue problem follows the two previous procedures.
Boltzmann's theorem may be used to give the probabilities for all p, 's with or without a spin being
placed at LPj. As a second step we may eliminate, just as before, all explicit reference to the crossed
spins by summation. If we denote by n the number of spins making up one pitch of the screw we
can re-label the ring spins as indicated on Fig. 4. Let us caH A(y i, p~ a. yi, yo) the probability
referring to them alone and P(IJ,„,p„ i po) the one including p in position $P) as weH. The factor
by which the two quantities differ is now much simpler than it was in our pre~ious treatment in $3.
It contains only the two couplings which link up p,„with p„1 and p, o in addition to the action of
the field I/on p„

& P(p. , ~0) =&(y. i, ~0) exp/Em. (1. i+go)+Cp. $

The eigenvalue problem follows from this equation if we sum P(p„, pi, i»0) over yo and notice
that the resulting situation is identical with the one described by A(y„&, . yo), provided the screw
is very long. The only difference is that p~ now occupies the place of po, p2 of pi, and so forth. It
follows that we get the equation

Z «peti. (i.-i+so)+C~.]&(~ -i, ~0) =& ~(~., yi).
PO

If we compare (14) with (12) we notice that the matrix has become essentially asymmetric and
that we have not achieved any reduction of its order. But we have realized two improvements:
Each line contains now only two non-zero elements and the eigenvalue X is now the partition function
per individual spin regardless of the order of the matrix.

The proof of this latter proposition repeats the pattern outlined after Eq. (12), except that we

have to take into account the asymmetry of the matrix. Let 4; be its 2" eigenvalues and 2;(y„pl)
the corresponding eigenvectors to the right. Then we have to consider in addition the eigenvectors
to the left which we call 8;(p„, p&) and which satisfy the equations

Q expLXp. (p i+@»»)+Cp.$ &(p. , yi) =X B(IJ; &, . po). (15)

Before applying the basic equations it is advantageous to eliminate the appearance of identical p's

on either side of our Eqs. (14) and (15).This can be done by repeating n times the matrix operation
indicated. If we discard the terms in C, i.e. , let the magnetic 6eld be zero for simplicity, we get

a11d
Pl» 82' ' 'gn

«pL&Z~a'+i+& Zl'I'+ j~(I. ~i)=~ ~(~2- ~.+i)

Pm+1» Pe+2» ' ' gRn

«p[& Z ~ ~.+1+&E ~v '+.j&( ~.ii.+i) =~ &(~. »).

It follows that with proper normalization

»,(~. ~i)~ e(~. ») = &.

«PLY 2 ~f'~'+»+&2 I'~'+ j=Z ~. ~.( 2- I +i)&n(l- »).

We can write down this same formula for the next pitch of the screw

3'—1 2n 2

exPÃ 2 ~a +i+& 2 ~fa'+ l=Z ~, ~,(Ii- ».+i)&.(~2. V.+i). .
i=2 n
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Now we multiply these two formulas with each other and sum over the spins of the middle row

y„+i, p,+g- . .p2„. We get

In+1 Pn+2 .Q2n

exp[E Q~u*'+1+Egg p +''] 2 l~p A (p3 '''12+1)+ (p '''pl) ~

We can continue building up that way on the left the complete partition function of the problem.
If we dispose of the ends of our screw by making. it endless on a torus-shaped body, i.e. , if we put

then we get finally
pmn+i =pi)

p

~an —gg N (16)

8= ——,,'XJ d logh/dE (17)

C/R =E' d' logX/dE"-,

where R is the gas constant 8=Nk.
If we make this assumption of zero m.agnetic

field the parameter C in (14) is zero and the
matrix operator is invariant with respect to
inversion of all spins. It follows that the eigen-
vectors are either symmetric or antisymmetric
with respect to that operation. Since the largest
eigenvalue has only positive components it must

where mn =N is the total number of spins
present. If m is made sufficiently large while

keeping n fixed, all but the largest eigenvalue X

may be neglected.
It has proved necessary in the study of the

matrix (14) to avoid all unnecessary complica-
tions of the problem. One such complication is
the dependence of P on two parameters X and C,
corresponding physically to the temperature and
the magnetic held (Eqs. (3), (4)). It is an obvious
simplification to study the square net at zero
field only. Unfortunately the disadvantage of
such a step is greater than is immediately obvi-
ous, for Eq. (5) shows us that it will be impossible
under those circumstances to study even zero-
field magnetization as a function of temperature.
This reduces us henceforth entirely to the study
of the energy and the specific heat. It is fortunate
that these quantities show singularities con-
currently with the magnetization at the Curie
point, and their behavior as functions of T
should be sufficient to discern the complete
behavior of our model. From (6) and (16) we
can thus deduce the following simplified expres-

'

sions for the energy E and the molar specific
heat C

replace all the plus signs by zeros and all the
minus signs by ones, thus:

00110010;
read the number thus obtained as if 2 were our
decimal unit and let it be the order number of
the arrangement. The above arrangement for
instance has the order number 50. As an example
let us write down the components foi the case
$2=5:

1

2

3

5

6
7

9
10
11
12
13
14
15

Because of the symmetry condition (19) the
components 16 to 31 are identical with 15 to 0.
We find genera11y

component (i) =component (2"—i —1).

belong to the symmetric class

A(~-, u. -i ~i) =A( —~, —~--i, . —~i) (19)

This follows also from the significance of the
A's as probabilities. Equation (19) reduces the
number of components of A from 2" to 2" '.

It has proved to be convenient to write the
matrix in (14) as a thing with lines and columns.
This implies some ordering of the components
of A. The following scheme has been adopted.

Take a given arrangement of p, 's, for instance
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0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
I 0 0 0 0 0
0 0 0 0 0 I
0 0 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0. 0 0 0ooooon000000

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I

0 0 0
0 0 0
0 0 I
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
I 0 0
0 I 0
0 0 0
0 0 0

a I 0
0 0 n
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

t&j) o ) o

0 0 0
0 0 0
0 0 0
0 0 0
0 0 P
P I 0

0 0 0 0 0 0
I 0 0 0 0 0
0 cx I 0 0 0
0 0 0 n I 0
0 0 0 0 0 rx

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0oooooo000000000000ooooop
0 0 0 if' I 0
0 P 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

o 0
0 a I
0 0 0
0 0 0
0 0 0
0 0 0
0 P 1
I 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0OOO0
0 0 0 0
0 0 0 0
&I I 0 0
0 0 n I (2())

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

illld its «fleet on 9Jc(E) ls glvell by

9i 9J((K) ~Jl=N1( —X).

From here on it is a straightforward matter fornax

to bring the matrix (14) into its customary
square. form. In the case n = 5 we find, for
example,

0
0
0
0
0
I

'o(22)
0
0
0
0
0
0

(23)

where n=e"-'" and p=e '-~.

d'or

other values of n
the order of the matrix is a different power of
two. Apart from that the matrix stays the same.
The non-zero elements occupy a characteristic,
turned-over V-shape. On the top arm e'~ and 1.

ire alternating, on the bottom e '~ and 1.
Altogether each line and each column has two
non-zero elements.

Our statistical problein is now reduced to
finding the largest eigenvalue X(K) of the
nsatrix K:

9J)(X) A(X) =X(X) A(X) (2&)'

4. PROPERTIES OF THE SQUARE XlTET SOLUTION

It has been mentioned already that we have
failed to find an exact solution in closed form
for our problem. This does not mean, however,
that no information concerning X can be ob-
tained. For some of the properties of the matrix
K have a bearing upon the properties of X.

It is possible, for instance, to replace E by
—X in (20) through a simple re-ordering of
terms. Using the case n = 5 again as a test case
this re-ordering matrix g takes the following

' When using matrix notation in this and the following
paper we shall use uniformly the following convention:
matrices will be printed in German type, vectors in bold
face Latin type.

and to studying the behavior of X(X) as the
order of R(X) increases indefinitely. For only
in that limit does the solution correspond to the
doubly infinite square net. The parameter X
represents the temperature variable as defined
in Eq. (3).

The substitution X—+ —X means replacing
the ferromagnetic coupling J by an antiferro-
magnetic coupling of equal strength. It follows
that such a coupling would also produce the
thermal effects of ferromagnetism. This holds in

particular for an eventual Curie point. Many
approximate treatments destroy this basic
symmetry.

It is easy to extend the definition (22) of 5
to other orders. For if we compare that definition

. with the list of vector components on p. 259,
we see that it simply changes the sign of every
other spin. It should be mentioned in this
connection that this invariance does not exist
for n = 2, 4, 6 . . because in those cases a
completely antiferromagnetic pattern cannot be
fitted into our screw arrangement of Fig. 3.
For n=i, 3, 5 the difficulty does not arise
and this partial sequence is sufficient to establish
the invariance of ) for n—+ ~.

A more interesting result is obtained by
operating on K(X) with the unitary symmetric
matrix Z which for n = 5 has the following form:

I I I I I
I I I I I
I I I I —I
I I I I —I
I I —I —I —I
I I —I —I —I
I I —I —I I
I I —I -I I
I —I —I I I1-1—I I I
I —I —I I —I
I —I —I I —I
I —1 I —I —I1-1 I —I —I
I —I I —I I
I —I I —I I

I I I I I I
I I I —I —I —I—I —I —I —I —I —I—I —I —I I I I—I I I I I —I—I I I —I —I I
I —I —I —I —I I
I —I —I I I —I—I —I 1 I —I —I—I —I I —I I I
I 1 —I —I I I
I I —I I —I —I
I —I I I —I I
I —I I —I I —I—I I —I —I I —I—I I —I I —I 1

I I I—I —I —I—I I I
I —I —I—I —I —I
I I I
I —I —I—I I I
1 I —I—I —I I—I I —1
I —I I—I —I I
I I —I
I —I I—I I —I

It is clear that the transformation docs not. alter
the eigenvalue spectrum and hence

(24)
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or more symmetrically

sinh2X sinh2X~ = 1

or also
(26a)

sinh2E sinh2X*

cosh'2E cosh'2E*
(26b)

The matrix relation can also be brought in a
more symmetric form through the substitution

which yields

8(K) =— —9)'t(K),
cosh 2X

(27)

For arbitrary values of n t.he inatrix can bc
formed with the help of the following prescrip-
tion: Suppose you have the matrix in the case
n —1. Then you get the matrix for the case n by
writing down twice each line of the previous
matrix and then continuing on the right-hand
side alternately in a symmetric and antisym-
metric fashion. In addition, divide by v2 to
preserve unitary character. The matrix of order
1 you start out with is the number 1.

If we transform K(K) with this matrix '& wc
find that it goes over from its form (20) into a
matrix having upright V-shape. Upon closer
inspection we can write it as follows

7 K(K) Z=sinh 2E9If+(K'"'),

where the cross on 9Q stands for transposition,
i.e. , exchange of lines and columns and K* is an
auxiliary quantity defined through

e' *=cothK

sinh2E, = 1, (31a)

since E, is its own mate. The numerical value
of X,. is found to be

K, = 0.44069. (31b)

We conclude therefrom that if X possesses one
singularity only it must occur at the temperature
given by (31). It is therefore the only possible
location of the Curie point.

It is, of course, impossible to determine by
such a symmetry argument the nature of the
singularity, since we are not even certain of its
existence. For the symmetry property in question
is common to the whole sequence of matrices of
order 1, 2, 4, 8, 16 . . All these finite matrices
have solutions X which are continuous through-
out. But we can use our information in a negative
way to exclude with certainty certain types of
possible singularities. Using the definition (29)
we find from (17) and (18)

I'. = lil JI t—anh2K ,'d lo—gx-/dK I (32)
and

C/R =K'I 4/cosh'2K+d' logx/dX'I (33)

and for which

x(K) =x(E*). (30)

If we interpret (26) with the help of (3) we
see that it associates two temperatures with each
other. As one of them rises from 0 to ~ the
other one drops from ~ to 0. The significance
of Eq. (30) is then that singular temperatures
can only arise in pairs, since every singularity
at X will be matched by one at X*. The only
exception to this rule is the temperature for
which

& $(K) &=I+(K*)

a relation which, because of

(28)
Now from (26) we can derive thc following
relations at the Curie point

= ~+, and ~
'-'=

1.

is obviously reversible.
Equation (28) has an important bearing upon
Neither transformation with g nor trans-

position of 9Q does change its eigenvalues and
hence we find for A,

X(K)/cosh 2K = li(K*)/cosh 2K'"'.

Wc shall have occasion later to study this
invariant quotient which we dcline as x(K):

x(E) = li(E)/cosh2E

and

(dx/dK)r'ryo j(dx/dK)r, o=0.-(34)

fd'x ) f'd'x)

EdK') Ic,+o &dK') rc,o-
pdx) (dxy= —K2

/ /

—
I )

. (35)
KdE Jlr, yo (dKj x,—o'

(dK*/dK)K=Jr. = —1, (d'K*/dK')%=K. =2%2

and thcreforc from (30)
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Because of (32) Eq. (34) tells us that if the
energy is continuous at the Curie point it must
have the value

(36)

which is a rather s1ow growth from the low

temperature minimum A = —NJ to the high
temperature value J' =0. In case of a phase
transition (36) would at least represent the
arithmetic mean of the values it has in the two
phases.

Equation (35) tells us that if the energy at
X. is continuous then the specific heat is also
continuous unless it is infinite. This infinity, if

existing, would have to be of a rather symmetric
nature since C(K) —C(X*) must tend to zero as
we approach the Curie point. This result will

be of great importance in Part II since it is in
Hat contradiction to most approximate solutions,
which show a jump of the speciFic heat at the
Curie point.

Both these results can be united into a single
statement. If we study the sequence of solutions
x„ for n= 1, 2, 3 the specific heat as given

by (33) must either tend to infinity at Z=E,
or else both energy and specific heat are con-
tinuous. The question thus formulated is specific
enough to permit numerical treatment. It will

occupy Section 6 in Part II and will give strong
evidence that the specific heat is actually in-
finite at the Curie temperature.

Ke hope that the matrix method of solving;
statistical problems mill be of use to other
workers in this field. It may be mentioned in
this connection that the treatment of the three-
dimensional Ising model can also be reduced to
the solution of a sequence of V-shaped matrices.
It seems altogether as if a better understanding
of such V-matrices might be helpful for statistics.
One would expect this not to be too difficult in

view of the small number of non-zero elements
and their periodic structure. Their main draw-
back as compared to other simple matrices
seems to be that the linear system to which
they belong does not have the structure of a
system of recursion relations.

In conclusion we want to express our thanks
to Mr. E. Montroll for a helpful discussion.


