390 5 Constants Associated with Enumerating Discrete Structures

[6] W.Fernandez de la Vega, On random 2-SAT, unpublished note (1992).

[7] B.Bollobas, C. Borgs, J. T, Chayes, J. H. Kim, and D, B. Wilson, The scaling window of the
2-SAT transition, Random Structures Algorithms 18 (2001) 201-256; MR 2002a:68052.

(8] J. Franco and M. Paull, Probabilistic analysis of the Davis-Putnam procedure for solving the
satisfiability problem, Discrete Appl. Math. 5 (1 983) 77-87; correction 17 (1987) 295-299;
MR 84¢:68038 and MR 88¢:68050.

[9] A.Z. Broder, A. M. Frieze, and E. Upfal, On the satisfiability and maximum satisfiability
of random 3-CNF formulas, Proc. 4% ACM-SIAM Symp. on Discrete Algorithms (SODA),
Austin, ACM, 1993, pp. 322-330; MR 94b:03023.

(10] A.ElMaftouhi and W, Fernandez de la Vega, On random 3-SAT, Combin. Probab. Comput.
4 (1995) 189-195; MR 96£:03007.

[11] A. Kamath, R. Motwani, K. Palem, and P Spirakis, Tail bounds for occupancy and the
satisfiability threshold conjecture, Random Structures Algorithms 7 (1995) 59-80; MR
97b:68091.

[12] L.M.Kirousis, E. Kranakis, D. Krizanc, and Y, C. Stamatiou, Approximating the unsatisfi-
ability threshold of random formulas, Random Structures 4 Igorithms 12 (1998) 253-269;
MR 2000¢:68069.

{13] O. Dubois and Y. Boufkhad, A general upper bound for the satisfiability threshold of
random r-SAT formulae, J, Algorithms 24 (1997) 395-420; MR 98e:68103.

[14] S. Janson, Y. C. Stamatiou, and M. Vamvakari, Bounding the unsatisfiability threshold
of random 3-SAT, Random Structures Algorithms 17 (2000) 103—116; erratum 18 (2001)
99-100; MR 2001¢:68065 and MR 2001m:68064.

[15] A. C. Kaporis, L. M. Kirousis, Y. C. Stamatiou, M. Vamvakari, and M. Zito, Coupon
collectors, g-binomial coefficients and the unsatisfiability threshold, Seventh Jtalian Conf.
on Theoretical Computer Science (ICTCS), Proc. 2001 Torino conf, ed. A. Restivo, S.
Ronchi Della Rocca, and L. Roversi, Lect. Notes in Comp. Sci. 2202, Springer-Verlag,
2001, pp. 328-338.

[16] O. Dubois, Y. Boufkhad, and J. Mandier, Typical random 3-SAT formulae and the sat-
isfiability threshold, Proc. 11" ACM-SIAM Symp. on Discrete Algorithms (SOD4), San
Francisco, ACM, 2000, pp. 126-127.

[17] M.-T. Chao and J. Franco, Probabilistic analysis of two heuristics for the 3-satisfiability
problem, SIAM J. Comput. 15 ( 1986) 1106-1118; MR 88b:68079.

[18] A. Frieze and S. Suen, Analysis of two simple heuristics on a random instance of k-SAT,
J. Algorithms 20 (1996) 312-355; MR 97¢:68062.

[19] D. Achlioptas, Setting 2 variables at a time yields a new lower bound for random 3-SAT,
Proc. 32 ACM Symp. on Theory of Computing (ST 0C), Portland, ACM, 2000, pp. 28-37.

[20] D. Achlioptas and G. B Sorkin, Optimal myopic algorithms for random 3-SAT, Proc.
4I* Symp. on Foundations of Computer Science (FOCS), Redondo Beach, IEEE, 2000,
PpP. 590-600.

(21] T Larrabeeand Y. Tsuji, Evidence fora satisfiability threshold for random 3CNF formulas,
presentation at A4AI Spring Symp. on Al and NP-Hard Problems, Palo Alto, 1993; Univ.
of Calif. at Santa Cruz Tech. Report UCSC-CRL-92-42.

[22] B. Selman, D. G. Mitchell, and H. J. Levesque, Generating hard satisfiability problems,

. Artificial Intellig. 81 (1996) 17-29; Hard and easy distributions of SAT problems, Proc.
Tenth Nat. Conf on Artificial Intelligence, San Jose, AAAI Press, 1992, pp. 459-465; MR
98b:03013.

(23] J. M. Crawford and L. D. Auton, Experimental results on the crossover point in random
3-SAT, Artificial Intellig. 81 (1996) 31-57; also in Proc. Eleventh Nat. Conf. on Artificial

Intelligence, Washington DC, AAAI Press, 1993, pp. 21-27; MR 97d:03055.

[24] E. Friedgut, Sharp thresholds of graph properties, and the k-SAT problem (appendix by
J. Bourgain), J. Amer. Math. Soc. 12 (1999) 1017-1054; MR 2000a:05183.

[25] T.Luczak, Size and connectivity of the £-core of a random graph, Discrete Math. 91 (1991)
61-68; MR 92m:05171.

[26] V. Chvétal, Almost all graphs with 1.44n edges are 3-colorable, Random Structures Algo-

“rithims 2 (1991) 11-28; MR 92¢:05056.

i

[27] M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence,

391

5.22 Lenz-Ising Constants

Random Structures Algorithms 6 (1995) 161-179; MR 97a:05191.

[28] B. Pittel, J. Spencer, and N. Wormald, Sudden emergence of a giant k-core in a random

graph, J. Combin. Theory Ser. B 67 (1996) 111-151; MR 97¢:05176.

[29] M. Molloy, A gap between the appearances of a k-core and a (k + 1)-chromatic graph,
K . )

Random Structures Algorithms 8 (1996) 159-160.

{30] D. Achlioptas and M. Molloy, The analysis of a list-coloring algorithm on a random graph,

Proc. 38" Symp. on Foundations of Computer Science (FOCS), Miami Beach, IEEE, 1997,

{311 gp]'EZODA‘u—nznleze.md M. Zito, An improved upper bound on the non-3-colourability threshold,

8 Inform. Process. Lett. 65 (1998) 17-23; MR 98i:05073.

b [32] D. Achlioptas and M. Molloy, Almost all graphs with 2.522n edges are not 3-colorable,
"l' [33] A.C.Kaporis, L. M. Kirousis, and Y. C. Stamatiou, A note on the non-colorability threshold

Elec. J. Combin. 6 (1999) R29; MR 2000e:05140.

of a random graph, Elec. J. Combin. 7 (2000) R29; MR 2001e:05116.

¥ [34] T. Hogg and C. P. Williams, The hardest constraint problems: A double phase transition,

Artificial Intellig. 69 (1994) 359-377.

[35] E.Gardner, Maximum storage capacity in neural networks, Europhys. Lett. 4 (1987) 481—

' [36] ?815{ Kim and J. R. Roche, Covering cubes by random half cubes, with applications to

binary neural networks, J. Comput. Sys. Sci. 56 (1998) 223-252; MR 2000g:68129.

[37] M. Talagrand, Intersecting random half cubes, Random Structures Algorithms 15 (1999)

436-449; MR 2000i:60011.

[38] W.Krauth and M. Opper, Critical storage capacity of the J = =1 neural network, J. Phys.

A 22 (1989) L519-L523.

[39] W. Krauth and M. Mézard, Storage capacity of memory networks with binary couplings,

J. Physique 50 (1989) 3057-3066.

[40] R.Monasson and R. Zecchina, The entropy of the k-satisfiability problem, Phys. Rev. Lett.

; :82053.
881-3885; cond-mat/9603014; MR 97a.82 ) _
[41] 17{6 Is/llgzggszn and R. Zecchina, Statistical mechanics of the random k-satisfiability model,

; :82022.
. Rev. E 56 (1997) 1357-1370; MR 98g:820 SAT:
[42] gl}i\iionil:son, R( Zecchina, S. I‘(irkpiinck,ui. S?Itr}x;a;il :;dﬁ;g:i(zj};ar}asz;lgn -gtfgciﬁ:s
Relation of typical-case complexity to the nature o 000'-68076’
] 414-435; cond-mat/9910080; MR 2000i: . !
[43] zélggzﬁﬁr:;t;: (141.91319.)Kirousis, E. Kranakis, and D. Krizanc, Rigorous results for (2 + p)
SAT, Theoret. Comput. Sci. 265 (2001) 109-129; MR 2002g:68047. .
441 G B’iroli R. Monasson, and M. Weigt, A variational description of the gro;xgg' strue.
o ture in random satisfiability problems, Europ. Phys. J. B 14 (2000) 551-568; con

[45] 1998}131‘:?;nd T. Walsh, The SAT phase transition, Proc. 1% European Conf. on Artificial

i —109.
] CAI), Amsterdam, Wiley, 1994, pp. 105 .
{46] g%ﬁﬁgﬁiﬁm H) Daudé, Satisfiability threshold for random XOR-CNF formulas, Dis:

crete Appl. Math. 96-97 (1999) 41-53; MR 2000i:68072.

5.22 Lenz-Ising Constants

The Ising model is concerned with the physics of phase translitlions, for e)'iampli%vgl:
it is heated, with total loss occurring a
tendency of a magnet to lose strength as i : ing sbove 2
i i iti i barely introduce the subject. Un
certain finite critical temperature. This essay can : oo
ion clusters [5.18], a concise complete proble: ‘
hard squares [5.12] and percolation ¢ : problem siae:
i i d with large arrays of 1s and —1s whose j
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characterization of the joint distribution is elaborate; our treatm

and focuses on series eXpansions. See [ 1-10] for background

Let L denote the regular d-di i i
. . -dimensional cubic latt] i
In two dimensions, £ ey

ent is combinatoria]

= n?sites. For example,
; j = n“. To eliminate boundary
dimensional torus so that, without excep-

5.22.1 Low-T: emperature Series Expansions

S’

let 4(p, ) be the number of colori :
’ olorings for which .
exactly ¢ black-white edges. (See Figire 5.20.)lc there are exactly p black sies and

Then, for large enough N [11-14),

A4(0,0) =1 (all white),

:;1(; , id) =N (one black),

‘ gz, 4;1")—_ 21 7\/ dN (two black, adjacent),

p 3, p = 2(_ —2d - 1)N (two black, not adjacent),
@3, 4) =Q2d - 1)dN (three black, adjacent),

Properties of this Sequence can be studied via the bivariate generating function
a(x,y) = 3" A(p, g)xPy?
Py
and the formal power series

.1
@(x,y) = lim — In(a, »))

2d +1 2. 4d

= yp2d 2, 4d—-2
RV ATyt XY+ (2d - 1)dx3ysd—4 4

L1

L

@ —

Figure 5.20. Sample coloring with 4 = 2,N=25p=7 and g = 21 (ignoring wra d)
) = paround).
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obtained by merely collecting the coefficients that are linear in N. The latter is some-
times written as [15]

exp(a(x, »)) = 1 +x3® + dx?y*? —dx?y* 4 2d — Ddx3y54* 4 ...,

a series whose coefficients are integers only. This is what physicists call the low-

temperature series for the Ising free energy per site. The letters x and y are not

dummy variables but are related to temperature and magnetic field; the series a(x, y) is

not merely a mathematical construct but is a thermodynamic function with properties

that can be measured against physical experiment [16]. In the special case when x = 1,

known as the zero magnetic field case, we write a(y) = «(1, y) for convenience.
When d = 2, we have [11,17]

exp(a(n)) = 1+ y* +2)° +55° + 14" + 44y'> 4 152" + 5666 + - ...

Onsager [18-23] discovered an astonishing closed-form expression:

a(y) =

N =

11
//ln [(1+ 5% —2y(1 — y*) (cos(2mu) + cos(2mv))| du dv
00

that permits computation of series coefficients to arbitrary order [24] and much more.
When d = 3, we have [11,25-30]

exp(e(y)) = 1+ % +3y'0 = 3y™ + 15y — 30" + 101" - 261y 4 — - ..

No closed-form expression for this series has been found, and the required computations
are much more involved than those for d = 2.

5.22.2 High-Temperature Series Expansions

The associated high-temperature series arises via a seemingly unrelated combinatorial
problem. Let us assume that a nonempty subgraph of L is connected and contains at
least one edge. Suppose that several subgraphs are drawn on L with the property that

* each edge of L is used at most once, and
* each site of L is used an ever number of times (possibly zero).

Call such a configuration on L an even polygonal drawing. (See Figure 5.21.) An even
polygonal drawing is the union of simple, closed, edge-disjoint polygons that need not

be connected.
Let B(r) be the number of even polygonal drawings for which there are exactly r

edges. Then, for large enough N [4,11,31], . N
B(#) = id(d — )N (square),
B(6) = 1d(d — 1)(8d — 13)N
B(8) = 3d(d — 1) (d(d — 1)N + 216d? — 848d + 850) N (many possibilities).

On the one hand, for d > 3, the drawings can intertwine and be knotted [32], so com-
puting B(r) for larger r is quite complicated! On the other hand, for 4 = 2, clearly

(two squares, adjacent),

e AN O GTA SO

P

P
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Figure 5.21. An even

polygonal drawi =2; i
iy yg awing for d = 2; other names include closed or Eulerian

B(g) = A
9= » 4P, q) always. As before, we define a (univariate) generating function

b@) =1+ B(r)

and a formal power series

B@) = lim 1 + In(()

= —d
(d D24 + = d(d— 1)(84 — 13)z6 + — d(d 1)(10842 — 4244 + 425);8

d(d 1)(2976d3—19814d2+44956d 34419)z10 +

called the hlgh-temperature Zero

[11,25,29. 35 36, ~field series for the Ising free energy. When d — 3

exp(B(2)) = 1 + 3z* + 2225 + 19228 + 204610 + 24853212 4 3293;4214 +

but again our knowledge of the series coefficients is limited

5.22.3 Phase Transitions in Ferromagnetic Models

The two major unsolved problems connected to the Ising model are [4,31 371

F‘ind a closed-form expression for a(x, y) whend = 2.
* Find a closed-form expression for f(z) when d = 3,
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Why are these so important? We discuss now the underlying physics, as well its rela-
tionship to the aforementioned combinatorial problems.

Place a bar of iron in an external magnetic field at constant absolute temperature
T. The field will induce a certain amount of magnetization into the bar. If the external
field is then slowly turned off, we empirically observe that, for small T, the bar retains
some of its internal magnetization, but for large T, the bar’s internal magnetization
disappears completely.

There is a unique critical temperature, 7., also called the Curie point, where this
qualitative change in behavior occurs. The Ising model is a simple means for explaining
the physical phenomena from a microscopic point of view.

At each site of the lattice L, define a “spin variable” o; = 1 if site i is “up” and
0; = —1 ifsite is “down.” This is known as the spin-1/2 model. We study the partition
function

Z(T) = Zexp [ (Zsa,a, + Z Tlak>]

@.7)

where & is the coupling (or interaction) constant between nearest neighbor spin vari-
ables, n > 0 is the intensity constant of the external magnetic field, and « > 0 is
Boltzmann’s constant.

The function Z(T) captures all of the thermodynamic features of the physical system
and acts as a kind of “denominator” when calculating state probabilities. Observe that
the first summation is over all 2V possible values of the vector o = (01,02, ..., 0N)
and the second summation is over all edges of the lattice (sites 7 and j are distinct and
adjacent). Henceforth we will assume £ > 0, which corresponds to the ferromagnetic
case. A somewhat different theory emerges in the antiferromagnetic case (§ < 0),
which we will not discuss.

How is Z connected to the combinatorial problems discussed earlier? If we assign
a spin 1 to the color white and a spin —1 to the color black, then

Y oioj=@N—q)-1+q-(-1)=dN —2q,
./

Y o=@W-p)-1+p-(-D=N-2p,
k

and therefore

where

Since small T gives small values of x and y, the phrase low-temperaturé series for
o(x, y) is justified. (Observe that T' = 0o corresponds to the case when lattice site
colorings are assigned equal probability, which is precisely the combinatorial problem

. FPESIEY

A ]

PR Y
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described earlier, The range 0 < T < oo corresponds to unequal weighting, accentu-
ating the states with small pandq. The point T = 0 corresponds to an ideal case when
all spins are aligned; heat introduces disorder into the system.)

For the high-temperature case, rewrite Z as

4 ¥ 1
Z= (Wm;) SN > (H(l +0i052) - T ] + o'kw)) ,
7 \@ k

where

(). -ma(2)

In the zero-field scenario (7 = 0), this expression simplifies to

4 7
Z= (HTZ)“) b(2),

and since large T gives small z, the phraseology again makes sense,

5.22.4 Critical Temperature

We turn attention to some interesting constants, The radius of convergence Ye in the
complex plane of the low-temperature series a(y) =32, vt is given by [29]

= lim Jag|~% = | V2= 1=04142135623 ., ifd =2,
e = AT, loal T = V028537 =0.5341...  ifg =3,

hence, if d = 2, the ferromagnetic critical temperature T, satisfies
1 1 1
K= _ 7| =) =5 In(vV2+1) = 04406867935 .
kT, 2 Ye 2

The two-dimensional result is a famous outcome of work by Kramers & Wannier [38]
and Onsager [18]. For d = 3, the singularity at ¥y =—-0.2853 ... is nonphysical and
thus is not relevant to ferromagnetism; a second singularity at y? = 0.412048. . .is what
we want but it is difficult to compute directly [29,39]. To accurately obtain the critical
temperature here, we examine instead the high-temperature serjes B(@) =332 Bzt
and compute

1 [+
ez ) =0.221654. ..
11—z,

There is a huge literature of series and Monte Carlo analyses leading to this estimate
[40-53]. (A conjectured exact expression for z, in [54] appears to be false [55].) For
d > 3, the following estimates are known [56-65]:

0.14855... if d = 4, 0.14966... if d = 4,
o= {0134 ifd=s  foi3g.ifgos)
©]0.092... ifa=s6 K=100023 ifd =6,

0.0775... ifd =7, 0.0777... ifd =17,

An associated critical exponent y will be discussed shortly.

ze = lim By~ % = 0218094..., K, — %m(
k—00
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Figure 5.22. An odd polygonal drawing for d = 2.

5.22.5 Magnetic Susceptibility

Here is another combinatorial problem. Suppose that several subgraphs are drawn on
L with the property that

= each edge of L is used at most once,

i d
» all sites of L, except two, are even, an o
+ the two remaining sites are odd and must lie in the same (connected) subgraph.

Call this configuration an odd poelygonal drawing. (See Figure 5.2;23r the t::(ti 2
odd polygonal drawing is the edge-disjoint union of an even polygonal drawing

idi inking the two odd sites.
irected) self-avoiding walk [5.10] linking . .
(unlirtez’ (er))be twice the number of odd polygonal drawings for which there are exactly

r edges. Then, for large enough N [12,66],

C(l) = 2dN gg’),)
C(2) = 2d(2d — )N (Saw

C(3)=2d(2d — 1)*N S,
=2d (2d(2d — 1) — 2d(2d —2)) N ,
ggg = dz(cg —(l)N2 +)2d (164% —32d° +16d% +4d —3) N (square and/or SAW).

As before, we may define a generating function and a formal power series
.1 Ra
@) =N+ Cr), x@) = Jim - In(e(z)) = ; xiez*,

which is what physicists call the high-temperature zero-field series .foil the ;zr;g
magnetic susceptibility per site. The radius of convergence z. of x(z) is the sa
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that for B(z) ford > 1. For example, when d = 3, analyzing the series [67-73]

X(2) =146z +302% + 15023 + 7262* + 35102 +167102% 4 . ..

is the preferred way to obtain critical parameter estimates (being the best behaved of
several available series). Further, the limit

: © Xk
lim kX
ko0 z " fy—1

appears to exist and is nonzero for a certain

mensionality. As an example, if d =2, nu
[67,74,75]

positive constant y depending on di-
merical evidence surrounding the series

X(@) =144z 4 122° + 362° + 100z* + 2762° 4 74025 + 197257 +517228 4 ...

suggests that the critical susceptibility exponent y is 7/4 and that Y is universal (in
the sense that it is independent of the choice of lattice

). No analogous exact expressions
appear to be valid for y when d > 3; for d = 3, the consensus is that y =1.238...
[40,44,46,49-52, 71, 73].

We finally make explicit the association of x(z) with the Ising model [76]:
lim ! In(Z(z, w)) = In(2) dl 1-2z?% 1In(l 3+ B(
m , = 3 n(l —z 3 w z)
1
+5 &@ - D’ + o@w?),
where the big O depends on z. Therefore

derivative with respect to w, specifically,
momentarily).

x(2) occurs when evaluating a second
when computing the variance of P (defined

5.22.6 Q and P Moments

Let us return to the random coloring

problem, suitably generalized to incorporate
temperature. Let

2 1 2 1
Q=d——ﬁq=ﬁ§o‘iaj, P=1_ﬁp:ﬁzk:0k
iJ

for convenience and assume henceforth that d — 2. To study the asymptotic distribution

of O, define
.1
F@z)= nlirgo I In(Z(z2)).
Then clearly
. dF ,d*F
Jim E(Q) = (KT)E, Jim N Var(Q) = (« T) Fr
via term-

by-term differentiation of In(Z). Exact expressions for both moments are

b
4
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possible using Onsager’s formula:

2
F(Z):1n<1_22)

11
+ % ,/ / In[(1 + 2% = 2z(1 — 2%) (cos(2mu) + cos(27wv))] du dv,
00

but we give results at only two special temperatures. Inthe case T’ = oo,‘for which §tat<iersl
are assigned equal weighting, E(Q) — 0 and N Var( Q). - 2, conﬁ%'mmg reasogmig::I t
[77]. In the case T = T, note that the singularity is fairly subtle since F and its firs

derivative are both well defined [11]:
In(2) 2G

1
— = = — (In(2) + 1.1662436161.. ),
F(zo) = 2 + - = 0.9296953983 . .. 7 (In(2)

[lim E(Q) = V2,

where G is Catalan’s constant [1.7]. The second derivative of F', however, is unbounded
in the vicinity of z = z, and, in fact [5],

8 T )
i ~——(In|——1+g),
nlglgoNVar(Q) - (ln T ’ g
where g is the constant
z V2 = 0.6194036984 ...
g=1+7+h Tln(«/i+1) =0.

This is related to what physicists call the logarithmic divergence of the Ising specific
heat. (See Figure 5.23.) ' .
ei:’xs(an asi({geu we mention that corresponding values of F(z.) on the triangular and

hexagonal planar lattices are, respectively [11],
n(3) H
— + — = 0.8795853862...,
In(2) -+ 4 + )

3@ | @) g = 1.0250590965 . . ..

4 2
T 1 T 1 T T
@ i g 8
g Sl |
:
8 =4
e L
| i |
0.8 0'9 i 111 1.2 %.4 0.6 0.8 1 1.2
R . s
T T

Figure 5.23. Graphs of Ising specific heat and spontaneous magnetization.
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Both results feature a new constant [78,79]:

_53 1\ 5/3 V3
H=v <§) g T~ In(6) = ra (é) - %—gn — In(6)

= —0.1764297331.. .,

where 1//(x) is the trigamma function (derivative of the digamma function ¥(x)[1.5.4])
See [80-82] for other occurrences of H ; note that the formula o

nn
1
In(2) +1 =
n(2) + In(3)+ H ) /fln[6—2005(0)—2005(¢)—2cos(0+g0)] déde
—T —X
=&§<1_ 1,1 1 1 1
- 5zﬁ“m+ﬁ‘ﬁ+m9
= 1.6153297360. ..

parallels nicely similar results in [3.10] and [5.23].
A more difficult analysis allows us to compute the corresponding two moments of

p

1
F(z,w)= lim — .
(z,w) = lim 7 n(Z(z, w));
then clearly

. 2
. lim lim N Var(P) = (T2 E
an?

n—0t n—>o0

lim lim E(P) = (c T)";_F

n—0+ n—oc0

n=0

as before. Of course, we do not know F(z, w) exactly when w # 0. Its derivative at
w = 0, however, has a simple expression valid for all z:

1
‘ 2E\ 48
[1 —smh(—g) ] fT < T,
«T ’
0 ifT > T,
_ {(1 +yA 62 +y5(1 -y} i T < T,
0 ifT>T,
due t'olOnsager and Yang [83-85). A rigorous justification is found in [86-88]. For the
special temperature 7' = oo, we have E(P) — Oand N Var(P) — 1since pis Binomial

(N, 1/2) distributed. At criticality, E(P) — 0
172 . , as well, but the second derivati ibi
fascinatingly complicated behavior: Fond dervative xhibits

n=0

lim lim E(P) =

n—0+ n—o0

im lim N Var(P)= x(z) ~ ¢f ™% + ¢t i t+dotcie +eotIn(t) +dit + cied

n—0* n—+o0
Where0<t=1_T/T et = 0.962581

¢ » HQ — Ve 7323...,d = —{). .
0.0403255003 ..., dy = ~0.14869. .. and b = —0.1041332451 . .., ¢ =

+_ 2
o =% Keey, of = Blx2ct

= 15t +
2 = mkeey, 5 =557 Kl

E
¥
1)
¥
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Wu, McCoy, Tracy & Barouch [89-99] determined exact expressions for these series
coefficients in terms of the solution to a Painlevé III differential equation (described
in the next section). Different numerical values of the coefficients apply for T’ < T¢,
as well as for the antiferromagnetic case [100,101]. For example, when ¢ < 0, the
corresponding leading coefficient is c; = 0.0255369745. ... The study of magnetic
susceptibility x () is far more involved than the other thermodynamic functions men-
tioned in this essay, and there are still gaps in the rigorous line of thought [102]. Also,
in a recent breakthrough [103, 104], the entire asymptotic structure of x(z) has now

largely been determined.

5.22.7 Painlevé III Equation

Let f(x) be the solution of the Painlevé III differential equation [105]
"(x @\ 1 f(x 1
1€ )_(f( )) IRRAC P

&\ /® x f(x) Sy
satisfying the boundary conditions
—2x
)~ 1= asx = 00, f(x)~x@2In@) -y —In()) asx — 0%,
JTTX
where y is Euler’s constant [1.5]. Define

[ R
gx) = [Zf(x) TGy

Then exact expressions for ci and ¢j are

(- sy - f’(x>2)] InGe).

(o]

it =2bnn(Z+ 07} [y - so)

0

X exp |:/x In(x) (1 — fx)?) dx —g(y)J dy,

y

oo}
cy =2%n1n(ﬁ+1)—%fy
0

X [(1+f(y))exp [fxln(x) (1—-f(x)?) dx —g(y)} —2] dy.

y

Painlevé IT arises in our discussion of the longest increasing subsequence problem
[5.20], and Painlevé V arises in connection with the GUE hypothesis [2.15.3].
Here is a slight variation of these results. Define

=0 (7 2)

forany constant¢ > 0; then the function A(x) satisfies what is known as the sinh-Gordon

v s
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differential equation;

h//(x) + %h’(x) = -(—:2? Sll’lh(zh(x))’

c 2x
h(x) ~ /; exp (—?) asx — o0o.

Finally, we mention a beautiful formula:
o

/ xIn(x) (1 - f(x)*) dx = % + %ln(Z) — 31n(4),
0

where 4 is Glaisher’s constant [2.15]. Conceivably, ¢ and ¢
e Ais C y, ¢y ¢, may someday be related
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5.23 Monomer-Dimer Constants

Let L be a graph [5.6]. A dimer consists of two adjacent vertices of L and the (non-
oriented) bond connecting them. A dimer arrangement is a collection of disjoint
dimers on L. Uncovered vertices are called monomers, so dimer arrangements are
also known as monomer-dimer coverings. We will discuss such coverings only briefly
at the beginning of the next section.

A dimer covering is a dimer arrangement whose union contains all the vertices of

L. Dimer coverings and the closely-related topic of tilings will occupy the remainder
of this essay. ’

5.23.1 2D Domino Tilings

Let a, denote the number of distinct monomer-dimer coverings of an n x n square
lattice L and N = n?; thena; = 1,a, = 7, a3 = 131, a4 = 10012 [1,2], and asymp-
totically [3-6]

1
A= lim a =1.940215351... = (3.764435608 .. )}
n—o0

No ‘exact expression for the constant 4 is known. Baxter’s approach for estimating
A was based on the corner transfer matrix variational approach, which also played a
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role in [5.12]. A natural way for physicists to discuss the monomer-dimer prgbier;l hxs
to associate an activity z with each dimer; 4 thus correspon.ds to the case z =1 1 €
mean number p of dimers per vertex is 0 if z = 0 and 1/2 if z = 00; When z [—Jnl:kp
is 0.3190615546 . . . , for which again there is no closed-form expression [31- y i fi
other lattice models (see [5.12], [5.18], and [5.22]), monomer-dimer systems do no
nsition [7]. o

han:nIl’;?tS;g 2:1,, is entix}alent to counting (not necessari?y perfect) matchm(gi? ﬁ}in L1;
that is, to counting independent sets of edges in'L.'Thls is relgted to theK cu
problem of computing permanents of certain binary 1n.01de.nce matnce‘s [8—'14].1 enil(;r;
Randall & Sinclair [15] gave a randomized polynorr.nal-tlme approxgnatxon abgor.l "
for computing the number of monomer-dimer coverings of L, a§sum1ng P tc? e ;ive .

Let us turn our attention henceforth to the zero monomer densxty. cas§, tha:i s, zd = 0.
If b, is the number of distinct dimer coverings of L, then b, = 0 if # is odd an

n/2 nj2

i km
N/2 Z_E_. 2 )
b, = 2V Hn(cos n+1+cos .

j=t k=1

if n is even. This exact expression is due to Kastelyn [16] and Fisher & Temperley
[17,18]. Further,

nn
im . /ln 4 + 2 cos(f) + 2 cos(p)] df dy

n even nirx

= 0.2915609040.. .;

1l

1 Q

that is,

im b7 A — (1.7916228120.. )},
B = nll)rgob,{' = exp (;t—) = 1.3385151519... = (1.7 )
n even
where G is Catalan’s constant [1.7]. This is a remarkable solution, in grz'lph ';h‘?oreltlc
terms, of the problem of counting perfect matchings on the square la'ftl.ce. tis a;< sz
an answer to the following question: What is the number of ways of-" tiling an n xn
chessboard with 2 x 1 or 1 x 2 dominoes? See [19-26] for fnore detalls._The. cor;szzr;
B2 is called § in [3.10] and appgars in [1.8] too; the expression 4G/ arises 1n [5.22),
in [5.6], and 8G/x* in [7.7]. '
G/g_f vl&z(iga:;)l £151e6]s’q?1are lat/tice arc[)und to form a torus, the coupts b, differ some‘;
what, but the limiting constant B remains the same [16,27]. If, 1nsteafi, vzfle aSSUtl:; ;
the chessboard to be shaped like an Aztec diamond [28], then the associate cortl,s ;
B =24 —1.189... <1.338... =5 Hence, even though the square chess oil;e
has slightly less area than the diamond chessboard, the former posses'sefslmany m
domino tilings [29]. Lattice boundary effects are thus seen to be nontrivial.

b ey nog, mmTes

e .
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5.23.2 Lozenges and Bibones

g )

nn
2 _ oy W 1
C __nl_l)rgoc,, = exp —S—Tﬁ//lnB +2 cos(6) +2 cos(p) + 2 cos(6 + ¢)] dody

- -

= 1.3813564445 .. ..

This constant is called 8 in [3.10] and can be expressed by other formulas too. It

characterizes lozenge tilings on a chessboard with trian isfvi s
- gular cells satis
boundary conditions. See [33-38] as well. : fying periodic

If there is no wraparound, then the sequence [39]

emerges, and' a ‘diﬁ‘erent growth constant 3+/3/4 applies. We have assumed that the
hexagonal grid is center-symmetric with sides n, n, and n (i.e., the simplest possible
bﬁ)ugdary conditions). The sequence further enumerates plane partitions contained
within an n x n x n box [40,41].

gu 1

, i ' % _ 1 r
D ._nlggod,, = exp gﬁ//1n[6+2005(9)+2005(<p)+200s(9+<p)] dé dy

= 2.3565273533....

The expression 4 In(D) bears close similarity to a constant In(6) + H described in
[5.22]. It also characterizes bibone tilings on a chessboard with hexagonal cells satis-

fying periodic boundary conditions. The case of no wr
. aparound [1
meies oo paround [1,44,45] apparently

5.23.3 3D Domino Tilings

Let A, 'denote3 the number of distinct dimer coverings of an n x n x n cubic lattice
‘L and N = n°. Then h, = 0 if n is odd, , = 9, and hs = 5051532105 [46,47]. An
important unsolved problem in solid-state chemistry is the estimation of

1
nll)rgo hy = exp(L)
neven

or, equivalently,

1
A= lim — In(h,).
e N
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Hammersley [48] proved that A exists and A > 0.29156. Lower bounds were improved
by Fisher [49] to 0.30187, Hammersley [50, 51] to 0.418347, and Priezzhev [52,53] to
0.419989. In a review of [54], Minc pointed out that a conjecture due to Schrijver &
Valiant on lower bounds for permanents of certain binary matrices would imply that
A > 0.44007584. Schrijver [55] proved this conjecture, and this is the best-known result.

Fowler & Rushbrooke [56] gave an upper bound of 0.54931 for A over sixty years
ago (assuming A exists). Upper bounds have been improved by Minc [8,57,58] to
0.5482709, Ciucu [59] to 0.463107, and Lundow [60] to 0.457547.

A sequence of nonrigorous numerical estimates by Nagle [30], Gaunt [31], and
Beichl & Sullivan [61] has culminated with A = 0.4466. ... As with a,, computing
h, for even small values of n is hard and matrix permanent approximation schemes
offer the only hope. The field is treacherously difficult: Conjectured exact asymptotic
formulas for 4, in [62,63] are incorrect.

A related topic is the number, k,, of dimer coverings of the n-dimensional unit
cube, whose 2" vertices consist of all n-tuples drawn from {0, 1} [47,64]. The term
k¢ = 16332454526976 was computed independently by Lundow [46] and Weidemann
[65]. In this case, we know the asymptotic behavior of k, rather precisely [44, 65, 66]:

lim lkf,‘“” =L _ 03678794411 ..,
e

n—>oon

where e is the natural logarithmic base [1.3].
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