
On K. F. Roth’s ‘On Certain Sets of Integers’

David J. Wilson
Advised by Prof. D. Zeilberger

Masters Essay



Contents

1 Motivation and Aim 1

2 On Certain Sets of Integers 2
2.1 Main Result From On Certain Sets of Integers . . . . . . . . . . . . . 2
2.2 Key Definitions (Section 1) . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Obvious Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Some Number Theory (Section 3) . . . . . . . . . . . . . . . . . . . . 7
2.5 Adaptated Hardy-Littlewood Method (Section 4) . . . . . . . . . . . 13
2.6 Deducing Asymptotic behaviour of a(x) (Section 5) . . . . . . . . . . 33
2.7 Summary of Roth’s Method . . . . . . . . . . . . . . . . . . . . . . . 42

3 Other Methods of Proof 45
3.1 Convoluting with a Measure on a Three-term Arithmetic Progression 45

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Improving Bounds by Considering Bohr Sets . . . . . . . . . . . . . . 50
3.3 Lower Bound for A(x) [1] . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Generalisations of Roth’s Method 54
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Chapter 1

Motivation and Aim

In this Masters Essay we shall inspect Roth’s seminal paper on three-term arithmetic
progressions in the integers, [12]. The aim is to fully understand the original proof,
which is rather harsh in its brevity. All of the steps that Roth did not expand on
will be re-proven independently and described with due clarity. This will all be done
with the aid of symbolic computation and empirical evidence, and sample code for
Maple is given in Appendix A.

We will follow Roth’s exact method and have thus split his paper into six sections
for ease of reference. If the reader would like a general feel of the proof they may
read Section 2.7 which gives an overview of Roth’s Method.

We will also look at methods of proof other than that which Roth employed, and
the bounds that they provide. Finally, some generalizations of Roth’s Theorem are
given including Szeméredi’s Theorem, the Green–Tao Theorem and the Erdős-Turán
Conjecture.
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Chapter 2

“On Certain Sets of Integers”

2.1 Main Result From “On Certain Sets of Inte-

gers” [12]

In [12] Roth looked at three term arithmetic sequences in certain sets of integers.
He considered a function, called A(x), that was the maximum size of a subset of
{1, 2, . . . , x} that avoided three term arithmetic sequences. Having already proven
the main result:

A(x)

x
−→ 0 as x −→∞

Roth used the paper to proved a tighter aymptotic and so proved the following:

Theorem 1 (Roth’s Theorem).

A(x)

x
= O

(
1

log log x

)
1 (2.1)

2.2 Key Definitions (Section 1)

Notation 2. Throughout the paper a small Latin letter will denote a positive integer,
unless otherwise stated. The main exceptions are h, which denotes any integer,
and c1, c2, . . ., which denote absolute constants (and any constants implied from O
notation are also inherently absolute).

1The standard O notation is that f(y) = O(g(y)) if and only if there exists an absolute constant
M such that for all sufficiently large y, |f(y)| ≤M · |g(y)|.
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2: On Certain Sets of Integers

We start with some basic definitions.

Definition 3. For any positive integer x, define the set

〈x〉 := {1, 2, . . . x}

Definition 4. A subset {u1, u2, . . .} of the natural numbers N will be called an A-set
if no three elements are in arithmetic progression. If such a progression did exist,
there would exist positive integers a and d and indices j,k,l such that

uj = a; uk = a+ d; ul = a+ 2d;

and so they would satisfy the equation uj + uk = ul. Indeed, if there exists a non-
trivial solution of this equation (where j,k and l are distinct) then setting a to be uj
and d to be uk − uj would exhibit an arithmetic progression of length three.

We see therefore that a set is aA-set if and only if the only solution to uj+uk = 2ul
is when j = k = l. Note, that if any two of j,k and l are equal then necessarily the
third must also be identical, which simplifies matters.

Definition 5. We now define the function A(x) as follows:

A(x) := max {|S| | S ⊆ 〈x〉, S an A-set} .

We also define the function a(x) as follows:

a(x) :=
A(x)

x
.

We can therefore restate the main aim of the paper, Equation (2.1), as

a(x) = O

(
1

log log x

)
. (2.2)

2.3 ‘Obvious’ Remarks (Section 2)

The first of Roth’s obvious remarks is that the function A(x) is equal to the greatest
number of integers that can be selected from x consecutive terms of an arithmetic
sequence that forms an A-set. We prove this in the following lemma.

Lemma 6. A(x) is equal to the greatest number of integers that can be selected from
x consecutive terms of an arithmetic progression to form an A-set.
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2: On Certain Sets of Integers

Proof. This is easy to see as x consecutive terms in arithmetic progression:

A1 = {a+ b · u1, a+ b · u2, . . . , a+ b · ux}

correspond to x consecutive integers

A2 = {u1, u2, . . . , ux}

and as (a+b ·uk)−(a+b ·ul) = b ·(uk−ul) we see that a three term sequence in A1 is
arithmetic if and only if the corresponding three term sequence in A2 is arithmetic.

Now we state a series of inequalities involving the A(x) and a(x) functions.

Lemma 7. For any two positive integers x and y we have that

A(x+ y) ≤ A(x) + A(y)

Proof. First we recall the definition of A(x+ y):

A(x+ y) = max {|S| | S ⊂ 〈x+ y〉, S a A-set}

and similarly
A(x) = max {|S| | S ⊂ 〈x〉, S a A-set} .

We now apply Lemma 6 to alter the definition of A(y) to the following:

A(y) = max {|S| | S ⊂ {x+ 1, x+ 2, . . . , x+ y}, S a A-set} . (2.3)

Let S1 ⊂ 〈x+y〉 be an A-set such that |S1| = A(x+y). Now a subset of an A-set
is definitely still an A-set (if a set contains no three-term arithmetic sequences, a
subset cannot contain any either). We therefore see that S1 ∩ 〈x〉 is an A-set and a
subset of 〈x〉. To that extent, we have

|S1 ∩ 〈x〉| ≤ A(x). (2.4)

Similarly, we have S1 ∩ {x + 1, . . . , x + y} also an A-set and a subset of {x +
1, . . . , x+ y}. From the definition of A(y) given in (2.3) we see

|S1 ∩ {x+ 1, . . . , x+ y}| ≤ A(y). (2.5)

Finally, combining (2.4) and (2.5) we get

A(x+ y) = |S1|
= |S1 ∩ 〈x〉|+ |S1 ∩ {x+ 1, . . . , x+ y}|
≤ A(x) + A(y),

as required.
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2: On Certain Sets of Integers

As easy consequences to Lemma 7 we get the following corollaries.

Corollary 8. For any positive integers x and y we have

A(x · y) ≤ x · A(y).

Proof. From Lemma 7 we have

A(x · y) ≤ A(y) + A((x− 1) · y),

and repeating x times we see

A(x · y) ≤ x · A(y).

Corollary 9. For any positive integers x and y we have

A(x) ≤ A

(([
x

y

]
+ 1

)
· y
)
≤ x+ y

y
· A(y).

Proof. The first inequality follows as for any positive y we have

x ≤
([

x

y

]
+ 1

)
· y

and the function A is non-decreasing.
The second inequality is a direct consequence from Corollary 8, noting that([

x

y

]
+ 1

)
≤ x+ y

y
.

We now use these corollaries to obtain some results regarding the function a(x).
Namely:

Corollary 10. For any positive integers x and y we have

a(x · y) ≤ a(y).

Proof. We simply utilize the definition of the function a(x) and Corollary 8:

a(x · y) =
A(x · y)

x · y
≤ x · A(y)

x · y
=
A(y)

y
= a(y).

5



2: On Certain Sets of Integers

Corollary 11. For any positive integers x and y we have:

a(x) ≤
(

1 +
y

x

)
· a(y).

Proof. We use the definition of a(x) along with Corollary 9:

a(x) =
A(x)

x
≤ 1

x
·
(
x+ y

y
· A(y)

)
=

(
1

y
+

1

x

)
· A(y)

=
(

1 +
y

x

)
· A(y)

y
=
(

1 +
y

x

)
· a(y).

Finally, we have a truly trivial identity.

Lemma 12. For any positive integer x we have

1

x
≤ a(x) ≤ 1.

Proof. From the definition of A(x) we see that A(x) is the size of a non-empty subset
of 〈x〉 and so

1 ≤ A(x) ≤ x.

But, by definition, A(x) = x · a(x) and so

1 ≤ x · a(x) ≤ x

which give us (on division by positive x) our desired result:

1

x
≤ a(x) ≤ 1.

6



2: On Certain Sets of Integers

2.4 Some Number Theory (Section 3)

For this section we now fix {u1, u2, . . . , uU} to be a maximal A-set in 〈M〉, so that
A(M) = U .

Definition 13. For any number θ define, for notational purposes, the function

e(θ) = e2πiθ. (2.6)

Denote by S the following exponential sum, where α is an arbitrary real number.

S =
U∑
k=1

e(α · uk) =
U∑
k=1

e2πiαuk .

We now use some basic number theory to show that for any α, with M fixed, we
can find h, q and β such that

α =
h

q
+ β (2.7)

and the constants satisfy the following conditions:

(h, q) = 1, (2.8)

q ≤
√
M, (2.9)

q · |β| ≤ 1√
M
. (2.10)

This is the Dirichlet Approximation Theorem, restated as follows:

Theorem 14. [15] Let α be a positive real number (α negative follows immediately)

and M̂ a positive integer. Then there exists an integer q and an integer h with
0 < q < M̂ , for which

− 1

M̂
< q · α− h < 1

M̂
. (2.11)

Proof. This result follows, perhaps surprisingly, from the Pigeonhole Principle. That
is, the fact that if you have l pigeonholes and strictly more than l pigeons, then at
least one pigeonhole must contain more than one pigeon.

We consider the following numbers

αi = (i · α)− bi · αc, i = 0, 1, 2, . . . , M̂ (2.12)

and note that each αi (being the non-integral part of iα) is contained in the interval
[0, 1).

7



2: On Certain Sets of Integers

We now split [0, 1) into M̂ subintervals[
r

M̂
,
r + 1

M̂

)
r = 0, 1, . . . , M̂ − 1.

We now have M̂ subintervals and M̂ + 1 numbers, so by the pigeonhole principle
there exists at least one subinterval containing two of the numbers, say αk and αj.

We therefore know that − 1cM < αk − αj <
1cM . Then we see that by using the

definition of the αi we have

− 1

M̂
< (k − j) · α− (bk · αc − bj · αc)

Repeating with αj − αk and denoting (bk · αc − bj · αc) by H we get

− 1

M̂
< (k − j) · α−H <

1

M̂

− 1

M̂
< (j − k) · α +H <

1

M̂

Now to finish the proof, if k > j put q = k − j and h = H. If k < j we set
q = j − k and h = −H. It follows from our construction that these choices satisfy
the needed conditions.

Let m < M , and we now define

S ′ =
a(m)

q
·

(
q∑
r=1

e

(
r · h
q

))
·

(
M∑
n=1

e (β · n)

)
which obviously depends on m (and also M and α which we assume are fixed).

Lemma 15. If q > 1 then S ′ = 0.

Proof. If q > 1 then we look at the factor(
q∑
r=1

e

(
r · h
q

))
=

(
q∑
r=1

e2·π·i·( r·hq )

)

=

(
q∑
r=1

(
e2·π·i·( rq )

)h)
Now as (h, q) = 1 we see that r · h modulo q produces all the integers from 0 to

q − 1 and so the sum (as q 6= 1) gives us 0.

8



2: On Certain Sets of Integers

For the rest of this section we aim to prove the following theorem, which will be
essential later in our method.

Theorem 16. The following inequality holds:

|S − S ′| < M · a(m)− U +O
(
m ·
√
M
)

(2.13)

(Recall that U is the size of our A-set within 〈M〉 and that m < M).

We prove this through a series of lemmata.

Lemma 17. We can rewrite S as:

S =
1

m · q
·

q∑
r=1

M∑
n=1

∑
n≤uk<n+m·q
uk≡r(modq)

e(α · uk) +O(m · q) (2.14)

Proof. First we note that for a fixed uk, fixed m and fixed q then there are precisely
m · q integers n satisfying

n ≤ uk < n+m · q,
namely, the set {uk − (m · q) + 1, uk − (m · q) + 2, . . . , uk − 1, uk}.

Also if
m · q ≤ uk < M −m · q

then it is clear that these values of n must lie in [1,M ].
Now, if m ·q ≤ uk < M−m ·q then from above the coefficient of e(αuk) simplifies

to mq
mq

, that is, 1. This gives us the summation of exponential terms in Equation

(2.14).
However, if uk < mq or M −mq ≤ uk ≤M then there are at most 2mq terms to

consider, which is compensated for, by the O(mq) term.

Now we take (2.14) and rewrite it in to involve S ′.

Lemma 18. We will show that

S = S ′ −

(
1

mq

q∑
r=1

e

(
rh

q

) M∑
n=1

e(βn)D(n,m, q, r)

)
(2.15)

+O(mq) +O(mqM |β|),

where D(n,m, q, r) ≥ 0.

9



2: On Certain Sets of Integers

Proof. We begin by looking at the inner sum of the representation of S in (2.14). By
the Dirichlet Box Principle in (2.7) we have

e(αuk) = e

((
h

q
+ β

)
uk

)
= e

(
h

q
uk

)
e(βuk).

But we can now use the fact that all the terms in this inner sum obey

uk ≡ r mod q

to rewrite uk as Qq + r so that this becomes

e(αuk) = e

(
h(Qq + r)

q

)
e(βuk)

= e(hQ)e

(
hr

q

)
e(βuk).

We now write uk as n+ η where 0 ≤ η < mq (as we are only dealing with terms
such that n ≤ uk < n+mq)to simplify further:

e(αuk) = e(hQ)e

(
hr

q

)
e(β(n+ η))

= e(hQ)e

(
hr

q

)
e(βn)e(βη)

= e

(
hr

q

)
· e (βn) · (e(hQ) · e(βη))

≤ e

(
hr

q

)
· e (βn) · (1 + hQ|β|η)

= e

(
hr

q

)
· e (βn) +O(mq|β|).

We know that at most the number of terms in this inner section is A(m) (as
A(m) also applies to arithmetic sequences). We can write this number as A(m) −
D(n,m, q, r) where D ≥ 0.

We now replace each term in (2.14) with the above representation and so we can

10



2: On Certain Sets of Integers

rewrite S as follows:

S =
1

mq

q∑
r=1

M∑
n=1

∑
n≤uk<n+mq
uk≡r mod q

e(αuk) +O(mq)

=
1

mq

q∑
r=1

M∑
n=1

∑
n≤uk<n+mq
uk≡r mod q

e

(
rh

q

)
e(βn) +O(mq|β|) +O(mq)

=
1

mq

q∑
r=1

e

(
rh

q

) M∑
n=1

(A(m)−D(n,m, q, r)) (e(βn) +O(mq|β|))

+O(mq)

=

(
A(m)

m
· 1

q

q∑
r=1

e

(
rh

q

) M∑
n=1

e(βn) +O(mqM |β|)

)

−

(
1

mq

q∑
r=1

e

(
rh

q

) M∑
n=1

e(βn)D(n,m, q, r) +O(mqM |β|)

)
+O(mq)

= S ′ −

(
1

mq

q∑
r=1

e

(
rh

q

) M∑
n=1

e(βn)D(n,m, q, r)

)
+O(mq) +O(mqM |β|)

as required.

We are now in a position to prove Theorem 16:

Theorem 19 (Referred to earlier as Theorem 16). The following inequality holds:

|S − S ′| < M · a(m)− U +O
(
m ·
√
M
)

(2.16)

(Recall that U is the size of our A-set within 〈M〉 and m < M).

Proof. We start by setting β and h to be zero to make some estimations. This is
allowed as we have not yet used that (h, q) = 1. We are first going to estimate

q∑
r=1

M∑
n=1

D(n,m, q, r).

11



2: On Certain Sets of Integers

To do this we substitute β = 0 and h = 0 back into (2.15) to get

S = S ′ − 1

mq

q∑
r=1

e(0)
M∑
n=1

e(0)D(n,m, q, r) +O(mq) +O(0)

= S ′ − 1

mq

q∑
r=1

M∑
n=1

D(n,m, q, r) +O(mq). (2.17)

But now, if β and h are 0, then so is α and so

S =
U∑
k=1

1 = U,

and

S ′ =
a(m)

q

(
q∑
r=1

e(0)

)(
M∑
n=1

e(0)

)

=
Ma(m)q

q
= Ma(m)

We can then substitute back into (2.17) to get

U = Ma(m)− 1

mq

q∑
r=1

M∑
n=1

D(n,m, q, r) +O(mq)

and so when h and β are zero we have:

q∑
r=1

M∑
n=1

D(n,m, q, r) = mMqa(m)− Umq +O(mq). (2.18)

We are now going to use (2.15) and (2.18) to show (2.16). As α is positive, we
can estimate as follows:

|S − S ′| =

∣∣∣∣∣−
(

1

mq

q∑
r=1

e

(
rh

q

) M∑
n=1

e(βn)D(n,m, q, r)

)

+O(mq) +O(mqM |β|)
∣∣∣∣

<
1

mq
(mMqa(m)− Umq) +O(mq) +O(mqM |β|)

= Ma(m)− U +O(mq) +O(Mmq|β|).

12



2: On Certain Sets of Integers

and we use the fact that q ≤M
1
2 and q|β| ≤M− 1

2 and get

|S − S ′| < Ma(m)− U +O
(
mM

1
2

)
+O

(
MmM− 1

2

)
= Ma(m)− U +O

(
mM

1
2

)
which is what was required.

This theorem will be fundamental to our application of the Hardy-Littlewood
Method, which is covered in the following section.

2.5 Adaptated Hardy-Littlewood Method (Section

4)

Let m now be an even integer and so we also have m4 being even, and can find N
such that 2N = m4.

Let u1, . . . , uU be a maximal A-set from {1, . . . .2N} so we have

U = A(2N) = 2Na(2N).

Now let 2v1, 2v2, . . . , 2vV be the even integers among {u1, u2, . . . , uU}.
Lemma 20. We show that

U ≤ 2Na(m)

and
V ≤ A(N) ≤ Na(m).

Proof. We use the fact that a(xy) ≤ a(y) to get

U = 2Na(2N) = 2Na(m4) ≤ 2Na(m).

Now the V numbers 2v1, . . . , 2vV are selected from N possible even integers be-
tween 1 and 2N and so by definition

V ≤ A(N) = Na(N)

but we know that N = m4

2
which is larger than m for all m ≥ 2, and so

V ≤ Na

(
m4

2

)
≤ Na(m).

13



2: On Certain Sets of Integers

Lemma 21. We now show that

V ≥ A(2N)− A(N) ≥ 2Na(2N)−Na(m).

Proof. The number of odd integers among the uk certainly can’t exceed A(N) (by
the equivalence of A under arithmetic progressions) and so

A(2N) ≤ max even + max odd = V + A(N) ≤ V +Na(m).

We can therefore conclude

V ≥ A(2N)− A(N)

and
U = A(2N) ≤ 2Na(2N)

and so
V ≥ 2Na(2N)− A(N)

and
V ≥ A(2N)−Na(m) = 2Na(2N)−Na(m)

Definition 22. We define the following key functions:

f1(α) =
U∑
k=1

e(αuk)

f2(α) =
V∑
k=1

e(αvk)

F1(α) = a(m)
2N∑
n=1

e(αn)

F2(α) = a(m)
N∑
n=1

e(αn).

These are analogues of Fourier Transforms of indicator functions on the ui and vi.
We want to estimate these functions so that later we can estimate integrals involving
f1(α), f2(α), F1(α) and F2(α).

14



2: On Certain Sets of Integers

Lemma 23. Our first estimate is that all the functions are of a similar order:

f1(α) = O(N · a(m));

f2(α) = O(N · a(m));

F1(α) = O(N · a(m));

F2(α) = O(N · a(m)).

Proof. We use the fact that U ≤ 2Na(m) and V ≤ Na(m) to see that for r = 1, 2
we have

|fr(α)|, |Fr(α)| ≤ 2 ·N · a(m) ·max
k,n
{e(αuk), e(αn}

= 2 ·N · a(m) · constant

so that
fr(α), Fr(α) = O(N · a(m)).

Lemma 24. We now want to estimate the difference between these functions, show-
ing that

f1(α)− F1(α) = O
(
N · {a(m)− a(2N)}+N

3
4

)
;

f2(α)− F2(α) = O
(
N · {a(m)− a(2N)}+N

3
4

)
.

Proof. We split into two cases, depending on whether q is equal to 1 or not. This
splitting is motivated by q’s effect on the exponential sum S ′.

15



2: On Certain Sets of Integers

Case 1: q = 1

We let M = 2N and consider f1(α) and F1(α). We know that U = A(2N) = A(M)
and so f1(α) = S. We also have the following for F1(α):

F1(α) = a(m) · e(h) ·
2N∑
n=1

e(βn)

= a(m) ·
M∑
n=1

e(h+ βn)

= a(m) ·
M∑
n=1

e(nh+ βn)

= a(m) ·
M∑
n=1

e(αn) = S ′

as n and h are integers so e(nh) = e(h) and q = 1 so α = h+ β.
We now consider (2.16) and find

|S − S ′| < 2Na(m)− U +O
(
m(2N)

1
2

)
= 2Na(m)− U +O

(
mN

1
2

)
= 2Na(m)− 2Na(2N) +O

(
mN

1
2

)
.

But then

f1(α)− F1(α) = ±|S − S ′|

= O
(

2Na(m)− 2Na(2N) +mN
1
2

)
= O

(
N {a(m)− a(2N)}+N

3
4

)
,

as required. Note that we use the fact that m4 = 2N and so m = O
(
N

1
4

)
.

We now need to consider f2(α) − F2(α), and to do this we repeat much of the
same argument as for f1(α)− F1(α), but now set M = N .

Then, as q = 1 we have

S ′ = a(m)
M∑
n=1

e(αn) = a(m)
N∑
n=1

e(αn) = F2(α).

16



2: On Certain Sets of Integers

Now throughout Section 2.4 we assumed that S was defined on a maximal A-
set. But in fact S need not be maximal for Theorem 16 to hold (although it most
definitely needs to be an A-set); by the same argument as Theorem 16, if we set

S =
V∑
k=1

e(αvk); (2.19)

then we have the bound

|S − S ′| = O
(
M · a(m)− V +O

(
m ·
√
M
))

.

But then we have

f2(α)− F2(α) = ±|S − S ′|

= O
(
M · a(m)− V +O

(
m ·
√
M
))

= O
(
N · a(m)− V +O

(
m ·
√
N
))

.

Now once again we know that m4 = 2N so that m = O
(
N

1
4

)
, and from Lemma

21 we have
V ≥ 2Na(2N)−Na(m).

And so with some simple manipulation we have

f2(α)− F2(α) = O
(
Na(m)− {2Na(2N)−Na(m)}+O

(
N

3
4

))
= O

(
2Na(m)− 2Na(2N) +O

(
N

3
4

))
= O

(
N {a(m)− a(2N)}+N

3
4

)
;

which was exactly what was needed.
Therefore the Lemma holds if in the Dirichlet expansion of α we can choose q = 1.

Case 2: q 6= 1

Before starting the proof for this case we need the following two lemmata and Jor-
dan’s Inequality:

17



2: On Certain Sets of Integers

Lemma 25. [8] For any α and M ,

M∑
n=1

e(αn) = O

(
1

‖α‖

)
,

where ‖α‖ denotes the distance of α from the nearest integer

Proof. We first note that

e(αn)e(αm) = e(α(m+ n))

so the left hand side is the sum of a geometric series. We can therefore rewrite it in
a closed form:

M∑
n=1

e(αn) =
e(αM)− 1

e(α)− 1
e(α). (2.20)

We wish to show that in fact for all α and M we have:∣∣∣∣∣
M∑
n=1

e(αn)

∣∣∣∣∣ ≤ min

{
M,

1

2‖α‖

}
. (2.21)

But both sides of (2.21) are even and periodic with respect to α, with period 1.
Therefore it is enough to prove the result true for 0 ≤ α ≤ 1

2
.

We first note that for α ∈
[
0, 1

2

]
we have

|e(α)− 1| = 2π sin(πα)

≥ 4α (2.22)

= 4‖α‖ (2.23)

where (2.23) follows from the fact that 0 ≤ α ≤ 1
2

and so ‖α‖ = α. To obtain (2.22)
we need Jordan’s Inequality:

Lemma 26 (Jordan’s Inequality). For any x ∈ [0, π
2
] the following inequality holds:

2

π
x ≤ sin(x) ≤ x.

Proof. [10] It is sufficient to show that sin(x)
x

decreases as x increases from 0 to π
2
; as

we know that

lim
x→0

sin(x)

x
= 1;

sin
(
π
2

)
π
2

=
2

π
.

18



2: On Certain Sets of Integers

We do this by showing the derivative of sin(x)
x

is negative on the interval (0, π
2
].

But
d

dx

(
sin(x)

x

)
=
x cos(x)− sin(x)

x2

and so it remains to show x cos(x)− sin(x) is non-positive.
But we first note that at 0 we have

0 · cos(0)− sin(0) = 0

and
d

dx
(x cos(x)− sin(x)) = cos(x)− x sin(x)− cos(x) = −x sin(x)

which is non-positive on our interval. Therefore x cos(x) − sin(x) ≤ 0 and so the
inequality is proven.

Returning to our proof, we let 1
2M
≤ α ≤ 1

2
. Applying (2.23) to (2.20) we obtain:∣∣∣∣∣

M∑
n=1

e(αn)

∣∣∣∣∣ =
|e(αM) = 1|
|e(α)− 1|

|e(α)|

≤ 2

4‖α‖
· 1 =

1

2‖α‖
.

Now assume that 0 ≤ α ≤ 1
2M

, and apply the trivial bound to the sum (applying
the triangle inequality): ∣∣∣∣∣

M∑
n=1

e(αn)

∣∣∣∣∣ ≤
M∑
n=1

|e(αn)| = M.

Finally we know that

0 < ‖α‖ < 1, so
1

‖α‖
> 1

and so ∣∣∣∣∣
M∑
n=1

e(αn)

∣∣∣∣∣ ≤ min

(
M,

1

2‖α‖

)
≤ min

(
M

‖α‖
,

1

2‖α‖

)
,

19



2: On Certain Sets of Integers

and so we indeed have
M∑
n=1

e(αn) = O

(
1

‖α‖

)
.

Lemma 27. If it is impossible to choose q = 1 in the Dirichlet Box Principle, then
‖α‖ > 1√

M
.

Proof. We start by noting that

α =
h

q
+ β

and so if q 6= 1 we must have

‖α‖ =
k

q
± β

where 1 < |k| ≤ |h|.
We also know from the Dirichlet Approximation Theorem that

q ≤
√
M

and so

‖α‖ ≥ k√
M
± β.

But we also know that q|β| ≤ 1√
M

and |q > 1| so

‖α‖ ≥ k − 1√
M

>
1√
M
.

Now we have the previous lemmata, we can prove the result for q 6= 1.
Combining Lemma 25 and Lemma 27 we have that if q 6= 1:

F1(α) =
M∑
n=1

e(αn) = O
(√

M
)
.

We also know that if q > 1 we must have S ′ = 0 (from Lemma 15) and so applying
Theorem 16 (with M = 2N) we get

f1(α) = ±

∣∣∣∣∣
U∑
k=1

e(αuk)

∣∣∣∣∣ = ±|S| < M · a(m)− U +O
(
m ·
√
M
)
.
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2: On Certain Sets of Integers

and so
f1(α) = O

(
2Na(m)− 2Na(2N) +N

3
4

)
.

Now we use a crude estimate by the triangle inequality

|f1(α)− F1(α)| ≤ |f1(α)|+ |F1(α)|

≤ O
(
N {a(m)− a(2N}+N

3
4

)
+O

(√
N
)
.

But we can easily compensate for the O
(√

N
)

by the N
3
4 in the first asymptotic,

and so we obtain

f1(α)− F1(α) = O
(
N {a(m)− a(2N)}+N

3
4

)
and our first case for q 6= 1 is proven.

For f2(α)− F2(α) we apply Lemma 25 and Lemma 27 to F2(α) to get

F2(α) = O
(√

N
)
. (2.24)

We then apply Theorem 16 as above (but with M = N) to get

f2(α) = ±

∣∣∣∣∣
V∑
k=1

e(αvk)

∣∣∣∣∣ = ±|S| < Na(m)− V +O(m
√
N).

We once again use the fact that m = O
(
N

1
4

)
and Lemma 21 to simplify this to

f2(α) = O
(

2Na(m)− 2Na(2N) +N
3
4

)
.

Now we use the triangle inequality as before to get

|f2(α)− F2(α)| ≤ |f2(α)|+ |F2(α)|

≤ O
(
N {a(m)− a(2N}+N

3
4

)
+O

(√
N
)
.

Therefore the Lemma is true when q 6= 1.
We have hence shown that for any α we have:

f1(α)− F1(α) = O
(
N · {a(m)− a(2N)}+N

3
4

)
;

f2(α)− F2(α) = O
(
N · {a(m)− a(2N)}+N

3
4

)
.
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We now note the following inequality from the previous results.

Lemma 28. For any α we have

f1(α)f2
2(−α)− F1(α)F2

2(−α) = O
(
{Na(m)}2

(
N {a(m)− a(2N)}+N

3
4

))
.

Proof. We first note the following simple application of the triangle inequality:∣∣f1 · f2
2 − F1 · F2

2
∣∣ =

∣∣f1 ·
(
f2

2 − F2
2
)

+ F2
2 · (f1 − F1)

∣∣
≤ |f1 · (f2 + F2) · (f2 − F2)|+

∣∣F2
2 · (f1 − F1)

∣∣ .
We now apply this inequality with α and −α:

|f1(α)f 2
2 (−α)− F1(α)F 2

2 (−α)| ≤ |f1(α)| · |f2(−α) + F2(−α)| · |f2(−α)− F2(−α)|
+|F2(−α)|2 · |f1(α)− F1(α)|.

We can apply Lemma 23 and Lemma 24 to bound the required quantity:

f1(α)f 2
2 (−α)− F1(α)F 2

2 (−α) = O(Na(m)) · 2O(Na(m)) ·O
(
N(a(m)− a(2N)) +N

3
4

)
+ O(Na(m))2 ·O

(
N(a(m)− a(2N)) +N

3
4

)
.

Simplifying by using linearity and product rules of asymptotics we obtain:

f1(α)f 2
2 (−α)− F1(α)F 2

2 (−α) = O
(

2(Na(m))2 ·
(
N(a(m)− a(2N)) +N

3
4

))
= O

(
(Na(m))2

{
N(a(m)− a(2N)) +N

3
4

})
as required.

Lemma 29. If 0 < η < α < 1− η then we have

f1(α) = O

(
a(m)

η
+N {a(m)− a(2N)}+N

3
4

)
. (2.25)

Proof. We start by using Lemma 24 to write for any α

f1(α) = F1(α) +O
(
N{a(m)− a(2N)}+N

3
4

)
.
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Therefore if we can show that for 0 < η < α < 1− η we have

F1(α) = O

(
a(m)

η

)
we will obtain (2.25).

But recalling the definition of F1(α) (given in Definition 22) we have

F1(α) = a(m)
2N∑
n=1

e(αn)

and appealing to Lemma 25 we can apply the following bound:∣∣∣∣∣
2N∑
n=1

e(αn)

∣∣∣∣∣ ≤ min

{
2N,

1

2‖α‖

}
(where ‖α‖ denotes the distance from α to the nearest integer).

But α ∈ (0, 1) and so ‖α‖ is either the distance from α to 0 or 1. But as 0 < η < α,
we know the distance from 0 to α is greater than η. Similarly, as α < 1− η < 1 we
know the distance from 1 to α is also greater than η.

Hence ‖α‖ > η and we obtain

|F1(α)| = a(m)

∣∣∣∣∣
2N∑
n=1

e(αn)

∣∣∣∣∣ ≤ a(m)

2‖α‖
<
a(m)

2η

which gives us for 0 < η < α < 1− η

F1(α) = O

(
a(m)

η

)
as required.

We are now ready to apply the Hardy-Littlewood Method. This will involve
restating a condition defining an A-set as a condition on an integral involving f1 and
f2. Recall from Definition 4 the fact that u1, u2, . . . , uU form an A-set implies that
uh = vk + vl if and only if k = l and uh = 2vk.
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Theorem 30 (The Hardy-Littlewood Method). The condition that uh = vk + vl if
and only if k = l and uh = 2vk can be expressed by∫ 1−η

−η
f1(α)f2

2(−α) dα = V ≤ Na(m). (2.26)

Proof. We now show the idea that shapes the Hardy-Littlewood Method: changing a
condition on the solutions of an equation into a condition on a circle integral. Then
we can work with the integral to prove the result regarding the equations.

Recall from Definition 22 that

f1(α) =
U∑
k=1

e(αuk) and f2(α) =
V∑
k=1

e(αvk)

and so our integral in question is∫ 1−η

−η

(
U∑
j=1

e(αuj)

)(
V∑
k=1

e(−αvk)

)(
V∑
l=1

e(−αvl)

)
dα

which, after simplification from the linearity of integration and basic exponential
laws of multiplication becomes

U∑
j=1

V∑
k=1

V∑
l=1

∫ 1−η

−η
e (α(uj − vk − vl)) dα.

Now we note that our function e is periodic with period 1 and so we can make
things a little simpler for ourselves and write the integrals as from 0 to 1 to end up
with

U∑
j=1

V∑
k=1

V∑
l=1

∫ 1

0

e (α(uj − vk − vl)) dα.

Now let us consider these integrals∫ 1

0

e (α(uj − vk − vl)) dα

and to do this let j, k, l be fixed integers. By the orthogonality of e (and the fact
that α is non-zero) we have∫ 1

0

e (α(uj − vk − vl)) dα =

{
1 uj − vk − vl = 0
0 o/wise
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and so this integral is non-zero if and only if uj = vk + vl.
We can therefore go back to our sum of integrals to write it as follows:

U∑
j=1

V∑
k=1

V∑
l=1

∫ 1

0

e (α(uj − vk − vl)) dα = |{j, k, l | uj = uk + ul}|

But for each k from 1 to V there exists a jk between 1 and U such that

ujk = 2uk

and so we have at least V integrals equal to 1 in the sum, and so

U∑
j=1

V∑
k=1

V∑
l=1

∫ 1

0

e (α(uj − vk − vl)) dα ≥ V.

But if this sum is exactly V then this means that these are the only solutions to
the equation uj = vk + vl, which is exactly the condition we wanted.

Conversely, if the only solutions to uj = vk + vl is when k = l then there are only
V non-zero integrals and so

U∑
j=1

V∑
k=1

V∑
l=1

∫ 1

0

e (α(uj − vk − vl)) dα = V.

Hence these two conditions are equivalent, and the noted inequality was proven
in Lemma 20.

We now suppose that η = η(m) satisfies the condition

0 < η <
1

2
. (2.27)

Lemma 31. Assuming (2.27) we have∫ 1−η

η

f1(α)f2
2(−α) dα = O

({
a(m)

η
+N (a(m)− a(2N)) +N

3
4

}
Na(m)

)
.

Proof. We first bound the absolute value of the integral like so:∣∣∣∣∫ 1−η

η

f1(α)f2
2(−α) dα

∣∣∣∣ ≤ ∣∣∣∣( max
α∈[η,1−η]

|f1(α)|
)∫ 1−η

η

f2
2(−α) dα

∣∣∣∣
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and use Lemma 29 that for 0 < η < α < 1− η

f1(α) = O

(
a(m)

η
+N(a(m)− a(2N)) +N

3
4

)
.

We are now going to look at the remaining integral and show that it is of order
O(Na(m)). We first bound as follows:∣∣∣∣∫ 1−η

η

f2
2(−α) dα

∣∣∣∣ ≤ ∣∣∣∣∫ 1−η

η

∣∣f2
2(−α)

∣∣ dα

∣∣∣∣
=

∣∣∣∣∫ η

1−η

∣∣f2
2(α)

∣∣ dα

∣∣∣∣ ≤ ∫ 1

0

∣∣f2
2(α)

∣∣ dα

because η, 1− η ∈ [0, 1] and |f2
2(α)| ≥ 0.

Now we only need to show ∫ 1

0

|f2
2(α)| dα = V

after which we apply Lemma 20 (in particular V ≤ Na(m)). Now recall from Defi-
nition 22 that

f2(α) =
V∑
k=1

e(αvk).

We now use the definition of the norm on complex numbers:

|f2(α)|2 = f2(α)f2(α)

and the linearity of conjugation to expand this as

|f2(α)|2 =

(
V∑
k=1

e(αvk)

)(
V∑
l=1

e(αvl)

)
.

But for any γ ∈ R we have e(γ) = e(−γ) and so we can simplify further

|f2(α)|2 =

(
V∑
k=1

e(αvk)

)(
V∑
l=1

e(−αvl)

)
=

V∑
k,l=1

e(α(vk − vl)).

But by the orthogonality of e (and as α 6= 0) we have∫ 1

0

e(α(vk − vl)) dα =

{
1 vk − vl = 0
0 o/wise
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and as the vi are distinct vk − vl = 0 if and only if k = l. Hence we can write∫ 1

0

e(α(vk − vl)) dα = δk,l,

(here δk,l represents the Kronecker delta function).
Therefore ∫ 1

0

|f2(α)|2 dα =
V∑

k,l=1

∫ 1

0

e(α(vk − vl)) dα

=
V∑

k,l=1

δk,l = V

as we required. So the proof is complete.

Lemma 32. We now apply Lemma 28 to get∫ η

−η
f1(α)f2

2(−α) dα

=

∫ η

−η
F1(α)F2

2(−α) dα + O
(
η {Na(m)}2

(
N {a(m)− a(2N)}+N

3
4

))
.

Proof. We first recall Lemma 28 which states that for any α we have

f1(α)f2
2(−α)− F1(α)F2

2(−α) = O
(
{Na(m)}2

(
N {a(m)− a(2N)}+N

3
4

))
.

We now simply integrate each term above from −η to η. This produces the two
integrals as required and we note that integrating the asymptotic notation, simply
multiplies the contents of the asymptotic notation by 2η. That is, if

f(α) = O(g(α))

implies that ∫ η

−η
f(α) dα = O(2ηg(α)) = O(ηg(α)).

We can therefore integrate the asymptotic notation of Lemma 28 to get the
required asymptotic in (2.28) and the Lemma is proven.
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Lemma 33. Finally we use Lemma 27 and (2.27) to get∫ η

−η
F1(α)F2

2(−α) dα =

∫ 1
2

− 1
2

F1(α)F2
2(−α) dα +O

(
a3(m)

η2

)
.

Proof. To start, we split the integral from −η to η as follows:∫ η

−η
F1(α)F2

2(−α) dα =

∫ 1
2

− 1
2

F1(α)F2
2(−α) dα

−

{∫ 1
2

η

F1(α)F2
2(−α) dα +

∫ −η
− 1

2

F1(α)F2
2(−α) dα

}
and we concern ourselves with the final pair of integrals.

First we note that these can be simplified to a single integral:∫ 1
2

η

F1(α)F2
2(−α) dα+

∫ −η
− 1

2

F1(α)F2
2(−α) dα =

∫ 1
2

η

F1(α)F2
2(−α)+F1(−α)F2

2(α) dα.

But from the definition of Fi, and more specifically e(αn), we have

Fi(−α) = Fi(α)

and so∫ 1
2

η

F1(α)F2
2(−α) dα+

∫ −η
− 1

2

F1(α)F2
2(−α) dα =

∫ 1
2

η

F1(α)F2
2(−α)+F1(α)F2

2(−α) dα.

We now bound the absolute value of this integral:∣∣∣∣∣
∫ 1

2

η

F1(α)F2
2(−α) + F1(α)F2

2(−α) dα

∣∣∣∣∣ ≤
∫ 1

2

η

∣∣∣F1(α)F2
2(−α) + F1(α)F2

2(−α)
∣∣∣ dα

≤
∫ 1

2

η

∣∣F1(α)F2
2(−α)

∣∣+
∣∣∣F1(α)F2

2(−α)
∣∣∣ dα.

We now use the standard property that for any number z ∈ C we know that
|z| = |z|. We therefore see that our pair of integrals are in fact bounded by:

2

∫ 1
2

η

∣∣F1(α)F2
2(−α)

∣∣ dα.
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We now turn our attention to bounding
∣∣F1(α)F2

2(−α)
∣∣ for α in the interval

[η, 1
2
].

The first thing to note is that, as 0 < η < 1
2

(from (2.27)), we have[
η,

1

2

]
⊂ [η, 1− η].

We can therefore apply Lemma 27, just like we did in the proof of Lemma 29 to
see that

F1(α) = O

(
a(m)

η

)
.

But exactly the same argument holds for F2(−α) (the only difference between
the two proofs being a constant factor before applying asymptotic notation). So we
get

F2(−α) = O

(
a(m)

η

)
.

Hence we can combine these bounds to get

2

∫ 1
2

η

∣∣F1(α)F2
2(−α)

∣∣ dα = O

(
2

(
1

2
− η
)
a3(m)

η3

)
= O

(
a3(m)

η2

)
;

which immediately proves the Lemma.

We now prove a lemma regarding solutions to the equation n = n′ + n′′ under
certain conditions, which will be used later to work with∫ 1

2

− 1
2

F1(α)F 2
2 (−α) dα.

Lemma 34. The number of solutions of the equation n = n′ + n′′ with integers n,
n′ and n′′ satisfying n ≤ 2N , n′ ≤ N and n′′ ≤ N is N2.

Proof. This is relatively straightforward. We want to count

n = n′ + n′′; n ≤ 2N, n′ ≤ N, n′′ ≤ N ;

and we do this by looking at the right hand side of the equation. For every choice of
(n′, n′′) there is a unique n ≤ 2N satisfying the equation. We have N choices for n′,
and N choices for n′′, and so a total of N2 choices for (n′, n′′) and hence N2 solutions
to the equation.
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Lemma 35. We have

a2(m) =
1

N2a(m)

∫ 1
2

− 1
2

F1(α)F2
2(−α) dα

= O

(
a2(m)

N2η2
+ {ηNa(m) + 1}

{
a(m)− a(2N) +

1

N
1
4

}
+
a(m)

Nη

)
Proof. We will use Theorem 30, Lemma 31, Lemma 32, Lemma 33 and Lemma 34
to prove the lemma.

To start, let us consider ∫ 1
2

− 1
2

F1(α)F 2
2 (−α) dα (2.28)

We first shall see that this is in fact a(m)3 times the number of solutions to
n = n′ + n′′ with n ≤ 2N and n′, n′′ ≤ N .

From the definitions of F1 and F2 we can rewrite the integral as:

a3(m)

∫ 1
2

− 1
2

(
2N∑
n=1

e(αn)

)(
N∑

n′=1

e(−αn′)

)(
N∑

n′′=1

e(−αn′′)

)
dα.

Upon expanding out the sums we get the integral:

a3(m)

∫ 1
2

− 1
2

(
2N∑
n=1

N∑
n′=1

N∑
n′′=1

e ((n− n′ − n′′)α)

)
dα (2.29)

We now use orthogonality and periodicity of the complex exponential function.
If n− n′ − n′′ = 0 then the following occurs:∫ 1

2

− 1
2

e((n− n′ − n′′)α) dα =

∫ 1
2

− 1
2

1 dα = 1.

If, on the other hand we have n− n′ − n′′ ∈ Z \ {0}, we get∫ 1
2

− 1
2

e((n− n′ − n′′)α) dα = 0.

This shows that the integral in (2.29) counts the solutions to the given equation
and so (2.28) gives a3(m) times this number.
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Now from Lemma 34, this number is N2 and so

N2 =
1

a3(m)

∫ 1
2

− 1
2

F1(α)F 2
2 (−α) dα,

and so

a2(m) =
1

N2a(m)

∫ 1
2

− 1
2

F1(α)F 2
2 (−α) dα, (2.30)

as required.
We now make some estimates using asymptotics and the previous Lemmata and

Theorems. To start we apply Lemma 33 to (2.30) to get

(2.30) =
1

N2a(m)

[∫ η

−η
F1(α)F 2

2 (−α) dα +O

(
a3(m)

η2

)]
. (2.31)

We now apply Lemma 32 to simplify (2.31) as follows:

(2.31) =
1

N2a(m)

[∫ η

−η
f1(α)f 2

2 (−α) dα +O

(
a3(m)

η2

)
+ O

(
η {Na(m)}2

(
N {a(m)− a(2N)}+N

3
4

))]
. (2.32)

We use linearity of integrals to rewrite (2.32) in the following way

(2.32) =
1

N2a(m)

[∫ 1−η

−η
f1(α)f 2

2 (−α) dα−
∫ 1−η

η

f1(α)f 2
2 (−α) dα

+O

(
a3(m)

η2

)
+O

(
η {Na(m)}2

(
N {a(m)− a(2N)}+N

3
4

))]
(2.33)

which allows us to apply Theorem 30 to the first integral and Lemma 31 to the
second integral in (2.33). In doing this we obtain

(2.33) ≤ 1

N2a(m)

[
V +O

({
a(m)

η
+N(a(m)− a(2N)) +N

3
4

}
Na(m)

)
+O

(
a3(m)

η2

)
+O

(
η {Na(m)}2

(
N(a(m)− a(2N)) +N

3
4

))]
(2.34)

We multiply through by the fraction and use the second part of Theorem 30
(which is in fact Lemma 20: V ≤ Na(m)) to get

(2.34) = O

(
Na(m)

N2a(m)
+

Na(m)

N2a(m)

{
a(m)

η
+N(a(m)− a(2N)) +N

3
4

}
+

a3(m)

N2a(m)η2
+
η {Na(m)}2

N2a(m)

{
N(a(m)− a(2N)) +N

3
4

})
(2.35)
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Expanding out we obtain

(2.35) = O

(
1

N
+
a(m)

ηN
+ a(m)− a(2N) +N−

1
4 +

a2(m)

N2η2

+ηNa2(m)− ηNa(m)a(2N) + ηNa(m)N−
1
4

)
(2.36)

and with some final simplifications (and noting that the first term is negligible com-

pared to the N−
1
4 term) we get

(2.36) = O

(
a2(m)

N2η2
+ {ηNa(m) + 1}

{
a(m)− a(2N) +N−

1
4

}
+
a(m)

Nη

)
as required.

Definition 36. For notational purposes we now write

δ :=
1

Nη
. (2.37)

We can therefore rewrite Lemma 35 as follows.

Lemma 37. Recalling that 2N = m4 and using the definition of δ in (2.37) we have

a2(m) < c1

{
a(m)δ + a2(m)δ2 +

(
a(m)

δ
+ 1

)(
a(m)− a(m4) +

1

m

)}
.

Where δ, which depends only on m, is subject only to the restriction that 0 < η < 1
2
.

Proof. We start with Lemma 35 and substitute in δ to get

a2(m) = O

(
a2(m)

N2η2
+ {ηNa(m) + 1}

{
a(m)− a(2N) +

1

N
1
4

}
+
a(m)

Nη

)
= O

(
a2(m)δ2 +

{
a(m)

δ
+ 1

}{
a(m)− a(m4) +

4
√

2

m

}
+ a(m)δ

)

< c1

{
a(m)δ + a2(m)δ2 +

(
a(m)

δ
+ 1

)(
a(m)− a(m4) +

1

m

)}
as required.
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We now introduce some more notation.

Definition 38. We define b(x) as follows:

m = 24x , b(x) = a(m) = a
(
24x
)
.

for any positive integer x.

Then with this new notation we can rewrite Lemma 37.

Lemma 39. With this new notation, Lemma 37 becomes

b2(x) < c1

{
b(x)δ + b2(x)δ2 +

(
b(x)

δ
+ 1

)(
b(x)− b(x+ 1) +

1

24x

)}
.

Proof. We note from Definition 38 we have

b2(x) = a2(m);

b(x+ 1) = a
(

24x+1
)

= a
((

24x
)4
)

= a(m4).

Then by simple substitution we obtain

b2(x) < c1

{
b(x)δ + b2(x)δ2 +

(
b(x)

δ
+ 1

)(
b(x)− b(x+ 1) +

1

24x

)}
as required.

2.6 Deducing Asymptotic behaviour of a(x) (Sec-

tion 5)

We are now finally in a position to prove Theorem 1. We do this using Corollary 10,
Corollary 11, Lemma 12 and Lemma 39.

We first note that we can choose c1 to be strictly greater than 1, because it is an
absolute constant defined by the O-notation.
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Lemma 40. We can write

δ =
b(x)

2c1

and then, noting from Lemma 12 that b(x) ≤ 1 we have

c1

{
b(x)δ + b2(x)δ2

}
≤ b2(x)

{
1

2
+

1

4c1

}
<

3

4
b2(x).

Proof. We know that δ is (Nη)−1. We can pick any c1 larger than an absolute lower
bound c̃1 > 1 defined by the asymptotic notation. As N and b(x) are both very

large and increasing, we can certainly assume c̃1 <
b(x)N

4
so that it is simple to pick

a c1 > c̃ and η < 1
2

such that

c1 =
b(x)Nη

2
=
b(x)

2δ
.

Knowing that δ = b(x)
2c1

we also know that b(x) = a(m) so that by Lemma 12 we
have

1

24x
=

1

m
≤ b(x) ≤ 1. (2.38)

Now we rewrite the left hand side of the inequality in a simpler form

c1

{
b(x)δ + b2(x)δ2

}
=

b(x)

2δ

{
b(x)δ + b2(x)δ2

}
=

b2(x)

2
+ b2(x)

(
b(x)δ

2

)
. (2.39)

Now we know that from (2.38) that b(x) < 1 so that

b(x) <
1

b(x)

and so
b(x)δ

2
<

δ

2b(x)
=

2δ

4b(x)
=

1

4c1

.

Substituting back into (2.39) we get

(2.39) ≤ b2(x)

2
+ b2(x)

1

4c1

= b2(x)

(
1

2
+

1

4c1

)
. (2.40)
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Finally, we have the trivial assumption that c1 > 1 so that 1
4c1

< 1
4

and we have

(2.40) <
3

4
b2(x);

which is what was required.

Lemma 41. We now use the definition that δ = (Nη)−1 and Lemma 12 to show

η =
1

Nδ
=

c2

m4a(m)
<

c2

m3
, (2.41)

so that 0 < η < 1
2

for large x.

Proof. We start from Lemma 12, to get

1 ≤ 1

a(m)
≤ m.

Now we simply do some algebraic manipulation:

η =
1

Nδ
=

2

m4
· 2c1

b(x)

=
4c1

m4a(m)

≤ 4c1

m4
·m =

4c1

m3
.

We then simply define c2 to be 4c1 and (2.41) follows. Finally, for large x, we
have very large m and so η is small, and certainly between 0 and 1

2
.

Lemma 42. We now use the previous lemmata to see that Lemma 39 implies

b2(x) < c3

(
b(x)− b(x+ 1) +

1

24x

)
for x > c4.

Proof. From Lemma 39 we have

b2(x) < c1

{
b(x)δ + b2(x)δ2

}
+ c1

{(
b(x)

δ
+ 1

)(
b(x)− b(x+ 1) +

1

24x

)}
.
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We now use Lemma 40 to get

b2(x) <
3

4
b2(x) + c1

{(
b(x)

δ
+ 1

)(
b(x)− b(x+ 1) +

1

24x

)}
and so collecting the b2(x) terms we have

b2(x) < 4c1

{(
b(x)

δ
+ 1

)(
b(x)− b(x+ 1) +

1

24x

)}
.

But from Lemma 40 we also have

δ =
b(x)

2c1

and so our inequality becomes

b2(x) < 4c1

{
(2c1 + 1)

(
b(x)− b(x+ 1) +

1

24x

)}
= c3

(
b(x)− b(x+ 1) +

1

24x

)
.

(where c3 = 8c1
2 + 4c1) for large x, that is x > c4 for some absolute constant c4.

Lemma 43. First, b(x) is a decreasing function by Corollary 10. This gives, for all
integers P > c4, the following:

Pb2(2P ) ≤
2P−1∑
x=P

b2(x) < c5

(
b(P )− b(2P ) +

4c5

2P

)
.

Proof. First we show that b(x) is indeed decreasing. From Corollary 10 we know
that

a(m1 ·m2) ≤ a(m1)

for any positive integers m1 and m2. But by definition b(x) = a(m) = a(24x) so that

b(x+ 1) = a
(

24x+1
)

= a
((

24x
)4
)

= a(m4) ≤ a(m) = b(x)

and hence b is decreasing.
Now consider Pb2(2P ), and write out the sum as P copies of b2(2P ):

Pb2(2P ) = b2(2P ) + · · ·+ b2(2P );
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and apply the fact that b is decreasing to bound each of these terms with b2(P ),
b2(P + 1) and so forth up to b2(2P − 1):

Pb2(2P ) ≤ b2(P ) + · · · b2(2P − 1) =
2P−1∑
x=P

b2(x).

We are assuming that P > c4, and so we can apply Lemma 42 to each of these
terms and so bound Pb2(2P ) as follows:

Pb2(2P ) ≤
2P−1∑
x=P

c3

(
b(x)− b(x+ 1) +

1

24x

)

= c3

2P−1∑
x=P

(b(x)− b(x+ 1)) + c3

2P−1∑
x=P

1

24x
. (2.42)

The first thing to note about (2.42) is that the first sum is in fact telescoping.
That is, the second term in each summand cancels out the first term in the consec-
utive summand, so that, on cancellation, we are left with simply the first and last
terms:

2P−1∑
x=P

(b(x)− b(x+ 1)) = b(P )− b(2P ).

Therefore, as long as c5 > c3 we will have this first sum bounded by c5(b(P )−b(2P )).
Now for any x in the second sum, we have x ≥ P ≥ c4. We now use the fact that

this implies
1

24x
≤ 1

24P
.

So we have the second sum in (2.42) bounded as follows:

c3

2P−1∑
x=P

1

24x
≤ c3P

24P
.

We wish to show that this is bounded by
4c25
2P

and so this is equivalent to having

c5 >

√
c3P 2

2 · 24P
∀P > c4. (2.43)

To find such a c5 we use the obvious fact that y2

24y is decreasing with integers
y > 0. As P > c4 we can therefore bound as follows:

P 2

24P
<

c4
2

24c4
.
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If we hence choose c5 such that

c5 >

√
c4

2c3

2 · 24c4

then (2.43) will hold.
Therefore we are left with the condition that if

c5 > max

{
c3,

√
c4

2c3

2 · 24c4

}

then we have

Pb2(2P ) < c3(b(P )− b(2P )) +
c3P

24P

< c5

(
b(P )− b(2P ) +

4c5

2P

)
;

and so the Lemma holds.

Lemma 44. Under the additional assumption that 2Pb(2P ) > 4c5, as well as P > c4,
we get

2Pb(2P ) <
1

4c5

{2Pb(2P )}2 < P

{
b(P )− b(2P ) +

4c5

2P

}
< Pb(P ).

Proof. We start by looking at the additional assumption, and write it in the following
alternative ways. First we can divide by the 4c5 factor to rewrite the assumption in
the form

2Pb(2P )

4c5

> 1 (2.44)

which will be useful for our first inequality.
The second form we will write it in simply involves canceling a factor of two and

rearranging to get
2c5 − Pb(2P ) < 0 (2.45)

which we will need in the final step.
So we start by using (2.44) to get

2Pb(2P ) <

(
2Pb(2P )

4c5

)
· (2Pb(2P )) =

1

4c5

{2Pb(2P )}2 . (2.46)
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Now we can cancel the factor of four and, as P > c4, apply Lemma 43 to obtain:

(2.46) =
1

c5

P
(
Pb2(2P )

)
<

1

c5

P

(
c5

(
b(P )− b(2P ) +

4c5

2P

))
(2.47)

which we can simplify to obtain

(2.47) = P

(
b(P )− b(2P ) +

4c5

2P

)
= Pb(P ) + 2c5 − Pb(2P ). (2.48)

We can now apply (2.45) to remove the excess terms and finally obtain

(2.48) < Pb(P )

as we required.

Lemma 45. We can apply a backward induction and see that if c4 < 2t0 < 2t then

2tb(2t) ≤ max
(
4c5, 2

t0b
(
2t0
))
,

which gives

b(2t) = O

(
1

2t

)
.

As b(x) is a decreasing function, this gives us that for any x

b(x) = O

(
1

x

)
.

Proof. Define
ζ := max

(
4c5, 2

t0b
(
2t0
))
.

The first thing we must do is choose a t0 such that 2t0 > c4. This is obviously
possible, and we can choose c5 such that

2t0b(2t0) ≤ 4c5

and so our base case of t = t0 is satisfied.
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Now let us assume the result is true for t− 1 ≥ t0 so that

2t−1b(2t−1) ≤ ζ. (2.49)

We wish to show the result then holds for t so let us assume that

2tb(2t) > ζ; (2.50)

and we will derive a contradiction.
We now show we can apply Lemma 44 with P = 2t−1. First, as P ≥ 2t0b(2t0) > c4

we satisfy the first requirement that P > c4. Now we look at (2.50) and see that

2Pb(2P ) = 2tb(2t) > 4c5 > c5

so that our additional assumption holds.
The result of Lemma 44 gives the inequality

2Pb(2P ) < Pb(P )

which becomes
2tb(2t) < 2t−1b(2t−1).

Finally we use (2.49) and (2.50) to get the string of inequalities:

ζ < 2tb(2t) < 2t−1b(2t−1) ≤ ζ

which is clearly a contradiction and proves our induction.
So for large enough t we have

2tb(2t) ≤ ζ

and we get

b(2t) ≤ ζ

2t
= O

(
1

2t

)
.

We are now going to generalize for numbers that are not powers of 2. For any
large x there exists a k so that we have

2t0 < 2k−1 < x < 2k

and also that
1

2k
≤ 1

x
≤ 1

2k−1
.
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We know from Lemma 43 that b(x) is decreasing, and so

O

(
1

2k

)
= b(2k) ≤ b(x) ≤ b(2k−1) = O

(
1

2k−1

)
.

But O(2k) = O(2k−1) so

b(x) = O

(
1

2k

)
and 1

x
≥ 2−k so that we finally get

b(x) = O

(
1

x

)
which was needed.

We can now finally prove our main result:

Theorem 46. For any x we have

A(x)

x
= O

(
1

log log x

)
.

Proof. For any large integer x we can choose an x̂ such that

24bx
< x ≤ 24bx+1

,

whence
2x̂ < log log x < 2(x̂+ 1).

We can then use Corollary 11 to get

a(x) ≤ 2a
(

24bx)
= 2b(x̂).

Finally we use Lemma 45 with this inequality to get that

a(x) = O

(
1

x̂

)
and so

a(x) = O

(
1

log log x

)
.
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2.7 Summary of Roth’s Method

We have therefore proven Roth’s Theorem, using the exact method he employed
in his seminal paper. It is easy however to lose the general picture while working
through such a meticulous proof.

Therefore we provide an overview summary as follows, which was inspired by
Erdős masterful account [4].

We defined A(x) to be the size of the largest subset of {1, 2, . . . , x} avoiding
three-term arithmetic progressions (a maximal A-set). We fix a A-set, {u1, . . . , uU}
in 〈M〉 and define, for an arbitrary real number α, the sum

S :=
U∑
k=1

e(α · uk),

which has obvious analogues to the Fourier transform.
We then split α up according to the Dirichlet Box Principle:

α =
h

q
+ β

where (h, q) = 1, q ≤
√
M and q|β| ≤ 1√

M
. For any m < M we define another

exponential sum:

S ′ :=
a(m)

q

q∑
r=1

e

(
rh

q

) M∑
n=1

e (βn) .

We then derived a sequence of results and ended up proving the key inequality

|S − S ′| < Ma(m)− U +O
(
m
√
M
)
.

Now we wished to harness the power of the Hardy-Littlewood Method, and to do
so we let m be even, and N such that 2N = m4. Now assuming that u1, . . . uU is a
maximal A-set we let {2v1, . . . , 2vV } be the even ui.
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We now work with the following four functions:

f1(α) =
U∑
k=1

e(αuk);

f2(α) =
V∑
k=1

e(αvk);

F1(α) = a(m)
2N∑
n=1

e(αn);

F2(α) = a(m)
N∑
n=1

e(αn);

all of which are of the order O(Na(m)).
We start by getting a good (and definitely non-trivial) estimate on the differences

of these functions:

f1(α)− F1(α) = O
(
N{a(m)− a(2N)}+N

3
4

)
;

f2(α)− F2(α) = O
(
N{a(m)− a(2N)}+N

3
4

)
;

and the tighter bound on f1 for 0 < η < α < 1− η:

f1(α) = O

(
a(m)

η
+N{a(m)− a(2N)}+N

3
4

)
.

The reason for considering such functions was to inspect the integral:∫ 1−η

−η
f1(α)f 2

2 (−α) dα (2.51)

which is equal to V , due to {u1, . . . uU} being an A-set.
The power of this equivalence is revealed when we bound this integral, under the

assumption η ∈
[
0, 1

2

]
. After comparing to various integrals involving f1, f2, F1, F2

we arrive at the following asymptotic for a:

a2(m) = O

(
a2(m)

N2η2
+ {ηNa(m) + 1}

{
a(m)− a(2N) +N−

1
4

}
+
a(m)

Nη

)
.

To simplify the remainder of the proof we then used the following notation:

δ =
1

Nη
; m = 24x ; b(x) = a(m) = a

(
24x
)

;
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which simplified our asymptotic as

b2(x) < c1

{
b(x)δ + b2(x)δ2 +

(
b(x)

δ
+ 1

)(
b(x)− b(x+ 1) +

1

24x

)}
.

What followed in the final section was a series of inequalities involving b(x). We
ensured that η ∈

[
0, 1

2

]
and saw that

b2(x) < c3

(
b(x)− b(x+ 1) +

1

24x

)
.

From this we used the fact that b was decreasing to see

Pb2(2P ) = O

(
b(P )− b(2P ) +

4c5

2P

)
and in fact for large enough P

2Pb(2P ) < Pb(P ).

But then it was relatively simple (at least compared to the rest of the proof) to
show that in fact

b(x̂) = O

(
1

x̂

)
; (2.52)

which finally gives us
A(x)

x
= O

(
1

log log x

)
which was what we wished to prove.
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Chapter 3

Other Methods of Proof

In this chapter we will discuss some alternative methods to prove Roth’s Theorem,
and obtain alternative bounds on A(x).

Please note that this section is completely separate to Roth’s proof. Although
we will reference sections of Roth’s paper we will not be restricting ourselves to
Roth’s paper. In general, the paper currently being discussed will dictate the chosen
notation, with clarification given where necessary. Therefore A(x) may be referred
to as r3(x) (which has become standard notation in the literature) and so forth.

This is also not meant to be as deeply expository as Chapter 2. The aim for this
section is to outline the proofs of some key papers dealing with Roth’s Theorem and
so invariably some steps will be missing. The reader can either work through these
details independently or consult the relevant paper for further clarity.

3.1 Convoluting with a Measure on a Three-term

Arithmetic Progression [3]

In [3] Croot and Sisask proved that

lim sup
N→∞

r3(N)

N
= 0

by restricting their proof to dealing with a finite field Fp. After selecting an appropri-
ate prime p the rest of the proof bears some similarities to Roth’s method. Although
the restriction to Fp is beneficial in avoiding integrals, it does provide some new
difficulties which are dealt with deftly.
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3: Other Methods of Proof

3.1.1 Notation

The paper starts by defining a collection of notation, most importantly for any
function f : Fp → [0, 1] the quantity

Λ(f) = Ex,d∈Fpf(x)f(x+ d)f(x+ 2d) =
1

p2

∑
x,d∈Fp

f(x)f(x+ d)f(x+ 2d).

For the most part, f will be taken to be an indicator function of a set 1lA : Fp → {0, 1}.
In this case we denote Λ(A) = Λ(f) and this is the number of three term progressions
in A divided by p2.

We will also use the Fourier transform, f̂ : Fp → C which is defined, in the finite
field case, as

f̂(r) = Ex∈Fpf(x)e
2πirx
p =

1

p

∑
x∈Fp

f(x)e

(
rx

p

)
.

We relate a function and its Fourier coefficients by Parseval’s identity∑
r∈Fp

∣∣∣f̂(r)
∣∣∣2 =

1

p

∑
x∈Fp

|f(x)|2 ; (3.1)

which allows us to rewrite

Λ(f) =
∑
r∈Fp

f̂(r)2f̂(−2r).

This is analogous to the manipulation of the key integrals in Theorem 30 (The
Hardy-Littlewood Method).

3.1.2 Method

We start our proof by selecting, for any integer N ≥ 2 an appropriate prime p to
restrict our work to Fp. To do this we must utilize Bertrand’s Postulate (which he
postulated in 1845 and Chebyshev proved five years later):

Theorem 47 (Bertrand’s Postulate). If n > 3 then there is always at least one
prime p between n and 2n− 2.

Applying Theorem 47 to 2N we see that for any integer N ≥ 2 there is a prime
in the interval [2N, 4N ]. After picking such a prime we select an A-set S with
|S| = r3(N). We can then embed S in Fp and predictably let

f := 1lS : Fp → {0, 1}.
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3: Other Methods of Proof

We create a set of ‘awkward’ numbers, denoted R:

R :=

{
r ∈ Fp |

∣∣∣f̂(r)
∣∣∣ ≥ (2 log log p

log p

) 1
2

}
.

This bound may seem rather complicated and unexpected, but it appears as a reper-
cussion of the imminent proof.

Knowing Parseval’s identity, (3.1), we know that∑
r∈Fp

∣∣∣f̂(r)
∣∣∣2 =

|S|
p

and so we must have

|R| ≤ log p

2 log log p

otherwise we would have the following contradictory chain of inequalities

1 =
log p

2 log log p

(√
2 log log p

log p

)2

≤
∑
r∈R

∣∣∣f̂(r)
∣∣∣2 ≤∑

r∈Fp

∣∣∣f̂(r)
∣∣∣2 =

|S|
p
< 1.

We therefore dilate R to be only in a small portion of Fp by picking an x (using
the Dirichlet Box Principle) with

0 < x < p1− 1
(|R|+1) ≤ p

log p
(3.2)

such that for every r ∈ R we have∥∥∥∥xrp
∥∥∥∥

T
≤ p−

1
(|R|+1) ≤ 1

log p
.

(here ‖ · ‖T is identical to ‖ · ‖ defined in Chapter 2 — the distance to the nearest
integer).

Once we have selected such an x we define

B := {0, x, 2x}, h(n) :=
p1lB(n)

3
;

so that h is the normalized indicator function of B.
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3: Other Methods of Proof

We then use finite convolution to define the function g:

g(n) := (f ∗ h)(n)

=
1

p

∑
y∈Fp

f(n− y)h(y)

=
1

p

∑
y∈Fp

f(n− y)1lB(y)

=
1

3
(f(n) + f(n− x) + f(n− 2x)) .

Because we picked x to dilate R, and R was conditioned on the size of f̂(r), we
get for all r ∈ Fp ∣∣∣f̂(r)− ĝ(r)

∣∣∣ =
∣∣∣f̂(r)

∣∣∣ · ∣∣∣1− ĥ(r)
∣∣∣� (

log log p

log p

) 1
2

and so

|Λ(f)− Λ(g)| �
(

log log p

log p

) 1
2

.

Finally, to bound Λ(g), we note that we chose S to be a A-set and so Λ(f)� 1
p

implying

Λ(g)�
(

log log p

log p

) 1
2

.

We now select a superset of S that we define as

T := {n ∈ Fp | g(n) > 0} = {n ∈ Fp | n, n− x, or n− 2x ∈ S}

so that (because Λ(T )� Λ(g)) we have

Λ(T )�
(

log log p

log p

) 1
2

.

Now S is a A-set, so there is no n such that n, n − x and n − 2x are all in S.
Hence for all n ∈ Fp we must have g(n) ≤ 2

3
. Rewriting as 3g(n)

2
≤ 1 we see that if n

is in T we have
3g(n)

2
≤ 1 = 1lT (n) (n ∈ T )
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3: Other Methods of Proof

and if n is not in T we have g(n) < 0, whence

3g(n)

2
≤ 0 = 1lT (n) (n /∈ T ).

We can combine these results into 1lT (n) ≥ 3g(n)
2

and so we get the useful bound

|T | ≥ 3|S|
2
.

At first glance, this extension of the set S is useful and could possibly lead to the
completion of the proof, if not for the fact that we can not know if T is contained in
〈N〉 (as needed) or not. But from our choice of x in (3.2) we do know that

T ⊂
[
N +

2p

log p

]
and so if we define

T ′ := T ∩ [N ]

we can deduce some facts about T ′. First we have

|T ′| = |T | −O
(

N

logN

)
, Λ(T ′) ≤ Λ(T )

and so that for large enough N we have

|T ′| ≥ 4|S|
3
.

(The only exception would be if r3(N) was asymptotically O
(

N
logN

)
in which case

there is no further result to prove).
Now this set T ′ is significantly larger than S but we will see that it only admits

a few more 3-term arithmetic progressions. To do this we use a quantitative version
of the following theorem of Varnavides:

Theorem 48 (Varnavides’ Theorem [14]). Let δ be any number satisfying 0 < δ < 1,
and let a1, a2, . . . , am be any set of distinct positive integers not exceeding x. Suppose
that

m > δx and x > x0(δ)

where x0(δ) sepends only on δ. Then the number of three term progressions of the
ai’s is at least C(δ)x2, where C(δ) is a positive number depending only on δ.
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3: Other Methods of Proof

The version we shall need is as follows:

Lemma 49. For any 1 ≤ M ≤ N and A ⊆ [N ], if we denote by T3(A) to be the
number of three-term arithmetic progressions {a, a + d, a + 2d} with d ≥ 1 in A we
have

T3(A) ≥

(
|A|
N
− r3(M)+1

M

M4

)
N2

We will not reproduce the proof here as it is a reasonably straightforward com-
binatorial argument, however it is given in full in [3].

To conclude the proof we set

M :=

⌊(
log p

log log p

) 1
16

⌋
and apply Lemma 49 with A = T ′. This gives us(

log log p

log p

) 1
2

� Λ(T ′) ≥
4|S|
3N
− r3(M)+1

M

M4

so that
3

4
M4

(
log log p

log p

) 1
2

+
3

4

r3(M) + 1

M
≥ r3(N)

N

as r3(N) = |S|. Simplifying further

r3(N)

N
� 3

4
r3(M) +O

((
log logN

logN

) 1
4

)

and so r3(N)
N

is asymptotically decreasing, and Roth’s Theorem follows.

3.2 Improving Bounds by Considering Bohr Sets

[2]

In his paper On Triples in Arithmetic Progression [2], Bourgain proved the best to
date asymptotic on a(x), namely

a(x) = O

(√
log log x

log x

)
.
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3: Other Methods of Proof

To do this he followed a similar method to Roth (which he refers to as a com-
bination of the circle method and density increment). What allows him to gain a
better bound is not more careful analysis per se (although his work is impeccable)
but the consideration of a different object: Bohr Sets.

Bohr sets have been used throughout Arithmetic Combinatorics and are defined
as follows.

Definition 50. For given real numbers ε and M , and a vector ~θ = (θ1, . . . , θd) ∈ Td

we define the Bohr Set to be

Λ = Λ~θ,ε,M {n ∈ Z | |n| ≤M and ‖nθj‖ < ε for j = 1, . . . , d} .

Bourgain works with the normalized indicator function (a probability measure)
on Λ:

λ =
1

|Λ|
1lΛ.

For two Bohr sets Λ′ and Λ′′ and set A we define λ′ and λ′′ as above, and define
the following analogues of f1, f2, F1 and F2:

S ′(x) =
∑
n

λ′(n)e(nx)

S ′′(x) =
∑
n

λ′′(n)e(nx)

S ′A(x) =
∑
n∈A

λ′(n)e(nx)

S ′′A(x) =
∑
n∈A

λ′′(n)e(nx).

Then letting λ′(A) = S ′A(0) and λ′′(A) = S ′′A(0), Bourgain compares the two
integrals

λ′(A)2λ′′(A)

∫
T
S ′(α)2S ′′(−2α) dα∫

T
S ′A(α)2S ′′A(−2α) dα

to obtain the required density increment. Then reanalysing Λ under a set of required
conditions the stated asymptotic is obtained.
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3: Other Methods of Proof

3.3 Lower Bound for A(x) [1]

We now talk about bounding A(x) below (rather than above). In his 1946 paper On
Sets Of Integers Which Contain No Three Terms In Arithmetical Progression [1],
Behrend showed a surprisingly simple construction of a set of integers avoiding three-
term arithmetic progressions that gives one of the best current lower bounds.

Theorem 51. [1]
For any ε > 0, for sufficiently large N we have

A(N) > N
1− 2

√
2 log 2+ε√
logN ;

or equivalently

a(N) > N
− 2
√

2 log 2+ε√
logN .

Proof. First, for integers d ≥ 2, n ≥ 2 and k ≤ n(d− 1)2 we define the following set

Sk(n, d) =
{
A = a1 + a2(2d− 1) + · · · an(2d− 1)n−1 | 0 ≤ ai < d, norm(A) = k

}
where we define

norm(A) =
√
a2

1 + a2
2 + · · · a2

n.

Behrend first shows that Sk(n, d) is three term progression-free. If there are three
elements A, A′ and A′′ in Sk(n, d) such that

A+ A′ = 2A′′;

then we would have the following two norm calculations:

norm(A+ A′) = norm(2A′′) = 2
√
k;

norm(A) + norm(A′) = 2
√
k.

But in the triangle inequality:

norm(A+ A′) ≤ norm(A) + norm(A′);

equality only holds if the ‘coefficients’ of A and A′ are proportional:

(a1, a2, . . . , an) = κ · (a′1, a′2, . . . , a′n).

However, A and A′ have identical norms, and so κ = 1 so that A = A′ = A′′.

52



3: Other Methods of Proof

Now there are dn choices for A with each ai ∈ [0, d) and n(d − 1)2 + 1 possible
choices for the integer k. Therefore, by the Pigeonhole Principle, for some k = K,
the corresponding Sk(n, d) must have:

|Sk(n, d)| ≥ dn

n(d− 1)2 + 1
>
dn−2

n
.

Now all the terms in Sk(n, d) are smaller than (2d− 1)n and so we get

A((2d− 1)n) >
dn−2

n
.

Now for a given N we choose

n =

⌊√
2 logN

log 2

⌋

and a d such that
(2d− 1)n ≤ N < (2d+ 1)n.

Now it is basic algebraic manipulation to see

A(N) ≥ A((2d− 1)n) >
dn−2

n
>

(N
1
n − 1)n−2

n2n−2
=
N1− 2

n

n2n−2
(1−N−

1
n )n−2

so that for any ε > 0, if N is sufficiently large

A(N) > N1− 2
nn2n−1 = N1− 2

n
− logn

logN
− (n−1) log 2

logN

> N
1− 2

√
2 log 2+ε√
logN .

This bound has been improved on since Behrend’s proof, namely by Elkin, Green,
Wolf and Bryant, but none retain the beautiful simplicity of this construction.
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Chapter 4

Generalisations of Roth’s Method

We now discuss how Roth’s method of proof generalises to other results. The most
obvious extension of Roth’s Theorem is Szeméredi’s Theorem:

Theorem 52 (Szeméredi’s Theorem). Let k be a positive integer and let δ > 0.
There exists a positive integer N = N(k, δ) such that for every subset of the set
{1, 2, . . . , N} of size at least δN contains an arithmetic progression of length k.

It is clear that Roth’s Theorem is the first non-trivial case of Theorem 52: that is
when k = 3. When Szemerédi proved this theorem in 1975 he used method unrelated
to Roth’s proof of k = 3 from 1952. He did produce a proof using a similar method
for k = 4 but it seemed the general case would not succumb to this tactic.

However in 1998 Timothy Gowers produced a new proof for k = 4 using Roth’s
methods and three years later produced a proof of Theorem 52 using exponential
sums like we have described earlier. We will concentrate on the simpler k = 4 case
rather than the general proof. We will then look at Szemerédi’s Theorem applied to
the prime numbers (through work by Ben Green and Terence Tao) and end with an
unproven conjecture of Erdős and Turán.

4.1 Gowers’ Proof of Szeméredi’s Theorem for k =

4

In 1998, Gower’s published [5], which proved Szeméredi’s Theorem when k = 4 using
a generalization of Roth’s method. This was certainly not the first proof of this
theorem, Szeméredi’s original proof had been published nearly 30 years prior, but it
was the first proof that did not rely on Van der Waerden’s Theorem or similar results
in Ramsey Theory.
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4: Generalisations of Roth’s Method

Why was this significant? Any result relying on Van der Waerden’s Theorem
inherits the, frankly, awful bounds related to it. Defining the tower function, T ,
inductively by

T (1) = 2; T (n+ 1) = 2T (n);

we can then define the ackermann function, W , (or rather an ackermann function,
as there are various definitions) by the following recursion:

W (1) = 2; W (n+ 1) = T (W (n));

Any proof of Szeméredi’s Theorem utilizing Van der Waerden’s Theorem gives,
for a density δ > 0, a bound of at least W (δ−1) on N, which grows at an alarming
rate.

Gowers’ attempt to prove Szeméredi’s Theorem using Roth’s method was there-
fore motivated by a hope to improve the bounds generated, along with the fact that
Roth’s argument is “very natural and beautiful” and that “it is curious that it should
not have an obvious generalization.”

Gowers was successful in both of these aims - ending up with a bound on N of
exp exp exp(δ−c) for some absolute constant c. In fact, this can be improved to a
‘mere’ double exponential exp exp(δ−c).

Gowers’ idea was to apply Roth’s density increment argument to a special class
of sets of integers — quadratically uniform sets. To define this notion we must first
define uniform sets.

Let A be a subset of 〈N〉 of size δN . We define the balanced function of A as

fA(s) = 1lA − δ1l〈N〉 =

{
1− δ s ∈ A
−δ s /∈ A

which has the property that f̂A(0) = 0, where f̂A is the Fourier transform.
For a given α, we say that this set A is α-uniform if∑

r

∣∣∣f̂A(r)
∣∣∣4 ≤ αN4;

(which is also referred to as quasirandomness).
It turns out that Roth’s method can be stated reasonably concisely in terms of

α-uniform sets. For suitable α, if A is α-uniform then A contains approximately the
expected number of three-term arithmetic progressions. If not, we can use density
increments on A to show for N large enough it cannot avoid three-term progressions.
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4: Generalisations of Roth’s Method

This concept of α-uniform is not applicable when looking at four-term arithmetic
progressions, and so we define a stronger condition. For a given α, we say that A is
a quadratically α-uniform set if

∑
u

∑
v

∣∣∣∣∣∑
s

fA(s)fA(s− u)fA(s− v)fA(s− u− v)

∣∣∣∣∣
2

≤ αN4.

This can be restated with the notation

∆(f ; k)(s) = f(s)f(s− k)

as the condition ∑
k

∑
r

∣∣∣∆̂(fA; k)(r)
∣∣∣4 ≤ αN5

which shows the similarity to the α-uniform definition.
It is precisely this definition that Gowers generalizes Roth’s method for. This is

highly non-trivial but results in the celebrated result that for four-term arithmetic
progressions there exists an absolute constant c such that

δ ≤ 1

(log logN)c

for all N . This gives the bound

r4(N) = O

(
N

(log logN)c

)
.

4.2 Gowers’ Proof of Szeméredi’s Theorem for gen-

eral k

We will not discuss how Gowers generalizes this method in [6] to deal with Sze-
merédi’s Theorem for any k, which is Theorem 52, as it is beyond the scope of this
paper. However, his paper was a landmark proof in Arithmetic Combinatorics and
contributed to the decision to award Gowers the Fields Medal in 1998.
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4.3 Roth’s Theorem on Prime Numbers

In 2004, Green revealed a proof of Roth’s Theorem when applied to the prime num-
bers. Later, this would lead to the highly celebrated Green-Tao Theorem but we will
concentrate, for the moment, on [7].

This paper is a masterpiece of modern arithmetic combinatorics, and to describe
the method Green employs in any sort of detail is beyond the scope of this paper.
However, we will see a very coarse sketch of Green’s methodology by quoting a
selection of theorems and lemmata from the paper.

Green and Tao, independently of Van der Corput, had already proven the follow-
ing theorem.

Theorem 53. The primes contain infinitely many three-term arithmetic progres-
sions. Indeed, the primes contain arbitrarily long arithmetic progressions.

Green then proves the following generalization:

Theorem 54. Every subset of the prime numbers of positive upper density contains
a three-term arithmetic progression.

Although Green follows quite a different route to Roth, there are certainly simi-
larities and a key step in Green’s proof was to show the Hardy-Littlewood Majorant
Property for the primes.

Theorem 55 (The Hardy–Littlewood Majorant Property of the Primes). Suppose
p ≥ 2 is real. Let P be the set of all prime numbers and let

PN = P ∩ [1, N ].

Let {an}n∈PN be any sequence of complex numbers with |an| ≤ 1 for all n. Then, for
a constant C(p) depending only on p:∥∥∥∥∥∑

n∈PN

ane(nθ)

∥∥∥∥∥
Lp(T)

≤ C(p)

∥∥∥∥∥∑
n∈PN

e(nθ)

∥∥∥∥∥
Lp(T)

In fact, Green solely uses this property with p = 5
2

but, as always, it is preferable
to state a more general result.

As with all proofs of, and stemming from, Roth’s Theorem one of the key steps
is deciding what kind of sets to analyse. For Green’s argument we let m ≤ logN be
a positive integer and 0 ≤ b ≤ m− 1 be coprime to m. Then we define the set

Λb,m,N = {n ≤ N | nm+ b ∈ P} ;
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which we expect, by the Prime Number Theorem, to have size of around

|Λb,m,N | ≈
mN

φ(m) logN
.

Here φ(m) denotes Euler’s totient function: the number of positive integers less
than m and coprime to m.

We then define an approximately normalised indicator function

λb,m,N(n) =
φ(m) log(nm+ b)

mN
1lΛb,m,N (n)

so that ∑
n∈Λb,m,N

λb,m,N(n) ≈ 1.

Green then considers a subset A0 ⊆ P with positive relative upper density
— there exists a positive constant α0 such that for an infinite number of integers n
we have

|A0 ∩ P| ≥
α0n

log n
.

Lemma 56. If A0 ⊆ P is a subset with positive relative upper density that avoids
three-term arithmetic progressions then there exists positive real α and an infinite
number of primes N such that the following occurs: there exists A ⊆ {1, . . . ,

⌊
N
2

⌋
}

and an integer W ∈
[

1
8

log logN, 1
4

log logN
]

such that the following happens. A
avoids three-term arithmetic progressions and if m =

∏
p≤W p there exists b such that

(b,m) = 1 and
λb,m,N(A) ≥ α.

Using slightly ambiguous notation, we let a = A · λb,m,N and see

∑
x,d

a(x)a(x+ d)a(x+ 2d) ≤ (logN)3

N2

which forces α to be small. But Varnavide’s Theorem (also used in Croot and Sisask’s
proof of Roth’s Theorem) sets off a chain of implications resulting in a contradiction
when

α ≥

√
log log log log logN

log log log logN

This is restated in the following theorem:
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Theorem 57. If A is a subset of PN with cardinality

|A| ≥ C ·N
logN

√
log log log log logN

log log log logN

then A must contain a three-term arithmetic progression.

Green himself admits this bound is poor. He predicts the “probable truth” that
in fact any subset of 〈N〉 with cardinality

N

(logN)1000

contains a three-term arithmetic progression.

4.4 The Green–Tao Theorem

To finish our generalizations, we state one of the most celebrated theorems in Arith-
metic Combinatorics, and indeed one of the most impressive results in mathematics
in the last decade. The Green–Tao Theorem, proven in 2004, extends Theorem 54
and we take the statement from [13].

Theorem 58 (The Green–Tao Theorem). Let k ≥ 1 and N > 1. Denote by P the
set of all prime numbers. Then

rk (P ∩ [1, N ]) = oN→∞;k (|P ∩ [1, N ]|) .

In particular, the primes contain arbitrarily long arithmetic progressions.

As with Gowers’ proof of Szemerédi’s Theorem, the proof is beyond our discussion.
Needless to say their proof cemented Green and Tao’s place in mathematical history,
and undoubtedly influenced their election as Fellows of the Royal Society and the
awarding of the Fields medal to Tao in 2006.

4.5 The Erdős–Turán Conjecture

To conclude our survey of results, we end with a conjecture of Erdős and Turán that
has remained unsolved for 75 years.
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Conjecture 59 (The Erdős–Turán Conjecture). Let A ⊂ Z+ be such that∑
n∈A

1

n
=∞.

Then A contains arbitrarily long proper arithmetic progressions.

This is unsolved, even for length three progressions. However the Green–Tao
Theorem is a special case of the conjecture, due to the well known fact that∑

p∈P

1

p
=∞.

Whether the Erdős–Turán Conjecture will ever be proven remains to be seen;
it does not seem an unreasonable statement, but it’s difficulty is undisputed. This
difficulty is reinforced by the fact that Erdős offered a $3000 prize for anyone able
to prove it; one of his highest prize sums (eclipsed only, to my knowledge, by two
$10,000 prizes: one for a tight asymptotic formula for A(x) and the second for a
conjecture showing “consecutive primes numbers are often far apart”). While it is
unlikely that Roth’s Method can be generalized to this statement, there is always
hope that a fresh approach may yield substantial results.
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Appendix A

Code

In this appendix I provide the algorithms for the most important programs I used
while studying Roth’s Theorem. They will be reproduced in both pseudo-code and
their original Maple code. They can all be found within a program file found at the
author’s website, or by emailing the author at david.john.wilson@me.com.
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A: Code

A.1 Three-term Arithmetic Progressions

This code takes a set of integers and checks whether there exists a three-term arith-
metic sequence by a brute force method.

A.1.1 GoodSubset(s) Pseudo-code

In Algorithm 1 we present the pseudo-code. We consider the set s to be akin to a
list in Maple, ordered under increasing numerical order, and si denotes the ith entry
in the set.

Require: s ⊆ {1, 2, . . . , n}
1: for i = 1 to |s| − 2 do
2: for j = i+ 1 to |s| − 1 do
3: for k = j + 1 to |s| do
4: if si + sk = 2sj then
5: return false end
6: end if
7: end for
8: end for
9: end for

10: return true end

Algorithm 1: GoodSubset(s) Algorithm
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A: Code

A.1.2 GoodSubset(s) Maple Code

In Algorithm 2 we present the equivalent Maple Code for Algorithm 1.

GoodSubset:=proc(s) local i,j,k,t:

t:=nops(s):

for i from 1 to t-2 do

for j from i+1 to t-1 do

for k from j+1 to t do

if s[i]+s[k]=2*s[j] then

RETURN(false):

fi:

od:

od:

od:

RETURN(true):

end:

Algorithm 2: GoodSubset(s) Maple Code
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A.2 A(n) by Brute Force

The following code calculates A(n) using an inefficient brute force method and the
GoodSubset(s) procedure.

A.2.1 A(n) Pseudo-code

Algorithm 3 provides the pseudo-code for calculating A(n) by brute force.

Require: n ≥ 1
1: S:={}
2: for s ⊆ {1, 2, . . . , n} do
3: if GoodSubset(s) then
4: S ← S ∪ {|s|}
5: end if
6: end for
7: return max(S)

Algorithm 3: A(n) Algorithm
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A.2.2 A(n) Maple-code

In Algorithm 4 we present the equivalent Maple Code for Algorithm 3.

A:=proc(n) local T,S,i,l,s:

S:={}:

T:=combinat[powerset]({seq(i,i=1..n)}):

for i from 1 to 2^n do

if GoodSubset(T[i]) then

S:={op(S),T[i]}:

fi:

od:

l:=seq(nops(s), s in S):

RETURN(max(l)):

end:

Algorithm 4: A(n) Maple Code
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A.3 A-Sets by Recursive Methods

This code can be used to calculate A(n) a little more efficiently by using recursive
methods.

RecursiveASet(n, k) produces all A-sets of {1, 2, . . . , n} of size less than or equal
to k. To then calculate A(n) one needs only just look for the largest element of
RecursiveASet(n, n).

Although this method is much quicker in practice then using Algorithm 3/4 , it
is memory intensive as it requires you to store the outputs of RecursiveASet(n, j)
for all j < k (which is why the first line is the command option remember).

A.3.1 RecursiveASet(n, k) Pseudo-code

Algorithm 5 provides the pseudo-code for RecursiveASet(n, k).

Require: n ≥ 1
Require: 1 ≤ k ≤ n

1: option remember
2: if n = 0 or k = 0 then
3: return { } end
4: end if
5: S := RecursiveASet(n− 1, k)
6: T := RecursiveASet(n− 1, k − 1)
7: for t ∈ T do
8: if GoodSubset(t ∪ {n}) then
9: S ← S ∪ {t ∪ {n}}

10: end if
11: end for
12: return S end

Algorithm 5: RecursiveASet(n, k) Algorithm
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A: Code

A.3.2 RecursiveASet(n, k) Maple Code

In Algorithm 6 we present the equivalent Maple Code for Algorithm 5.

RecursiveASet:=proc(n,k) local i,S,T:

option remember:

if n=0 or k=0 then

RETURN({{}}):

fi:

S:=RecursiveASet(n-1,k):

T:=RecursiveASet(n-1,k-1):

for i from 1 to nops(T) do

if GoodSubset(T[i]) then

S:={op(S),T[i]}:

fi:

od:

RETURN(S):

end:

Algorithm 6: RecursiveASet(n, k) Maple Code

A.4 Further Code

There is obviously scope for further programs related to Roth’s Theorem. Included
in the program file are programs to empirically test the main asymptotic in Theorem
1, calculate the Dirichlet constants in Theorem 14, check all the ‘obvious’ statements
in section 2.3 and much more.
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Szeméredi’s Theorem, 36
k = 4, 36
general k, 37

71


	Motivation and Aim
	On Certain Sets of Integers
	Main Result From On Certain Sets of Integers
	Key Definitions (Section 1)
	Obvious Remarks
	Some Number Theory (Section 3)
	Adaptated Hardy-Littlewood Method (Section 4)
	Deducing Asymptotic behaviour of a(x) (Section 5)
	Summary of Roth's Method

	Other Methods of Proof
	Convoluting with a Measure on a Three-term Arithmetic Progression
	Notation
	Method

	Improving Bounds by Considering Bohr Sets
	Lower Bound for A(x) behrend

	Generalisations of Roth's Method
	Gowers' Proof of Szeméredi's Theorem for k=4
	Gowers' Proof of Szeméredi's Theorem for general k
	Roth's Theorem on Prime Numbers
	The Green–Tao Theorem
	The Erdos–Turán Conjecture

	Appendices
	Code
	Three-term Arithmetic Progressions
	GoodSubset(s) Pseudo-code
	GoodSubset(s) Maple Code

	A(n) by Brute Force
	A(n) Pseudo-code
	A(n) Maple-code

	A-Sets by Recursive Methods
	RecursiveASet(n,k) Pseudo-code
	RecursiveASet(n,k) Maple Code

	Further Code

	References
	Index

