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The investigation of the four coulour problem inspired
the developement of a lot of important cembinaterial theories ; ’
in the paper of T. Saaty [&] thirtaen statements equivalent to the ;
existence of a faour colouring for planar maps are guoted. These i
statements are not only concarned with graph theory and some of )
thems seem far from graphs |ike those logking as number theory
problems. |n what follows, we add a statement in the fieid of
format language theory. We show that the 4-colouring of planar
maps i8 equivalent to the equality of two subsets in the cartesian
product of two free maonoTds. Unfortunately this doesn’t give immedia— :
tely new results in the fisld of map celouring as the question of the i
equality of two subsets in the cartesian product of twoe fres monoTds
is undecidable.

Also, the fact that any planar map has a five coulouring,
which is not so difficult to prove, has a fermal! language theaary :
version which seems untractablie.

In order to transform four colourings of maps inte words of
a free monoTd we use the intermediate notion of tree. The firat
construction we give was praposed by F. Jaeger, it allows the
decomposition of a cubic planar map into twe trees, that we discribhe
in part |. The next step consists in coding a tree by a word of the
Lukasiewicz language giving the way to transform problems on trees
into problems on words. .

This communication is cancerned with maps, trees and words ;
it is difficult to give all the dafiniticns concerning these notions,
we wili only restate a few of thems. The bhooks of Q. Ore [51,

O.Knuth [21, M. Lothaire [3] and J. Berstel! [1] contain more
detailed presentation of maps, trees, words and formal languages
respectively.

- Planar maps and flows

Let us state a few definitions concerning maps. A planar
map determines a partition of the plane in a set S of vartices, a
set A of edges and a set F of faces . Each vertex is a point of




the piane, sach edpe |8 &n open curve having two vertices as and
points and esach face is an cpen gimply connected domain pounded
by edges and vertices. Each edge is in the baundary of two faces ;
in the sequel we suppose that these faces are distinct thus the
map has no isthmus. '

A colouring of the faces of a map consists In A mapping of F
ina finlte set of colours in such a way that any two faces having a
common edge in thelr bourdaries are mapped into different colours.

The degree of a vertex of a map is equal to the number of
edges having it as end point. A map is said cubie If all its vertices
have degree three.

An prientation of a map I8 determined by chooslng for each
sdge a an jnitial end oin i(a) and a terminal end point t(a).

" .

A k—=flow on an oriented map is a mapping ® of the set of
edges into the ring 2/k2 of integers moduls k such that, for any
vertex 8, we have :

E pla) = E v(a) (mod k)

i (a)=8 t(ay-s

A non—zerp k-flow iz a flow p for which p(a) is different from 0 for
any edge a. In fact, it is better to say a nowhere zero k—flow, but
non zeto is shorter. ‘

Remark that the existence of a non—zero k—~flow for an oriented
map depends only on the map iteelf and not on the arisntatien choosen.
As if M is obtained frem ™M by changing the orlentation of the
edge a, then, it ¢ 1Is a non-zerg k-flow on M, the mapping »’
defined below is a non-zera k-flow on M’

p' (a) = p{a) Tfor each a # ag and g’ {(ag) = —plag)

1f an oriented map has a coeleuring congisting in a mapping of the set
of faces in €1,2,...,kK} then one can construct a non-zero k-flow by
defining w®@(a) as the difference (molule k) between the coulours of
the faces centaining a ih their boundary (the orientation of A

allows to distinguish between the face at the laft of 2 and that

at the right of a). In fact, this conatruction can be reversed giving
the following theorem which seems to be due to W.F. Tutte [71.
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Iheorsm 1 : The  following statements ara.aquivalaht :

(1) - Every planar map with no isthmus is face colourable
o in four colours.

{2) Every p}anar map with ne isthmus has a non-zero 4-flow.
(3) Every cubi¢ planar map with no isthmus has a non-zero
4-f | ow.

~ll- Elowe in ginarz trees :

In what fullows we coneider that a binarv tres is determined

‘ by a gt of nodes, one of them being the root r, such that sach node,
axcept the root, has iwo sons or no son at all ; between the two song
ef a node one is distinguished as the leff se¢ ; the other being the
right one. A node which has no son is called a teaf. Generally, the
root of a blnary tree has two sons, in order to simplrfy further
devalopments we suppose that It has only one son (or ne sen if the
tree reduces to ry. The gize of a binary tree is equal to the total
number of nodes 3 with our conventions concerning the rost this size
equals twice the number of leaves of the tree.

‘Figurar1 givas ah.exampla cf a binary tree of siza 12.

The Isft (resp. right) subtree below nnde h is recurgively
defined In the foilowing way :

If n is a teaf then this left (resp. right) subtree is empty,
if it 53 not a !eaf then it consists of the |left aon of n {resp. the
right son of. n) and of tha left and right subtrees beiow this left "
(resp. right) son. )

Bgiuw the root there is= a subtree consisting of all the other
nodes. v : )

The g[gorder sgggance of the vertices uf a tres is obtained
by concatenating :

. the root r, its son 8, the preorder sequance of the left

- subtree below s, the preorder sequsnce of the right aubtree halow =.
'This sequence determines a tota! order on the set of nodeg, Iin the
sequel whan we will speak of - _:flggi this will mean the ! laaf
in the preorder sequence. In figure 1 the. .nodes are numbered as they
appear in the preaordar sequence : the first leaf ig numberad 3,the
second one |3 numberad 6 and tha 6! gne 12.

A k-flow in a binary tree is given by a mapping ¥ of the sst
of nodes in the set Z/kZ of intsgars moludeo k, such that the flow
tn a node which is not a leaf is equal to the sum {meduio k):ef the
flows of its sons. Note that a f!nw is complately dgterm;nad by jts




value on t leaves . A flow ¥ is non zaro if ¥(n) is
différent from zero for any nede n. Figure 2 gives a nen zero 4-ffow
for the tree in figure 1.

Given two binary trees 4; and 4, of the same giza, two flows

¥, on 4, and ¥, on 4, are said to be compatihle If the fiows on the
roots are the same (¥(r,) = ¥(r,)) and if the flow on the i'" leaf
of 4, is squal to the flow on the it jeaf of 4, for all leaves.

Figure 3 gives a binary tree of same size than that of figure 2 and a
fiow compatible with that previcusly given.

Theorem 2 ([4), see alse [6]1) - The two following statements are
aquivalent

(1) Every planar map with no isthmus is face colourable in
4 colours.

Two binary trees of the same size have two non—zsro
4-flows which are compatible.

(4)

IS

Proof. ¥We use the conditien (3) of theorem 1. We consider here pianar
cubic mape with ne isthmus such that any union of two or thres

faces (with their boundaries) which are two by two adjacent (i.e.

with a common boundary sdge) is a simply connected domain. Then,

it* 8 easy to prove that if any planar cubic map with ne isthmus
verifying this condition is face colourable in four colours (or

admits a non-zero 4-flow}, it’s the same for any planar cubic map

with no isthmus. Let C bea a planar cubic map with ne ithmus

verifying the previous condition and let c* be the dual of C

(ite vertices correspond to the faces of C and two vertices are
Joigned by an edge if the corresponding faces have a boundary edge

in common). In C* all the faces are bounded by three edges az C

#a3 cubic and there is noc cycle which contains ¢ne, two or three

edges excepted the cycles composed by the boundaries of the faces

hich are triangles. Thus by a thecrem of Whitney [8], c* has a
hamiltanian cycle.

This hamiltonian ¢ycle of ¢* determines in C a closed curve
I'which go through any face cutting some edges : thus C is decompoaed
inh a binary tree in the interior of T and a binary tree in its
exterior. The leaves of these binary trees are the points in which I
intersects the edges of C, and a root is choosen among them.

Then, it is clear that the existence of a non-zero 4-fiow for
-G is-mguivalent to that of two compatible non zero 4-flows for the
trees obtained in the decomposition :

The flow of a leaf of the trees is8 equal to the flow in the
cerresponding edge intersected by T, and the flow (in the tres) of
the other nodes |s determined by the flow (in the map) in the edge
‘-joining it to its "father". This constructlon can clearly be reversed.
[=]
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111 - Coding binary frees
Let X and Y be the following alphabets :
X = {x,x} Y =‘{x,x1,x2,x3}

Iu,anyghinaxygjxgsgisgnagpcidtad a word of X* considering

its preorder sequence of nedes and writing an % for any leaf and

an x for a node which is not a leaf, nothing being written for the
root. Clearly the word corresponding to a tree of size 2k has length
2k-1 , kK occurrences of x and ¥-1 of x. Moreover we have

Propositien 1 - The set of words associated with binary trees |8
a context free language L generated by the grammar :

§ -+ xEE E -+ x

Elggi. This proposition is deduced from the fact that the coding
process considers firat the son 8 of the root;then,if s is not a leaf,
jhe left subtres balow this son, then the right subtres below |t
(explaining the first rule) ; when 8 is a leaf then the code i8

% (explaining the second ruie).

) In order to code a binary tree with a flow it is only necessary
to reming the value of this flow on the |leaves, as remarked. in
paragraph 1!. Then we use the following process : from the preorder
ssguence of the vertices of the tree, write x for any node which is
not the root and x; for a leaf having a flow equail to .

This gives :
Proposition - the set of words coding binary trees having a non
ZBrO 4—flgw with vaiue sgual to 1 on the root is a context free ’
tanguage L, given by the grammat (51 ia the axiom) :
B, x & & & »xE& & & X
Ez*x£1 £, 52-’*@:3&3 E, = %,

E

3 -+ X E1 ﬁz 53 + X Ez E‘ 53 - xS .

Proof - Simitar consideratlions te that given for the procf of

proposition 1 give the result. It suffices to note that the words

generated using axiom &; code the binary trees having a flow with
value 1| on the root ; and that &3 - x Ey &k i3 a rule then
j+k = i (modulo 4) as the flow in a node is equal to the sum of the

flows of its sons.




IV - A language in ¥ o x*

in this part we use the definitions and nétations ef [1].
Let ® be the morphism of Y* in:itself defined by

pi(x) =1 , p(x1) = i ¢+ p forgetas the x's and conserves the x; .
This morphism can be extended in a morphism of ¥ x ¥* in itself
by : '

p((f,@)) = (p(f),pla)).

Let ¥ be the morphism of ¥* in X* defined by ¥(x)= x and
¥(xy) = x for i=1,2,8 : ¥ replaces al! the letters x; by X,
thus if f is an element of L coding a binary tree with a 4-Tlow

then ¥(f) code the same binary tree forgetting the flow.

Let A& be the subset of ¥* x ¥Y* consisting of all the pairs
(u,u) ; cleariy A I2 a rational subset of v* x ¥* as :

A= {(xg,xg)) i=1,2,3% .,
%
Let D be the subset of X* x X* consisting of all the pairs
(f,g) such that |f] = lgl , D is alsec a rational subset of
x* x x* as
D= L(xx) , (x,%), (x,x), (x,x)3"
Theorem 3 - The twe foilowing statements are equivalent !

m Every planar map with no isthmus has a face colouring
in four colours. ‘

(5) The two following subsets of x* x x* are equal : {

P=y¥ (p 18 n (Ly x Ly))
Q= (LxL) nbD.

Proof. Of course we wlll show that (5) i= equivalent to the statement
(4) of theorem 2.

Two binary trees d, and o, of the same size are coded by two’
words f and g euch that |fl = lgl thus~ (f,g) is an element
of Q.

A non zero 4-flow on a binary tree coded by f gives a cedeu
of Y* such that ¥(u) = f ; the same i3 true for a binary tree coded
by @ a@iving v such that ¥{v) = g. The order in which are met the
¥y in u and in v is the same as that of the leaves in the preorder
sequences of the vertices of the two trees ; the two 4-flows are thus !
compatible if w(u) = p{v) or equivalentely if wp((u,v)) € A.

Thus two binary trees coded by f and g admit compatible
non-zero 4-flows if and only if it exists two words u and v
af L  such that

¥{u,v) = (f,g) 3 wplu,v) €A
which ands ths proof.



Figure 1l : A binary tree of size 12 in which the
vertices are numbered as they appear
in the preorder sequence. .




A non-zero 4-flow for the tree given in figure 1.
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Figure 3 : A 4-flow compatible with that given in figure 2
for a tree of the same size.
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Figure 4 :

A cubic map C and the trees cbtained by its
decomposition using a hamiltonian cycle of C.
Note that the two trees obtained are those of
figqures 2 and 3.



REFERENCES _

[11 J. BERSTEL , Transductions and context-free languages ;
: Teubner, Stuttgart (1879).

'fZJ. D, KNUIﬂgdgglhsgaLIAnifcomputerfbtogramm+ng'; Vol—5 Addiaon;;*g;f%%gf
\ " ‘ Wesley Reading t1968).7 ' R
131 M. LOTHAIRE , Combinatarics on worde ; Addison.nglay.
fa1 F. JAEGER , Oral -cummunicatiﬁn. _ |
fSl 0..0RE , the four coiour problem ; Academic Prass,

New-York (1967). :

£61 T. SAATY , thirteen colorful variations on Guthrie’s four
‘ celour conjecture ; Amer. Math. Morthly 78 (1872),
PR. 2'143. .
L7y W.T. TUTTE , A contribution to the theory of chromatic

polynnm1ais ; Car. J. Math. (1954) ; pp. 80-91.

81 H. WHITNEY , A theoram on;graphs ; Ann. Matﬁ. 32 (1831),
’ : pp. 378-380.




