
Experimental Methods in Number Theory and
Combinatorics

Robert Dougherty-Bliss
Rutgers University
March 4, 2024

1

Origami

Definition
A circular binary array is valid if it contains exactly two more 0’s than 1’s, or
vice versa.

Left: A valid array of size 10. Right: An invalid array of size 10.

2

The all equal angles graph

The graph A2n has one vertex for every valid array of length 2n.

Edges are formed by flipping adjacent bits (if possible).

Two adjacent vertices in A4 and their flipped bits.

3

Question
How many edges are there in A2n?

Sequence begins:

2,16, 84, 400, 1820, 8064, 35112, 151008,

643500, 2722720, 11454872, 47969376, 200107544, . . .

Conjecture (Me)

(n + 1)(3n − 2)
2n − 1

(
2n

n − 1

)
.

4

Question
How many edges are there in A2n?

Sequence begins:

2,16, 84, 400, 1820, 8064, 35112, 151008,

643500, 2722720, 11454872, 47969376, 200107544, . . .

Conjecture (Me)

(n + 1)(3n − 2)
2n − 1

(
2n

n − 1

)
.

4

Formula is extremely easy to find!

Many programs can guess recurrences given data.

Here, the resulting recurrence

a(n + 1) =
2(3n + 1)(2n − 1)

n(3n − 2)
a(n)

is easy to solve.

5

Rest of the talk

1. Primality tests and pseudoprimes

2. Hardinian arrays

6

Primality tests
(with Doron Zeilberger)

Perrin numbers

P(0) = 3 P(1) = 0 P(2) = 2

P(n) = P(n − 2) + P(n − 3)

Counts arrangements of people into n chairs at a circular table where:

• No one is sitting next to another person (social distancing)

• No one else could be sat down (maximal arrangement)

Two full tables with 13 chairs. From Vince Vatter.

7

Perrin numbers

P(0) = 3 P(1) = 0 P(2) = 2

P(n) = P(n − 2) + P(n − 3)

Counts arrangements of people into n chairs at a circular table where:

• No one is sitting next to another person (social distancing)

• No one else could be sat down (maximal arrangement)

Two full tables with 13 chairs. From Vince Vatter.

7

Perrin numbers

P(0) = 3 P(1) = 0 P(2) = 2

P(n) = P(n − 2) + P(n − 3)

Counts arrangements of people into n chairs at a circular table where:

• No one is sitting next to another person (social distancing)

• No one else could be sat down (maximal arrangement)

Two full tables with 13 chairs. From Vince Vatter.

7

Theorem
If p is prime, then p | P(p).

“Proof”.
Easy to show that P(n) = αn + βn + γn, where α, β, and γ are roots of
x3 − x − 1.

P(p) = αp + βp + γp

≡ (α + β + γ)p (mod p)

= 0

This gives a primality test.

To check if n is prime, check whether n divides P(n).

8

Theorem
If p is prime, then p | P(p).

“Proof”.
Easy to show that P(n) = αn + βn + γn, where α, β, and γ are roots of
x3 − x − 1.

P(p) = αp + βp + γp

≡ (α + β + γ)p (mod p)

= 0

This gives a primality test.

To check if n is prime, check whether n divides P(n).

8

Psuedoprimes

Composites that pass the test are called pseudoprimes.

Perrin couldn’t find any pseudoprimes in 1899.

Adams and Shanks found the first one in 1982:

(521)2 = 271441.

(My laptop finds this in 0.2 seconds.)

Grantham proved that there are infinitely many in 2006:

271441, 904631, 16532714, 24658561, 27422714, 27664033, . . .

9

Psuedoprimes

Composites that pass the test are called pseudoprimes.

Perrin couldn’t find any pseudoprimes in 1899.

Adams and Shanks found the first one in 1982:

(521)2 = 271441.

(My laptop finds this in 0.2 seconds.)

Grantham proved that there are infinitely many in 2006:

271441, 904631, 16532714, 24658561, 27422714, 27664033, . . .

9

Psuedoprimes

Composites that pass the test are called pseudoprimes.

Perrin couldn’t find any pseudoprimes in 1899.

Adams and Shanks found the first one in 1982:

(521)2 = 271441.

(My laptop finds this in 0.2 seconds.)

Grantham proved that there are infinitely many in 2006:

271441, 904631, 16532714, 24658561, 27422714, 27664033, . . .

9

Linear tests

This idea works in a more general setting.

1. Fix an integer coefficient polynomial

p(x) = xd − exd−1 − · · · + a1x − a0

with roots α1, . . . , αd .

2. Define the integer sequence

b(n) = αn
1 + αn

2 + · · · + αn
d .

(You can compute b(n) without knowing the roots.)

3. Then
b(p) ≡ e (mod p)

for any prime p.

10

Linear tests

This idea works in a more general setting.

1. Fix an integer coefficient polynomial

p(x) = xd − exd−1 − · · · + a1x − a0

with roots α1, . . . , αd .

2. Define the integer sequence

b(n) = αn
1 + αn

2 + · · · + αn
d .

(You can compute b(n) without knowing the roots.)

3. Then
b(p) ≡ e (mod p)

for any prime p.

10

Linear tests

This idea works in a more general setting.

1. Fix an integer coefficient polynomial

p(x) = xd − exd−1 − · · · + a1x − a0

with roots α1, . . . , αd .

2. Define the integer sequence

b(n) = αn
1 + αn

2 + · · · + αn
d .

(You can compute b(n) without knowing the roots.)

3. Then
b(p) ≡ e (mod p)

for any prime p.

10

Linear tests

This idea works in a more general setting.

1. Fix an integer coefficient polynomial

p(x) = xd − exd−1 − · · · + a1x − a0

with roots α1, . . . , αd .

2. Define the integer sequence

b(n) = αn
1 + αn

2 + · · · + αn
d .

(You can compute b(n) without knowing the roots.)

3. Then
b(p) ≡ e (mod p)

for any prime p.

10

We searched for polynomials that gave big pseudoprimes.

The sequence b(n) with generating function

3x4 + 5x2 + 6x − 7
4x7 + x4 + x2 + x − 1

.

satisfies b(p) ≡ 1 (mod p) for all primes p.

Couldn’t find any pseudoprimes up to 1.5 × 106. . .

. . . because the first one is 1,531,398.

11

We searched for polynomials that gave big pseudoprimes.

The sequence b(n) with generating function

3x4 + 5x2 + 6x − 7
4x7 + x4 + x2 + x − 1

.

satisfies b(p) ≡ 1 (mod p) for all primes p.

Couldn’t find any pseudoprimes up to 1.5 × 106. . .

. . . because the first one is 1,531,398.

11

Our stupidity

b(n) ∼ (1.823)n

b(1, 531, 398) ∼ 10399287

Arithmetic with 400,000 digits is very slow.

Computing b(1), b(2), . . . , b(n) directly takes O(n3) time.

• Bit size at step k : O(k)

• Multiplications at that step: O(k2)

• Total runtime for b(n):
∑

k O(k2) = O(n3)

12

Manuel Kauers suggested some improvements.

• Compute only b(n) mod n (bit size restricted to O(log n))

• Iterated squaring (only O(log n) steps)

• Write in C (10x-20x constant improvements)

• Parallelize search (more constant reductions)

New runtime: O((log n)3n), with a much smaller constant.

13

Manuel Kauers suggested some improvements.

• Compute only b(n) mod n (bit size restricted to O(log n))

• Iterated squaring (only O(log n) steps)

• Write in C (10x-20x constant improvements)

• Parallelize search (more constant reductions)

New runtime: O((log n)3n), with a much smaller constant.

13

Manuel Kauers suggested some improvements.

• Compute only b(n) mod n (bit size restricted to O(log n))

• Iterated squaring (only O(log n) steps)

• Write in C (10x-20x constant improvements)

• Parallelize search (more constant reductions)

New runtime: O((log n)3n), with a much smaller constant.

13

Manuel Kauers suggested some improvements.

• Compute only b(n) mod n (bit size restricted to O(log n))

• Iterated squaring (only O(log n) steps)

• Write in C (10x-20x constant improvements)

• Parallelize search (more constant reductions)

New runtime: O((log n)3n), with a much smaller constant.

13

All pseudoprimes up to 1012 ≈ 1.82 × 239:

1, 531, 398

114, 009, 582

940, 084, 647

4, 206, 644, 978

7, 962, 908, 038

20, 293, 639, 091

41, 947, 594, 698

(It took around 2.5 years of computer time to find these.)

14

We found much better tests.

Here are two examples.

8x4 + 10x3 + 21x2 − 5
6x5 + 8x4 + 5x3 + 7x2 − 1

5x4 + 8x3 + 3x2 + 4x − 5
2x5 + 5x4 + 4x3 + x2 + x − 1

Test First pseudoprime

Fermat 561
Perrin (521)2 = 271,441

Our test 1,531,398
Our test ′ 24,830,047
Our test ′′ 50,768,194

15

We found much better tests.

Here are two examples.

8x4 + 10x3 + 21x2 − 5
6x5 + 8x4 + 5x3 + 7x2 − 1

5x4 + 8x3 + 3x2 + 4x − 5
2x5 + 5x4 + 4x3 + x2 + x − 1

Test First pseudoprime
Fermat 561
Perrin (521)2 = 271,441

Our test 1,531,398

Our test ′ 24,830,047
Our test ′′ 50,768,194

15

We found much better tests.

Here are two examples.

8x4 + 10x3 + 21x2 − 5
6x5 + 8x4 + 5x3 + 7x2 − 1

5x4 + 8x3 + 3x2 + 4x − 5
2x5 + 5x4 + 4x3 + x2 + x − 1

Test First pseudoprime
Fermat 561
Perrin (521)2 = 271,441

Our test 1,531,398
Our test ′ 24,830,047
Our test ′′ 50,768,194

15

0 50 100 150 200

0

25

50

75

100

125

150

175

200

2

3

4

5

6

7

Log-heatmap of the first pseudoprime of x2 − ax − b.

16

Hardinian arrays
(with Manuel Kauers)

More guessing

Kauers and Koutschan searched the OEIS for recurrences using a novel
lattice reduction technique.

This produced:

• Some junk.

• Some known or easy recurrences.

• About 20 interesting recurrences that no one knew.

D-finite
a(n) is D-finite if

pd (n)a(n + d) + pd−1(n)a(n + d − 1) + · · · + p0(n)a(n) = 0

for some polynomials pi(n) and all n ≥ 0.

17

More guessing

Kauers and Koutschan searched the OEIS for recurrences using a novel
lattice reduction technique.

This produced:

• Some junk.

• Some known or easy recurrences.

• About 20 interesting recurrences that no one knew.

D-finite
a(n) is D-finite if

pd (n)a(n + d) + pd−1(n)a(n + d − 1) + · · · + p0(n)a(n) = 0

for some polynomials pi(n) and all n ≥ 0.

17

Hardinian arrays

Definition (R.H. Hardin)
Let H1(n, k) be the number of n × k arrays which obey the following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values by 0 or
1.

• Every value must be within 1 of its king-distance from the top-left corner.

• The bottom-right entry equals its king-distance minus 1.

18

Hardinian arrays

Definition (R.H. Hardin)
Let H1(n, k) be the number of n × k arrays which obey the following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values by 0 or
1.

• Every value must be within 1 of its king-distance from the top-left corner.

• The bottom-right entry equals its king-distance minus 1.

18

Hardinian arrays

Definition (R.H. Hardin)
Let H1(n, k) be the number of n × k arrays which obey the following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values by 0 or
1.

• Every value must be within 1 of its king-distance from the top-left corner.

• The bottom-right entry equals its king-distance minus 1.

18

Hardinian arrays

Definition (R.H. Hardin)
Let H1(n, k) be the number of n × k arrays which obey the following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values by 0 or
1.

• Every value must be within 1 of its king-distance from the top-left corner.

• The bottom-right entry equals its king-distance minus 1.

18

Hardinian arrays

Definition (R.H. Hardin)
Let H1(n, k) be the number of n × k arrays which obey the following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values by 0 or
1.

• Every value must be within 1 of its king-distance from the top-left corner.

• The bottom-right entry equals its king-distance minus 1.

18

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Example for H1(6,5)

0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4

19

Results

Hardin conjectured

H1(n, n) =
1
3
(4n−1 − 1),

and also that H1(n, k) is a linear polynomial in n for n ≥ k .

Theorem (RDB, Kauers)
For n ≥ k ≥ 1,

H1(n, k) = 4k−1(n − k) +
1
3
(4k−1 − 1).

20

Results

Hardin conjectured

H1(n, n) =
1
3
(4n−1 − 1),

and also that H1(n, k) is a linear polynomial in n for n ≥ k .

Theorem (RDB, Kauers)
For n ≥ k ≥ 1,

H1(n, k) = 4k−1(n − k) +
1
3
(4k−1 − 1).

20

The diagonal case

0 1 1 2 3 4 5

1 1 2 2 3 4 5

2 2 2 2 3 4 5

2 2 3 3 3 4 5

3 3 3 3 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5

Every valid array can be partitioned into “regions” for each value.

H1(n, n) is the number of tuples of nonintersecting paths from the first column
to the first row.

21

The diagonal case

0 1 1 2 3 4 5

1 1 2 2 3 4 5

2 2 2 2 3 4 5

2 2 3 3 3 4 5

3 3 3 3 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5

Every valid array can be partitioned into “regions” for each value.

H1(n, n) is the number of tuples of nonintersecting paths from the first column
to the first row.

21

The diagonal case

0 1 1 2 3 4 5

1 1 2 2 3 4 5

2 2 2 2 3 4 5

2 2 3 3 3 4 5

3 3 3 3 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5

Every valid array can be partitioned into “regions” for each value.

H1(n, n) is the number of tuples of nonintersecting paths from the first column
to the first row.

21

Path counting

There is a well-known theorem to turn problems about nonintersecting paths
into problems about determinants.

Theorem (Gessel–Viennot)
Fix n distinct start points xk and n distinct end points yk .

Let A be the n × n matrix where Aij is the number of lattice paths from xi to
yj .

The determinant of A gives the number of tuples of n non-intersecting paths
which take xi to yi .

Plan of attack: Find A and compute its determinant.

22

Path counting

There is a well-known theorem to turn problems about nonintersecting paths
into problems about determinants.

Theorem (Gessel–Viennot)
Fix n distinct start points xk and n distinct end points yk .

Let A be the n × n matrix where Aij is the number of lattice paths from xi to
yj .

The determinant of A gives the number of tuples of n non-intersecting paths
which take xi to yi .

Plan of attack: Find A and compute its determinant.

22

Path counting

There is a well-known theorem to turn problems about nonintersecting paths
into problems about determinants.

Theorem (Gessel–Viennot)
Fix n distinct start points xk and n distinct end points yk .

Let A be the n × n matrix where Aij is the number of lattice paths from xi to
yj .

The determinant of A gives the number of tuples of n non-intersecting paths
which take xi to yi .

Plan of attack: Find A and compute its determinant.

22

Path counting

There is a well-known theorem to turn problems about nonintersecting paths
into problems about determinants.

Theorem (Gessel–Viennot)
Fix n distinct start points xk and n distinct end points yk .

Let A be the n × n matrix where Aij is the number of lattice paths from xi to
yj .

The determinant of A gives the number of tuples of n non-intersecting paths
which take xi to yi .

Plan of attack: Find A and compute its determinant.

22

0 1 1 2 3 4 5

1 1 2 2 3 4 5

2 2 2 2 3 4 5

2 2 3 3 3 4 5

3 3 3 3 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5

There are actually several matrices, because start and stop points are not
fixed.

The first row and column each have exactly one “unused” position, so there is
a matrix for each pair of position choices.

23

Sketch of computational proof for the diagonal case

H1(n, n) =
n−2∑
i=0

n−2∑
j=0

det Aj
i

Possible to evaluate det Aj
i explicitly:

H1(n, n) =
n−2∑
i=0

n−2∑
j=0

n−1∑
k=0

(
i
k

)(
j
k

)
.

24

Sketch of computational proof for the diagonal case

H1(n, n) =
n−2∑
i=0

n−2∑
j=0

det Aj
i

Possible to evaluate det Aj
i explicitly:

H1(n, n) =
n−2∑
i=0

n−2∑
j=0

n−1∑
k=0

(
i
k

)(
j
k

)
.

24

Sketch of computational proof for the diagonal case

s(n) := H1(n, n) =
n−2∑
i=0

n−2∑
j=0

n−1∑
k=0

(
i
k

)(
j
k

)
.

Could probably do this by hand, but we didn’t try.

D-finite algorithms provably compute a recurrence.

s(n + 2) = 5s(n + 1) − 4s(n).

The closed form is easy from here.

25

Sketch of computational proof for the diagonal case

s(n) := H1(n, n) =
n−2∑
i=0

n−2∑
j=0

n−1∑
k=0

(
i
k

)(
j
k

)
.

Could probably do this by hand, but we didn’t try.

D-finite algorithms provably compute a recurrence.

s(n + 2) = 5s(n + 1) − 4s(n).

The closed form is easy from here.

25

Infinite families

Hardin submitted a family of sequences Hr (n, k).

Definition (R.H. Hardin)
Let Hr (n, k) be the number of n × k arrays which obey the following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values by 0 or
1.

• Every value must be within r of its king-distance from the top-left corner.

• The bottom-right entry equals its king-distance minus r .

26

Infinite families

Hardin submitted a family of sequences Hr (n, k).

Definition (R.H. Hardin)
Let Hr (n, k) be the number of n × k arrays which obey the following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values by 0 or
1.

• Every value must be within r of its king-distance from the top-left corner.

• The bottom-right entry equals its king-distance minus r .

26

Theorem (RDB, Kauers)
Hr (n, n) is D-finite for all r ≥ 1.

Proof is non-constructive application of an identity due to Jacobi.

Constructive proof exists in principle, but too expensive beyond r = 2.

The r = 2 case requires computing recurrences satisfied by

S(n) :=
∑
i1≥0

∑
i2>i1

∑
j1≥0

∑
j2>j1

n∑
u=0

n∑
v=0

(
u
i1

)(
u
j1

)(
v
i2

)(
v
j2

)
,

and it gets worse from there.

27

Theorem (RDB, Kauers)
Hr (n, n) is D-finite for all r ≥ 1.

Proof is non-constructive application of an identity due to Jacobi.

Constructive proof exists in principle, but too expensive beyond r = 2.

The r = 2 case requires computing recurrences satisfied by

S(n) :=
∑
i1≥0

∑
i2>i1

∑
j1≥0

∑
j2>j1

n∑
u=0

n∑
v=0

(
u
i1

)(
u
j1

)(
v
i2

)(
v
j2

)
,

and it gets worse from there.

27

Conjectures

For sufficiently large n:

H2(n, 1) =
1
2

n2 −
3
2

n + 1

H2(n, 2) = 4n2 − 20n + 25

H2(n, 3) = 40n2 − 279n + 497

H2(n, 3) = 480n2 − 4354n + 10098

H2(n, 4) = 6400n2 − 71990n + 206573

H2(n, 5) = 90112n2 − 1212288n + 4150790

H2(n, 6) = 1306624n2 − 20460244n + 81385043

Similar conjectures for all Hr (n, k), but no proofs!

28

Summary

Many more projects, not enough time.

• Irrationality proofs

• Summation, integration

• Lattice path enumeration

• Continued fractions

29

Committee collaboration distances

RDB:

* Manuel Kauers

* Doron Zeilberger:

* Vladimir Retakh

Christian Krattenthaler:

Henk Hollmann:

* Swee Hong Chan

30

	Primality tests (with Doron Zeilberger)
	Hardinian arrays (with Manuel Kauers)

