Experimental Methods in Number Theory and Combinatorics

Robert Dougherty-Bliss
Rutgers University
March 4, 2024

Origami

Definition

A circular binary array is valid if it contains exactly two more 0's than 1's, or vice versa.

Left: A valid array of size 10. Right: An invalid array of size 10.

The all equal angles graph

The graph $A_{2 n}$ has one vertex for every valid array of length $2 n$.
Edges are formed by flipping adjacent bits (if possible).

Two adjacent vertices in A_{4} and their flipped bits.

Question

How many edges are there in $A_{2 n}$?

Sequence begins:
$2,16,84,400,1820,8064,35112,151008$, 643500, 2722720, 11454872, 47969376, 200107544, ...

Question

How many edges are there in $A_{2 n}$?

Sequence begins:
2,16, 84, 400, 1820, 8064, 35112, 151008, 643500, 2722720, 11454872, 47969376, 200107544, ...

Conjecture (Me)

$$
\frac{(n+1)(3 n-2)}{2 n-1}\binom{2 n}{n-1}
$$

Formula is extremely easy to find!
Many programs can guess recurrences given data.
Here, the resulting recurrence

$$
a(n+1)=\frac{2(3 n+1)(2 n-1)}{n(3 n-2)} a(n)
$$

is easy to solve.

Rest of the talk

1. Primality tests and pseudoprimes
2. Hardinian arrays

Primality tests

(with Doron Zeilberger)

Perrin numbers

$$
\begin{aligned}
& P(0)=3 \quad P(1)=0 \quad P(2)=2 \\
& P(n)=P(n-2)+P(n-3)
\end{aligned}
$$

Counts arrangements of people into n chairs at a circular table where:

Perrin numbers

$$
\begin{aligned}
& P(0)=3 \quad P(1)=0 \quad P(2)=2 \\
& P(n)=P(n-2)+P(n-3)
\end{aligned}
$$

Counts arrangements of people into n chairs at a circular table where:

- No one is sitting next to another person (social distancing)

Perrin numbers

$$
\begin{aligned}
& P(0)=3 \quad P(1)=0 \quad P(2)=2 \\
& P(n)=P(n-2)+P(n-3)
\end{aligned}
$$

Counts arrangements of people into n chairs at a circular table where:

- No one is sitting next to another person (social distancing)
- No one else could be sat down (maximal arrangement)

Two full tables with 13 chairs. From Vince Vatter.

Theorem

If p is prime, then $p \mid P(p)$.

"Proof".

Easy to show that $P(n)=\alpha^{n}+\beta^{n}+\gamma^{n}$, where α, β, and γ are roots of $x^{3}-x-1$.

Theorem

If p is prime, then $p \mid P(p)$.

"Proof".

Easy to show that $P(n)=\alpha^{n}+\beta^{n}+\gamma^{n}$, where α, β, and γ are roots of $x^{3}-x-1$.

$$
\begin{aligned}
P(p) & =\alpha^{p}+\beta^{p}+\gamma^{p} \\
& \equiv(\alpha+\beta+\gamma)^{p} \quad(\bmod p) \\
& =0
\end{aligned}
$$

This gives a primality test.
To check if n is prime, check whether n divides $P(n)$.

Psuedoprimes

Composites that pass the test are called pseudoprimes.
Perrin couldn't find any pseudoprimes in 1899.

Psuedoprimes

Composites that pass the test are called pseudoprimes.
Perrin couldn't find any pseudoprimes in 1899.
Adams and Shanks found the first one in 1982:

$$
(521)^{2}=271441 .
$$

(My laptop finds this in 0.2 seconds.)

Psuedoprimes

Composites that pass the test are called pseudoprimes.
Perrin couldn't find any pseudoprimes in 1899.
Adams and Shanks found the first one in 1982:

$$
(521)^{2}=271441 .
$$

(My laptop finds this in 0.2 seconds.)
Grantham proved that there are infinitely many in 2006:
$271441,904631,16532714,24658561,27422714,27664033, \ldots$

Linear tests

This idea works in a more general setting.

Linear tests

This idea works in a more general setting.

1. Fix an integer coefficient polynomial

$$
p(x)=x^{d}-e x^{d-1}-\cdots+a_{1} x-a_{0}
$$

with roots $\alpha_{1}, \ldots, \alpha_{d}$.

Linear tests

This idea works in a more general setting.

1. Fix an integer coefficient polynomial

$$
p(x)=x^{d}-e x^{d-1}-\cdots+a_{1} x-a_{0}
$$

with roots $\alpha_{1}, \ldots, \alpha_{d}$.
2. Define the integer sequence

$$
b(n)=\alpha_{1}^{n}+\alpha_{2}^{n}+\cdots+\alpha_{d}^{n} .
$$

(You can compute $b(n)$ without knowing the roots.)

Linear tests

This idea works in a more general setting.

1. Fix an integer coefficient polynomial

$$
p(x)=x^{d}-e x^{d-1}-\cdots+a_{1} x-a_{0}
$$

with roots $\alpha_{1}, \ldots, \alpha_{d}$.
2. Define the integer sequence

$$
b(n)=\alpha_{1}^{n}+\alpha_{2}^{n}+\cdots+\alpha_{d}^{n} .
$$

(You can compute $b(n)$ without knowing the roots.)
3. Then

$$
b(p) \equiv e \quad(\bmod p)
$$

for any prime p.

We searched for polynomials that gave big pseudoprimes.
The sequence $b(n)$ with generating function

$$
\frac{3 x^{4}+5 x^{2}+6 x-7}{4 x^{7}+x^{4}+x^{2}+x-1} .
$$

satisfies $b(p) \equiv 1(\bmod p)$ for all primes p.
Couldn't find any pseudoprimes up to $1.5 \times 10^{6} \ldots$

We searched for polynomials that gave big pseudoprimes.
The sequence $b(n)$ with generating function

$$
\frac{3 x^{4}+5 x^{2}+6 x-7}{4 x^{7}+x^{4}+x^{2}+x-1} .
$$

satisfies $b(p) \equiv 1(\bmod p)$ for all primes p.
Couldn't find any pseudoprimes up to $1.5 \times 10^{6} \ldots$
... because the first one is $1,531,398$.

Our stupidity

$$
\begin{aligned}
b(n) & \sim(1.823)^{n} \\
b(1,531,398) & \sim 10^{399287}
\end{aligned}
$$

Arithmetic with 400,000 digits is very slow.
Computing $b(1), b(2), \ldots, b(n)$ directly takes $O\left(n^{3}\right)$ time.

- Bit size at step k : $O(k)$
- Multiplications at that step: $O\left(k^{2}\right)$
- Total runtime for $b(n): \sum_{k} O\left(k^{2}\right)=O\left(n^{3}\right)$

Manuel Kauers suggested some improvements.

- Compute only $b(n) \bmod n$ (bit size restricted to $O(\log n))$

Manuel Kauers suggested some improvements.

- Compute only b(n) mod n (bit size restricted to $O(\log n))$
- Iterated squaring (only $O(\log n)$ steps)

Manuel Kauers suggested some improvements.

- Compute only b(n) mod n (bit size restricted to $O(\log n))$
- Iterated squaring (only $O(\log n)$ steps)
- Write in C (10x-20x constant improvements)

Manuel Kauers suggested some improvements.

- Compute only $b(n) \bmod n($ bit size restricted to $O(\log n))$
- Iterated squaring (only $O(\log n)$ steps)
- Write in C (10x-20x constant improvements)
- Parallelize search (more constant reductions)

New runtime: $O\left((\log n)^{3} n\right)$, with a much smaller constant.

All pseudoprimes up to $10^{12} \approx 1.82 \times 2^{39}$:
1,531,398
114, 009, 582
940, 084, 647
4, 206, 644,978
7,962, 908, 038
20, 293, 639, 091
41, 947, 594, 698
(It took around 2.5 years of computer time to find these.)

We found much better tests.
Here are two examples.

$$
\begin{aligned}
& \frac{8 x^{4}+10 x^{3}+21 x^{2}-5}{6 x^{5}+8 x^{4}+5 x^{3}+7 x^{2}-1} \\
& \frac{5 x^{4}+8 x^{3}+3 x^{2}+4 x-5}{2 x^{5}+5 x^{4}+4 x^{3}+x^{2}+x-1}
\end{aligned}
$$

Test \quad First pseudoprime

We found much better tests.
Here are two examples.

$$
\begin{aligned}
& \frac{8 x^{4}+10 x^{3}+21 x^{2}-5}{6 x^{5}+8 x^{4}+5 x^{3}+7 x^{2}-1} \\
& \frac{5 x^{4}+8 x^{3}+3 x^{2}+4 x-5}{2 x^{5}+5 x^{4}+4 x^{3}+x^{2}+x-1}
\end{aligned}
$$

Test	First pseudoprime
Fermat	561
Perrin	$(521)^{2}=271,441$
Our test	$1,531,398$

We found much better tests.
Here are two examples.

$$
\begin{aligned}
& \frac{8 x^{4}+10 x^{3}+21 x^{2}-5}{6 x^{5}+8 x^{4}+5 x^{3}+7 x^{2}-1} \\
& \left.\begin{array}{l}
\frac{5 x^{4}+8 x^{3}+3 x^{2}+4 x-5}{2 x^{5}+5 x^{4}+4 x^{3}+x^{2}+x-1} \\
\text { Test }
\end{array} \right\rvert\, \text { First pseudoprime } \\
& \hline \text { Fermat } \\
& \text { Perrin } \\
& \text { Our test } \\
& \text { Our test } \\
& \text { Our test }
\end{aligned}
$$

Log-heatmap of the first pseudoprime of $x^{2}-a x-b$.

Hardinian arrays

(with Manuel Kauers)

More guessing

Kauers and Koutschan searched the OEIS for recurrences using a novel lattice reduction technique.

This produced:

- Some junk.
- Some known or easy recurrences.
- About 20 interesting recurrences that no one knew.

More guessing

Kauers and Koutschan searched the OEIS for recurrences using a novel lattice reduction technique.

This produced:

- Some junk.
- Some known or easy recurrences.
- About 20 interesting recurrences that no one knew.

D-finite

$a(n)$ is D-finite if

$$
p_{d}(n) a(n+d)+p_{d-1}(n) a(n+d-1)+\cdots+p_{0}(n) a(n)=0
$$

for some polynomials $p_{i}(n)$ and all $n \geq 0$.

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

- The top-left entry entry is 0 .

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1.

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1.
- Every value must be within 1 of its king-distance from the top-left corner.

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1.
- Every value must be within 1 of its king-distance from the top-left corner.
- The bottom-right entry equals its king-distance minus 1.

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Results

Hardin conjectured

$$
H_{1}(n, n)=\frac{1}{3}\left(4^{n-1}-1\right),
$$

and also that $H_{1}(n, k)$ is a linear polynomial in n for $n \geq k$.

Results

Hardin conjectured

$$
H_{1}(n, n)=\frac{1}{3}\left(4^{n-1}-1\right),
$$

and also that $H_{1}(n, k)$ is a linear polynomial in n for $n \geq k$.

Theorem (RDB, Kauers)

For $n \geq k \geq 1$,

$$
H_{1}(n, k)=4^{k-1}(n-k)+\frac{1}{3}\left(4^{k-1}-1\right) .
$$

The diagonal case

$$
\left[\begin{array}{lllllll}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
3 & 3 & 3 & 3 & 3 & 4 & 5 \\
4 & 4 & 4 & 4 & 4 & 4 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

The diagonal case

$$
\left[\begin{array}{ccccc|c|c|c}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & 2 & 3 & 4 & 5 \\
\hline 2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
\hline 3 & 3 & 3 & 3 & 3 & 4 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 & 4 & 5 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

Every valid array can be partitioned into "regions" for each value.

The diagonal case

$$
\left[\begin{array}{ccccc|c|c|c}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & 2 & 3 & 4 & 5 \\
\hline 2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
\hline 3 & 3 & 3 & 3 & 3 & 4 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 & 4 & 5 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

Every valid array can be partitioned into "regions" for each value.
$H_{1}(n, n)$ is the number of tuples of nonintersecting paths from the first column to the first row.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Theorem (Gessel-Viennot)

Fix n distinct start points x_{k} and n distinct end points y_{k}.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Theorem (Gessel-Viennot)

Fix n distinct start points x_{k} and n distinct end points y_{k}.
Let A be the $n \times n$ matrix where $A_{i j}$ is the number of lattice paths from x_{i} to y_{j}.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Theorem (Gessel-Viennot)

Fix n distinct start points x_{k} and n distinct end points y_{k}.
Let A be the $n \times n$ matrix where $A_{i j}$ is the number of lattice paths from x_{i} to y_{j}.

The determinant of A gives the number of tuples of n non-intersecting paths which take x_{i} to y_{i}.

Plan of attack: Find A and compute its determinant.

$$
\left[\begin{array}{ccccc|c|c}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & 2 & 3 & 4 & 5 \\
\hline 2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
\hline 3 & 3 & 3 & 3 & 3 & 4 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 & 4 & 5 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

There are actually several matrices, because start and stop points are not fixed.

The first row and column each have exactly one "unused" position, so there is a matrix for each pair of position choices.

Sketch of computational proof for the diagonal case

$$
H_{1}(n, n)=\sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \operatorname{det} A_{i}^{j}
$$

Sketch of computational proof for the diagonal case

$$
H_{1}(n, n)=\sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \operatorname{det} A_{i}^{j}
$$

Possible to evaluate $\operatorname{det} A_{i}^{j}$ explicitly:

$$
H_{1}(n, n)=\sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{k=0}^{n-1}\binom{i}{k}\binom{j}{k}
$$

Sketch of computational proof for the diagonal case

$$
s(n):=H_{1}(n, n)=\sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{k=0}^{n-1}\binom{i}{k}\binom{j}{k} .
$$

Could probably do this by hand, but we didn't try.

Sketch of computational proof for the diagonal case

$$
s(n):=H_{1}(n, n)=\sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{k=0}^{n-1}\binom{i}{k}\binom{j}{k} .
$$

Could probably do this by hand, but we didn't try.
D-finite algorithms provably compute a recurrence.

$$
s(n+2)=5 s(n+1)-4 s(n)
$$

The closed form is easy from here.

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1.
- Every value must be within r of its king-distance from the top-left corner.
- The bottom-right entry equals its king-distance minus r.

Theorem (RDB, Kauers)

$H_{r}(n, n)$ is D-finite for all $r \geq 1$.
Proof is non-constructive application of an identity due to Jacobi.
Constructive proof exists in principle, but too expensive beyond $r=2$.

Theorem (RDB, Kauers)

$H_{r}(n, n)$ is D-finite for all $r \geq 1$.

Proof is non-constructive application of an identity due to Jacobi.
Constructive proof exists in principle, but too expensive beyond $r=2$.
The $r=2$ case requires computing recurrences satisfied by

$$
S(n):=\sum_{i_{1} \geq 0} \sum_{i_{2}>i_{1}} \sum_{j_{1} \geq 0} \sum_{j_{2}>j_{1}} \sum_{u=0}^{n} \sum_{v=0}^{n}\binom{u}{i_{1}}\binom{u}{j_{1}}\binom{v}{i_{2}}\binom{v}{j_{2}},
$$

and it gets worse from there.

Conjectures

For sufficiently large n :

$$
\begin{aligned}
& H_{2}(n, 1)=\frac{1}{2} n^{2}-\frac{3}{2} n+1 \\
& H_{2}(n, 2)=4 n^{2}-20 n+25 \\
& H_{2}(n, 3)=40 n^{2}-279 n+497 \\
& H_{2}(n, 3)=480 n^{2}-4354 n+10098 \\
& H_{2}(n, 4)=6400 n^{2}-71990 n+206573 \\
& H_{2}(n, 5)=90112 n^{2}-1212288 n+4150790 \\
& H_{2}(n, 6)=1306624 n^{2}-20460244 n+81385043
\end{aligned}
$$

Similar conjectures for all $H_{r}(n, k)$, but no proofs!

Summary

Many more projects, not enough time.

- Irrationality proofs
- Summation, integration
- Lattice path enumeration
- Continued fractions

Committee collaboration distances

```
RDB :
    * Manuel Kauers
    * Doron Zeilberger:
        * Vladimir Retakh
            Christian Krattenthaler:
            Henk Hollmann:
            * Swee Hong Chan
```

