Experimental Methods in Number Theory and Combinatorics

1

Robert Dougherty-Bliss Rutgers University March 4, 2024

Definition

A circular binary array is *valid* if it contains exactly two more 0's than 1's, or vice versa.

Left: A valid array of size 10. Right: An invalid array of size 10.

The graph A_{2n} has one vertex for every valid array of length 2n. Edges are formed by flipping adjacent bits (if possible).

Two adjacent vertices in A_4 and their flipped bits.

Question

How many edges are there in A_{2n} ?

Sequence begins:

2,16, 84, 400, 1820, 8064, 35112, 151008, 643500, 2722720, 11454872, 47969376, 200107544, ...

Question

How many edges are there in A_{2n} ?

Sequence begins:

2,16, 84, 400, 1820, 8064, 35112, 151008, 643500, 2722720, 11454872, 47969376, 200107544,...

Conjecture (Me)

$$\frac{(n+1)(3n-2)}{2n-1}\binom{2n}{n-1}.$$

Formula is extremely easy to find!

Many programs can guess recurrences given data.

Here, the resulting recurrence

$$a(n+1) = \frac{2(3n+1)(2n-1)}{n(3n-2)}a(n)$$

is easy to solve.

- 1. Primality tests and pseudoprimes
- 2. Hardinian arrays

Primality tests

(with Doron Zeilberger)

$$P(0) = 3$$
 $P(1) = 0$ $P(2) = 2$
 $P(n) = P(n-2) + P(n-3)$

Counts arrangements of people into *n* chairs at a circular table where:

$$P(0) = 3$$
 $P(1) = 0$ $P(2) = 2$
 $P(n) = P(n-2) + P(n-3)$

Counts arrangements of people into *n* chairs at a circular table where:

• No one is sitting next to another person (social distancing)

$$P(0) = 3$$
 $P(1) = 0$ $P(2) = 2$
 $P(n) = P(n-2) + P(n-3)$

Counts arrangements of people into *n* chairs at a circular table where:

- · No one is sitting next to another person (social distancing)
- · No one else could be sat down (maximal arrangement)

Two full tables with 13 chairs. From Vince Vatter.

Theorem

If p is prime, then $p \mid P(p)$.

"Proof".

Easy to show that $P(n) = \alpha^n + \beta^n + \gamma^n$, where α , β , and γ are roots of $x^3 - x - 1$.

Theorem

If p is prime, then $p \mid P(p)$.

"Proof".

Easy to show that $P(n) = \alpha^n + \beta^n + \gamma^n$, where α , β , and γ are roots of $x^3 - x - 1$.

$$P(p) = \alpha^{p} + \beta^{p} + \gamma^{p}$$
$$\equiv (\alpha + \beta + \gamma)^{p} \pmod{p}$$
$$= 0$$

This gives a primality test.

To check if *n* is prime, check whether *n* divides P(n).

Composites that pass the test are called *pseudoprimes*.

Perrin couldn't find any pseudoprimes in 1899.

Composites that pass the test are called *pseudoprimes*.

Perrin couldn't find any pseudoprimes in 1899.

Adams and Shanks found the first one in 1982:

 $(521)^2 = 271441.$

(My laptop finds this in 0.2 seconds.)

Composites that pass the test are called *pseudoprimes*.

Perrin couldn't find any pseudoprimes in 1899.

Adams and Shanks found the first one in 1982:

 $(521)^2 = 271441.$

(My laptop finds this in 0.2 seconds.)

Grantham proved that there are infinitely many in 2006:

271441,904631,16532714,24658561,27422714,27664033,...

1. Fix an integer coefficient polynomial

$$p(x) = x^d - e^{x^{d-1}} - \dots + a_1 x - a_0$$

with roots $\alpha_1, \ldots, \alpha_d$.

1. Fix an integer coefficient polynomial

$$p(x) = x^d - \frac{e}{2}x^{d-1} - \dots + a_1x - a_0$$

with roots $\alpha_1, \ldots, \alpha_d$.

2. Define the integer sequence

$$b(n) = \alpha_1^n + \alpha_2^n + \cdots + \alpha_d^n.$$

(You can compute b(n) without knowing the roots.)

1. Fix an integer coefficient polynomial

$$p(x) = x^d - \frac{e}{2}x^{d-1} - \dots + a_1x - a_0$$

with roots $\alpha_1, \ldots, \alpha_d$.

2. Define the integer sequence

$$b(n) = \alpha_1^n + \alpha_2^n + \cdots + \alpha_d^n.$$

(You can compute b(n) without knowing the roots.)

3. Then

$$b(p) \equiv e \pmod{p}$$

for any prime p.

We searched for polynomials that gave big pseudoprimes.

The sequence b(n) with generating function

$$\frac{3x^4+5x^2+6x-7}{4x^7+x^4+x^2+x-1}.$$

satisfies $b(p) \equiv 1 \pmod{p}$ for all primes *p*.

Couldn't find any pseudoprimes up to $1.5\times 10^6.\ldots$

We searched for polynomials that gave big pseudoprimes.

The sequence b(n) with generating function

$$\frac{3x^4+5x^2+6x-7}{4x^7+x^4+x^2+x-1}.$$

satisfies $b(p) \equiv 1 \pmod{p}$ for all primes *p*.

Couldn't find any pseudoprimes up to $1.5\times 10^6.\ldots$

... because the first one is 1,531,398.

 $b(n) \sim (1.823)^n$ $b(1,531,398) \sim 10^{399287}$

Arithmetic with 400,000 digits is very slow.

Computing $b(1), b(2), \ldots, b(n)$ directly takes $O(n^3)$ time.

- Bit size at step k: O(k)
- Multiplications at that step: $O(k^2)$
- Total runtime for b(n): $\sum_{k} O(k^2) = O(n^3)$

• Compute only $b(n) \mod n$ (bit size restricted to $O(\log n)$)

- Compute only $b(n) \mod n$ (bit size restricted to $O(\log n)$)
- Iterated squaring (only $O(\log n)$ steps)

- Compute only $b(n) \mod n$ (bit size restricted to $O(\log n)$)
- Iterated squaring (only $O(\log n)$ steps)
- Write in C (10x-20x constant improvements)

- Compute only $b(n) \mod n$ (bit size restricted to $O(\log n)$)
- Iterated squaring (only $O(\log n)$ steps)
- Write in C (10x-20x constant improvements)
- · Parallelize search (more constant reductions)

New runtime: $O((\log n)^3 n)$, with a much smaller constant.

All pseudoprimes up to $10^{12} \approx 1.82 \times 2^{39}$:

1,531,398 114,009,582 940,084,647 4,206,644,978 7,962,908,038 20,293,639,091 41,947,594,698

(It took around 2.5 years of computer time to find these.)

We found much better tests.

Here are two examples.

$$\frac{8x^{4} + 10x^{3} + 21x^{2} - 5}{6x^{5} + 8x^{4} + 5x^{3} + 7x^{2} - 1}$$

$$\frac{5x^{4} + 8x^{3} + 3x^{2} + 4x - 5}{2x^{5} + 5x^{4} + 4x^{3} + x^{2} + x - 1}$$
Test | First pseudoprime

We found much better tests.

Here are two examples.

$$\frac{8x^4 + 10x^3 + 21x^2 - 5}{6x^5 + 8x^4 + 5x^3 + 7x^2 - 1}$$

$$\frac{5x^4+8x^3+3x^2+4x-5}{2x^5+5x^4+4x^3+x^2+x-1}$$

Test	First pseudoprime
Fermat	561
Perrin	$(521)^2 = 271,441$
Our test	1,531,398

We found much better tests.

Here are two examples.

$$\frac{8x^4 + 10x^3 + 21x^2 - 5}{6x^5 + 8x^4 + 5x^3 + 7x^2 - 1}$$

$$\frac{5x^4 + 8x^3 + 3x^2 + 4x - 5}{2x^5 + 5x^4 + 4x^3 + x^2 + x - 1}$$

Test	First pseudoprime
Fermat	561
Perrin	(521) ² = 271,441
Our test	1,531,398
Our test'	24,830,047
Our test"	50,768,194

Log-heatmap of the first pseudoprime of $x^2 - ax - b$.

Hardinian arrays

(with Manuel Kauers)

Kauers and Koutschan searched the OEIS for recurrences using a novel lattice reduction technique.

This produced:

- Some junk.
- · Some known or easy recurrences.
- About 20 interesting recurrences that no one knew.

Kauers and Koutschan searched the OEIS for recurrences using a novel lattice reduction technique.

This produced:

- · Some junk.
- · Some known or easy recurrences.
- About 20 interesting recurrences that no one knew.

D-finite

a(n) is D-finite if

$$p_d(n)a(n+d) + p_{d-1}(n)a(n+d-1) + \cdots + p_0(n)a(n) = 0$$

for some polynomials $p_i(n)$ and all $n \ge 0$.

Let $H_1(n, k)$ be the number of $n \times k$ arrays which obey the following rules:

• The top-left entry entry is 0.

- The top-left entry entry is 0.
- Every king-step right, down, or south-east must increase values by 0 or 1.

- The top-left entry entry is 0.
- Every king-step right, down, or south-east must increase values by 0 or 1.
- Every value must be within 1 of its king-distance from the top-left corner.

- The top-left entry entry is 0.
- Every king-step right, down, or south-east must increase values by 0 or 1.
- Every value must be within 1 of its king-distance from the top-left corner.
- The bottom-right entry equals its king-distance minus 1.

0	1	2	2	3
1	1	2	2	3
2	2	2	3	3
3	3	3	3	4
4	4	4	4	4
4	4	4	4	4

0	1	2	2	3
1	1	2	2	3
2	2	2	3	3
3	3	3	3	4
4	4	4	4	4
4	4	4	4	4

0	1	2	2	3]
1	1	2	2	3
2	2	2	3	3
3	3	3	3	4
4	4	4	4	4
4	4	4	4	4

0	1	2	2	3]
1	1	2	2	3
2	2	2	3	3
3	3	3	3	4
4	4	4	4	4
4	4	4	4	4

0	1	2	2	3]
1	1	2	2	3
2	2	2	3	3
3	3	3	3	4
4	4	4	4	4
4	4	4	4	4

0	1	2	2	3]
1	1	2	2	3
2	2	2	3	3
3	3	3	3	4
4	4	4	4	4
4	4	4	4	4

0	1	2	2	3]
1	1	2	2	3
2	2	2	3	3
3	3	3	3	4
4	4	4	4	4
4	4	4	4	4

0	1	2	2	3]	
1	1	2	2	3	
2	2	2	3	3	
3	3	3	3	4	
4	4	4	4	4	
4	4	4	4	4	

Hardin conjectured

$$H_1(n,n) = \frac{1}{3}(4^{n-1}-1),$$

and also that $H_1(n, k)$ is a linear polynomial in *n* for $n \ge k$.

Hardin conjectured

$$H_1(n,n) = \frac{1}{3}(4^{n-1}-1),$$

and also that $H_1(n, k)$ is a linear polynomial in *n* for $n \ge k$.

Theorem (RDB, Kauers)

For $n \ge k \ge 1$,

$$H_1(n,k) = 4^{k-1}(n-k) + \frac{1}{3}(4^{k-1}-1).$$

0	1	1	2	3	4	5
1	1	2	2	3	4	5
2	2	2	2	3	4	5
2	2	3	3	3	4	5
3	3	3	3	3	4	5
4	4	4	4	4	4	5
5	5	5	5	5	5	5

Every valid array can be partitioned into "regions" for each value.

Every valid array can be partitioned into "regions" for each value.

 $H_1(n, n)$ is the number of tuples of nonintersecting paths from the first column to the first row.

Theorem (Gessel–Viennot)

Fix n distinct start points x_k and n distinct end points y_k .

Theorem (Gessel–Viennot)

Fix n distinct start points x_k and n distinct end points y_k .

Let A be the $n \times n$ matrix where A_{ij} is the number of lattice paths from x_i to y_j .

Theorem (Gessel–Viennot)

Fix n distinct start points x_k and n distinct end points y_k .

Let A be the $n \times n$ matrix where A_{ij} is the number of lattice paths from x_i to y_i .

The determinant of A gives the number of tuples of n non-intersecting paths which take x_i to y_i .

Plan of attack: Find A and compute its determinant.

0	1	1	2	3	4	5	
1	1	2	2	3	4	5	
2	2	2	2	3	4	5	
2	2	3	3	3	4	5	
3	3	3	3	3	4	5	
4	4	4	4	4	4	5	
5	5	5	5	5	5	5	

There are actually several matrices, because start and stop points are not fixed.

The first row and column each have exactly one "unused" position, so there is a matrix for each pair of position choices.

Sketch of computational proof for the diagonal case

$$H_1(n,n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \det A_j^j$$

$$H_1(n,n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \det A_i^j$$

Possible to evaluate det A_i^j explicitly:

$$H_{1}(n,n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{k=0}^{n-1} \binom{i}{k} \binom{j}{k}.$$

$$s(n) := H_1(n, n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{k=0}^{n-1} \binom{i}{k} \binom{j}{k}.$$

Could probably do this by hand, but we didn't try.

$$s(n) := H_1(n, n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} \sum_{k=0}^{n-1} \binom{i}{k} \binom{j}{k}.$$

Could *probably* do this by hand, but we didn't try.

D-finite algorithms *provably* compute a recurrence.

$$s(n+2) = 5s(n+1) - 4s(n).$$

The closed form is easy from here.

Hardin submitted a *family* of sequences $H_r(n, k)$.

Definition (R.H. Hardin)

Hardin submitted a *family* of sequences $H_r(n, k)$.

Definition (R.H. Hardin)

- The top-left entry entry is 0.
- Every king-step right, down, or south-east must increase values by 0 or 1.
- Every value must be within *r* of its king-distance from the top-left corner.
- The bottom-right entry equals its king-distance minus r.

Theorem (RDB, Kauers)

 $H_r(n, n)$ is D-finite for all $r \ge 1$.

Proof is non-constructive application of an identity due to Jacobi.

Constructive proof exists in principle, but too expensive beyond r = 2.

Theorem (RDB, Kauers)

 $H_r(n, n)$ is D-finite for all $r \ge 1$.

Proof is non-constructive application of an identity due to Jacobi.

Constructive proof exists *in principle*, but too expensive beyond r = 2.

The r = 2 case requires computing recurrences satisfied by

$$S(n) := \sum_{i_1 \ge 0} \sum_{i_2 > i_1} \sum_{j_1 \ge 0} \sum_{j_2 > j_1} \sum_{u=0}^n \sum_{v=0}^n \binom{u}{i_1} \binom{u}{j_1} \binom{v}{i_2} \binom{v}{j_2},$$

and it gets worse from there.

For sufficiently large n:

$$H_{2}(n,1) = \frac{1}{2}n^{2} - \frac{3}{2}n + 1$$

$$H_{2}(n,2) = 4n^{2} - 20n + 25$$

$$H_{2}(n,3) = 40n^{2} - 279n + 497$$

$$H_{2}(n,3) = 480n^{2} - 4354n + 10098$$

$$H_{2}(n,4) = 6400n^{2} - 71990n + 206573$$

$$H_{2}(n,5) = 90112n^{2} - 1212288n + 4150790$$

$$H_{2}(n,6) = 1306624n^{2} - 20460244n + 81385043$$

Similar conjectures for all $H_r(n, k)$, but no proofs!

Many more projects, not enough time.

- · Irrationality proofs
- Summation, integration
- · Lattice path enumeration
- · Continued fractions

RDB:

- * Manuel Kauers
- * Doron Zeilberger:
 - * Vladimir Retakh

Christian Krattenthaler:

Henk Hollmann:

* Swee Hong Chan