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ABSTRACT OF THE DISSERTATION

An Exploration of Nested Recurrences Using

Experimental Mathematics

by NATHAN HAREL FOX

Dissertation Director: Doron Zeilberger

Broadly speaking, Experimental Mathematics is the philosophy that computers are

a valuable tool that should be used extensively in mathematical research. Here, we

apply this philosophy to the study of integer sequences arising from nested recurrence

relations. The most widely studied nested recurrence is the Hofstadter Q-recurrence:

Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2)). Hofstadter considered this recurrence

with the initial condition Q(1) = Q(2) = 1, and the resulting sequence has much

apparent structure. But, almost nothing has been rigorously proved about it. Others

have modified the recurrence, the initial conditions, or both, to obtain related but

more predictable sequences. We follow that vein and prove a number of unrelated

theorems about sequences resulting from nested recurrences. Our first results relate to

automatically finding (with proof) solutions to nested recurrences that are interleavings

of linear-recurrent sequences. We then present a new nested-recurrent sequence whose

terms increase monotonically with successive differences zero or one. Finally, we embark

on an exploration of strange but predictable behaviors that result when recurrences are

given various types of initial conditions.
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Chapter 1

Introduction

The techniques we use to arrive at the results in this dissertation are just as impor-

tant as the results themselves. We employ methodologies that are firmly rooted in the

philosophy of Experimental Mathematics, which emphasizes the importance of using

computers in mathematical research [2]. Computers serve multiple roles in mathemat-

ical pursuits. First and most straightforwardly, computers can explore mathematical

problems of interest and generate data about them. When trying to prove a result,

it is quite reassuring if it has a large base of numerical evidence in its favor. Plus,

the computer can be used to gather data in search of a conjecture, typically by ex-

ploring data in an attempt to determine which problems are worth studying further.

Once noteworthy patterns are discovered, computers can frequently automate otherwise

tedious inductive proofs or case analyses. Computers are also good at falsifying conjec-

tures, as they can quickly carry out a search for a counterexample. Finally, computers

and the Internet make invaluable databases like the Online Encyclopedia of Integer

Sequences [31] possible.

The mathematical content of this dissertation consists of numerous results about

nested recurrence relations. Recurrence relations occur frequently in many areas of

mathematics. The simplest are homogeneous linear recurrence relations, which are of

the form

a(n) =

k∑
i=1

λia(n− 1)

for some parameters k ≥ 1 and λ1, λ2, . . . , λk. Such recurrences are well understood, as

are their nonhomogeneous counterparts. On the other hand, a general theory of nonlin-

ear recurrences is less tractable, largely because of the diversity of possible forms and

behaviors. Nonlinear recurrences frequently arise in the context of dynamical systems,
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where a sequence is generated by repeatedly iterating a given map. Such recurrences are

typically highly sensitive to initial conditions. For example, the famously difficult 3x+1

problem can be phrased in terms of an integer-valued dynamical system, and hence,

as a question about nonlinear recurrences [6, 27]. As generating terms of a sequence

defined by a nonlinear recurrence is typically straightforward, problems involving them

naturally lend themselves to exploration via Experimental Mathematics.

Within the class of nonlinear recurrences, a particularly finicky subfamily are the

nested recurrences, such as a(n) = a(a(n − 1)). In this typical example, the previous

terms that a(n) depends on themselves depend on other sequence terms. The most

widely studied nested recurrence is the Hofstadter Q-recurrence [18], which is defined

by the nested recurrence

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2)).

Most of our study focuses on this recurrence and generalizations of it.

The most common questions about sequences arising from nested recurrences are

the following:

1. Does the sequence actually exist?

2. Can we efficiently compute the nth term of the sequence?

3. Is there a closed form for the terms of the sequence?

4. Does the sequence have any notable global properties?

5. Does the sequence have a combinatorial interpretation?

Throughout this dissertation, we are primarily concerned with items 2, 3, and 4, espe-

cially item 4. We consider two types of global properties. The first property, known as

slowness, has been studied primarily by Tanny and various coauthors [3, 9, 20, 28, 32].

Slow sequences frequently arise from slight modifications of the Hofstadter Q-recurrence

with simple initial conditions. The second global property is eventual satisfaction

of a linear recurrence, or, equivalently, having a rational ordinary generating func-

tion [15, 30]. Prior to this work, all known examples of such sequences satisfied the
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Hofstadter Q-recurrence itself with somewhat complicated initial conditions. We shall

see that two sequences that appear completely unrelated oftentimes eventually satisfy

the same nested recurrence. Such observations lead to the following mantra on nested

recurrences: “If it seems like it might be possible, it probably is possible.”

This thesis can broadly be thought of as consisting of two major “chunks.” The first

half consists of items closely related to results in the literature. Chapter 2 contains some

definitions and more in-depth background about nested recurrences and the sequences

they generate. Then, Chapter 3 describes a way to use symbolic computation to discover

a multitude of solutions that satisfy linear recurrences. Explorations using this process

lead to the discoveries of Chapters 4 and 5. Next, Chapter 6 contains a description of

a previously unknown slow solution to a Hofstadter-like recurrence.

The second half of this dissertation presents a novel way of studying nested recur-

rences. The results of Chapters 3, 4, and 5 involve using the form of the solution to

discover an initial condition. In Chapters 8, 9 and 10, we flip this around and use the

form of the initial condition to discover the behaviors of families of sequences. Some of

the results in these chapters are truly bizarre. For instance, one of our results (Theo-

rem 9.3) may be best thought of as a result about sequences over 5-adic integers. And,

another theorem (Theorem 9.8) characterizes all sequences of a certain type, except

for 6081 special cases. One of these special cases (p. 134) is a finite sequence with

84975 · 2560362 + 31 terms.

Chapter 7 serves as a short transition between the two chunks. It is a fairly self-

contained discussion of an unusual sort of solution to the Hofstadter Q-recurrence. At

the end of the dissertation, Chapter 11 contains a summary of open problems and future

research directions.

Much of the work of this dissertation uses programs written in Maple, and there are

many computer generated proofs and data that are too lengthy and tedious to appear

in this document. These supplemental materials can be found at http://github.com/

nhf216/thesis, and they are all listed in Appendix G.

http://github.com/nhf216/thesis
http://github.com/nhf216/thesis


4

Chapter 2

Background on Nested Recurrences

A recurrence relation (often shortened to recurrence) is any definition of a sequence

(a(n))n≥1 by a rule defining a(n) in terms of n and previous values in the sequence. A

recurrence relation alone is (typically) not enough to specify an actual sequence, as the

first value (or, more commonly, the first few values) has no previous values to be defined

in terms of. To actually obtain a sequence from a recurrence relation, some of the first

values must be specified separately. Such additional definitions are together known

as an initial condition. Throughout this dissertation, we denote the initial condition

a(1) = a1, a(2) = a2, . . ., a(k) = ak by 〈a1, a2, . . . , ak〉. Also, for convenience and

consistency, we index all of our sequences from 1. Sequences can theoretically begin at

any index, and our definitions and results can be adjusted accordingly.

When we use the term solution to describe a (finite or infinite) integer sequence,

we mean that the terms of the sequence eventually satisfy a particular recurrence. All

solutions that we consider in this dissertation are explicit solutions; that is, given the

first n − 1 terms, the recurrence relation can be used to generate the nth term in the

sequence. (This is in contrast to implicit solutions, which may satisfy a recurrence

without being generated by it.)

The simplest recurrence relations are homogeneous linear recurrences, which are of

the form

a(n) =

k∑
i=1

λia(n− 1)

for some parameter k ≥ 1 (called the order) and parameters λ1, λ2, . . . , λk. We call

a sequence linear-recurrent if its terms eventually satisfy some linear recurrence. The

most well-known linear recurrence is the Fibonacci recurrence F (n) = F (n − 1) +

F (n − 2). With the initial condition 〈1, 1〉, this recurrence generates the Fibonacci
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sequence [31, A000045], and with the initial condition 〈1, 3〉 it generates the Lucas

sequence [31, A000032]. The Fibonacci numbers famously have the ordinary generating

function
∞∑
n=1

F (n)xn =
x

1− x− x2

and the closed form

Fn =
1√
5

(
1 +
√

5

2

)n
− 1√

5

(
1−
√

5

2

)n
.

In general, a sequence is linear-recurrent if and only if it has a rational generating

function. Also, adding a polynomial or exponential nonhomogeneous part to a linear

recurrence does not increase the power of such recurrences; if a sequence eventually

satisfies a nonhomogeneous linear recurrence, it also satisfies a homogeneous linear

recurrence of higher order.

Many real-world processes are conveniently modeled by recurrence relations. Unfor-

tunately, most recurrences appearing in applications are nonlinear. In this thesis, we

study a particular type of nonlinear recurrence: nested recurrences. A nested recurrence

is a type of recurrence relation where the previous terms that the nth term depends on

are not fixed in advance. Instead, they are themselves dependent on previous sequence

terms. We call a sequence generated by a nested recurrence nested-recurrent. A general

theme of this dissertation is that nested recurrence relations are highly sensitive to their

initial conditions.

The most notable and well studied nested-recurrent sequence is the Hofstadter Q-

sequence. It was first introduced by Douglas Hofstadter in the 1960s [18], and it is

defined by the recurrence

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2))

and the initial condition 〈1, 1〉. This definition superficially resembles that of the Fi-

bonacci sequence, the disparity being that the previous two terms in the Q-sequence

tell how far to go back to find two other terms to add together. For this reason, the

Q-sequence is known as a meta-Fibonacci sequence. The behavior of the Q-sequence is

nothing like the Fibonacci sequence, however. The first fifteen terms of the Q-sequence
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Figure 2.1: The first 10000 terms of the Hofstadter Q-sequence (A005185 in OEIS)

increase monotonically, but thereafter the sequence rapidly devolves into chaos. On the

global level, Q(n) seems to oscillate around n
2 , and a plot of the sequence appears to be

built of sausage-like structures, each one twice as large as the previous (see Figure 2.1).

But, all that is known rigorously is that if

lim
n→∞

Q(n)

n

exists, it must equal one half [15]. Furthermore, it is unknown whether Q(n) even exists

for all n. If Q(n − 1) ≥ n for some n, then Q(n) would be defined in terms of Q(k)

for some k ≤ 0. But, Q is not defined on nonpositive inputs, so Q(n) would fail to

exist. All subsequent terms would also fail to exist, so the sequence would be finite in

this scenario. If a sequence is finite in this manner, the sequence is said to die. We

do not know for sure whether the Hofstadter Q-sequence dies [16]. We do know that

it exists for at least 1010 terms [31, A005185], and empirical evidence suggests that it

lives forever [29]. In general, a sequence that dies may live for a long time before it

dies. In fact, the death question is undecidable given a generic nested recurrence and

initial condition [5].
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There are actually two ways in which a sequence can die. The first and most common

way is what we saw before: if the nth term depends on some term from before the initial

condition. The other possibility is that the nth term depends on itself or some future

term. (Dependence on a future term may not be an issue when considering implicit

solutions.) For us, the classical notion of death is overly restrictive, as it requires any

solution to any nested recurrence with a term of the form U(n− U(n− 1)) to grow no

faster than n. So, going forward, we have two notions of death.

Definition 2.1. A sequence generated by a nested recurrence U weakly dies if, in order

to compute U(n), the value of U(m) is needed, where m ≤ 0 or m ≥ n.

The notion of weak death is identical to the notion of death we have already dis-

cussed.

Definition 2.2. A sequence generated by a nested recurrence U strongly dies if, in

order to compute U(n), the value of U(m) is needed where m ≥ n. If a value U(m)

with m ≤ 0 is needed, use 0 for that value.

In other words, we “cheat” and define U(n) = 0 for all n ≤ 0. This convention, which

has been used by other authors [30], allows us to observe a wide variety of solutions

that grow faster than n.

A nested-recurrent sequence can have any of the following eventual behaviors:

Definition 2.3.

• If a sequence strongly dies and weakly dies at the same index, then it vehemently

dies.

• If a sequence strongly dies at some index and weakly dies at the same or some

earlier index, then it strongly dies. (In this way, saying that a sequence strongly

dies does not preclude it vehemently dying.)

• If a sequence weakly dies but does not strongly die, then it persists.

• If a sequence does not weakly die, then it lives.
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We know that the Hofstadter Q-sequence does not vehemently die, as there is no way

to obtain a nonpositive term prior to weak death. But, for all we know, the sequence

may strongly die, persist, or live. We believe that it lives.

The rest of this chapter consists of five sections that provide some background on

nested recurrences. Section 2.1 summarizes some of the notation we use to refer to

nested recurrences and their solutions. Then, Sections 2.2 and 2.3 describe the sorts

of nested-recurrent sequences that have been previously analyzed. Most of our results

in the forthcoming chapters fall into these categories as well. Section 2.4 defines the

notation of a linear nested recurrence (the primary type we consider), and it gives a self-

contained proof of the shift-invariance of solutions to certain linear nested recurrences.

Finally, Section 2.5 contains a preview of the upcoming chapters and how they tie in

with the background given in this chapter.

2.1 Notation

As mentioned earlier, we use the notation 〈a1, a2, . . . , ak〉 to denote an initial condition

of length k. Throughout this dissertation, Q(n) is used to denote the nth term of the

Hofstadter Q-sequence, and F (n) is used to denote the nth Fibonacci number. We

frequently consider the Hofstadter Q-recurrence with different initial conditions; any

other sequence satisfying the Q-recurrence is denoted by Qα for some subscript α.

The notation for a given example is introduced when the sequence is introduced, and

the subscript generally has some connection to the sequence. (For instance, Golomb’s

solution in the next section is denoted by QG.) Other nested recurrences are given

symbols other than Q or F to represent them. If the recurrence has standard notation,

we use that, and, otherwise, we assign it an unused letter. If the same recurrence

subsequently appears with a different initial condition, the same letter with subscripts

will be used, as with the Q-recurrence.
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2.2 Linear-Recurrent Solutions

Golomb [15] considers the result of replacing the initial condition of the Q-sequence

with the new initial condition 〈3, 2, 1〉. The first few terms of the resulting sequence

are 3, 2, 1, 3, 5, 4, 3, 8, 7, 3, 11, 10, . . .. This sequence lives, and the pattern visible here

continues forever [31, A244477]. The result is the linear-recurrent sequence defined by
QG(3k) = 3k − 2

QG(3k + 1) = 3

QG(3k + 2) = 3k + 2.

(2.1)

Golomb’s sequence is an example of a quasilinear sequence, that is, a sequence

consisting of interleaved polynomial sequences of degree at most one. In general, a

quasipolynomial of degree d is a sequence consisting of interleaved polynomial sequences

of degree at most d.

We give a proof here of Golomb’s result, not because the proof is particularly com-

pelling or difficult, but because this proof and its structure provide the underpinning

for much of the work of this dissertation.

Proof. The proof is by induction on k. A typical inductive proof begins with a base

case. But, for illustrative purposes, we perform the inductive step first and the base

case last.

Suppose that (2.1) holds for all k′ < k. There are three cases to consider:

Index 3k: We have

QG(3k) = QG(3k −QG(3k − 1)) +QG(3k −QG(3k − 2))

= QG(3k − (3 (k − 1) + 2)) +QG(3k − 3)

= QG(1) +QG(3 (k − 1))

= 3 + 3 (k − 1)− 2

= 3k − 2,

as required.
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Index 3k + 1: We have

QG(3k + 1) = QG(3k + 1−QG(3k)) +QG(3k + 1−QG(3k − 1))

= QG(3k + 1− (3k − 2)) +QG(3k + 1− (3 (k − 1) + 2))

= QG(3) +QG(2)

= 3,

as required.

Index 3k + 2: We have

QG(3k) = QG(3k + 2−QG(3k + 1)) +QG(3k + 2−QG(3k))

= QG(3k + 2− 3) +QG(3k + 2− (3k − 2))

= QG(3k − 1) +QG(4)

= 3k − 1 + 3

= 3k + 2,

as required.

We now return to the base case. We must answer the question: “What do we

assume in the inductive step?” For one thing, we assume that the values of QG(1),

QG(2), QG(3), and QG(4) are 3, 2, 1, and 3, respectively. We also assume that k ≥ 1,

as we refer to earlier terms of (2.1) with k′ = k−1. We only refer to QG(4) in the 3k+2

case, so the inductive step actually succeeds in calculating QG(4) (as 4 is congruent to 1

mod 3). As a result, our base case needs to be the first three values. These are precisely

the initial conditions, and they satisfy (2.1).

Ruskey [30] instead considers the initial condition 〈3, 6, 5, 3, 6, 8〉 for theQ-recurrence.

The resulting sequence weakly dies immediately (as QR(7) depends on QR(−1)). But,

it persists, and every third term is a Fibonacci number [31, A188670]:
QR(3k) = F (k + 4)

QR(3k + 1) = 3

QR(3k + 2) = 6.

(2.2)



11

The proof of (2.2) is quite similar to the proof of (2.1).

The solutions of Golomb and Ruskey both satisfy linear recurrences (an = 2an−3 −

an−6 in the case of Golomb; an = 2an−3 − an−9 in the case of Ruskey). One might

hope for a method that, given a linear recurrence and a Hofstadter-like recurrence,

determines whether there is a sequence that eventually satisfies both of them. This is

quite a lofty goal. But, we see that Golomb’s sequence and Ruskey’s sequence both have

a deeper structure. Golomb’s sequence is a quasipolynomial with period 3. Ruskey’s

sequence, while not a quasipolynomial, is also structured as an interleaving of three

simpler sequences. Going forward, this is the key feature of such solutions that we

fixate on.

2.3 Slow Solutions

Most of the recent literature on nested recurrences has been devoted to the study of

so-called slow solutions [9, 20–23,32].

Definition 2.4. A sequence of integers (an) is called slow if an − an−1 ∈ {0, 1} for all

indices n.

In contrast to the solutions from the previous section, slow sequences often arise from

varying the recurrence while retaining the initial condition of the Q-sequence. The first

notable example of a slow solution to a nested recurrence is due to Conolly [7]. If the

recurrence C(n) = C(n−C(n− 1)) +C(n− 1−C(n− 2)) is given the initial condition

C(1) = C(2) = 1, the result is a slow sequence (see Figure 2.2) where every k > 1

appears once for each factor of 2 that divides it [31, A046699]. As a consequence of

this simple description, the sequence satisfies

lim
n→∞

C(n)

n
=

1

2
.

Notably, the only difference between the Conolly recurrence and the Hofstadter Q-

recurrence is the “−1” in the second term. In this way, the Conolly recurrence is, in

some sense, a “shifted” version of the Hofstadter recurrence.

Many other examples of slow sequences are known [32]. Many of these use recur-

rences with shifts similar to the one in Conolly’s recurrence. But, perhaps the most



12

0

10

20

30

40

50

20 40 60 80 100

Figure 2.2: The first 100 terms of Conolly’s sequence (A046699 in OEIS)

famous example of a slow solution to a nested recurrence is the Hofstadter-Conway

$10000 Sequence [31, A004001], given by A(n) = A(A(n− 1)) +A(n−A(n− 1)) with

A(1) = A(2) = 1. (We call a term like the A(A(n−1)) in this recurrence a Conway-like

term.) John H. Conway was able to show that

lim
n→∞

A(n)

n
=

1

2
,

but he had no clue about the rate of convergence. (See Figure 2.3.) Notably, Conway

offered a $10000 prize for an analysis of the behavior. Colin Mallows solved this problem

a few years later [28], though Conway, at that point, tried to claim to have offered only

$1000.

Hofstadter and Huber [3, 19] have investigated the following family of recurrences,

which generalize the Hofstadter Q-recurrence. For integers 0 < r < s, define

Qr,s(n) = Qr,s(n−Qr,s(n− r)) +Qr,s(n−Qr,s(n− s)).

They explore these recurrences experimentally for various initial conditions. This work

has led them to conjecture that the sequences resulting from an all-ones initial condition

always die, except for (r, s) ∈ {(1, 1), (1, 4), (2, 4)}. The case (1, 1) is the Q-sequence,
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Figure 2.3: First 10000 values of A(n)− n
2 (Hofstadter-Conway)

and the case (2, 4), often called the W -sequence [31, A087777] (see Figure 2.4), displays

even wilder behavior than the Q-sequence. On the other hand, the sequence resulting

from (r, s) = (1, 4) (see Figure 2.5), known as the V -sequence [31, A063882], is slow [3].

In fact, this sequence was recently shown to be 2-automatic [1]. This slow sequence

results from a recurrence with no Conolly-like shifts and with no Conway-like terms.

There are two methods commonly used to prove that Hofstadter-like sequences

are slow. In some cases, there are combinatorial interpretations for slow sequences

involving counting leaves in nested tree structures [22]. The sequence counting the

leaves is obviously slow; the main difficulty comes in showing that the nested recurrence

also describes the same structure. For some slow sequences, though, there is no known

combinatorial interpretation. The other proofs of slowness usually go by induction with

complicated inductive hypotheses. For a sequence (an), one would love to work with just

the inductive hypothesis that am−am−1 ∈ {0, 1} for all m < n, but this is never enough.

Instead, additional inductive hypotheses are required to handle certain cases. These

extra hypotheses strongly depend on the sequence in question. While the sequences like

Conolly’s, resulting from “shifted” recurrences, have similar proofs to each other, the
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proof for the V -sequence uses a different sort of inductive hypothesis. One would like to

automate these proofs, but this would require some method of deciding the appropriate

inductive hypotheses.

2.4 Linear Nested Recurrences and Shift Invariance

The primary objects of study we study are linear nested recurrences.

Definition 2.5. A nested recurrence L is linear if it is of the form

L(n) = P (n) +

d∑
i=1

αiL(Ei),

where P (n) is an explicit expression in n, d is a nonnegative integer, each αi is an

integer, and each Ei is an expression of the same form as the generic formula for L(n)

(thereby allowing for arbitrarily many nesting levels).

Going forward, when we refer to a recurrence as linear, we mean linear nested if the

recurrence is nested.

The form of linear nested recurrences is quite general. Most commonly, we have the

following:

Definition 2.6. In a linear nested recurrence L (n), if

• P (n) is a polynomial,

• Each αi is positive,

• Each Ei of the form n− βi −
di∑
j=1

L(n− γi,j),

• Each di is a positive integer,

• Each βi is a nonnegative integer,

• Each γi,j is a positive integer,

then L is basic linear (or just basic).
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Most commonly, we actually have P (n) = 0 and each di = 1. The Hofstadter Q-

recurrence is basic, as P (n) = 0, d = 2, d1 = 1, d2 = 1, α1 = α2 = 1, E1 = n−Q(n−1),

and E2 = n−Q(n− 2). On the other hand, the Hofstadter-Conway recurrence, while

linear, is not basic, because of the term A(A(n− 1)).

A key property of basic linear recurrences is the so-called shift invariance of their

solutions.

Proposition 2.7. Let L(n) be a basic linear nested recurrence with P (n) = c for

some integer c. Suppose (an)1≤n≤N (where 1 ≤ N ≤ ∞) is a solution to L under the

strong death convention, with the initial condition 〈a1, a2, . . . , ak〉. Define a sequence

(bn)1≤n≤N+1 by 
b1 = 0

bn = an−1 2 ≤ n ≤ N + 1.

Then, (bn) is also a solution to L, and it is generated by 〈b1, b2, . . . , bk+1〉.

Proof. Since we are using the strong death convention, we may extend (an) and (bn) to

nonpositive indices by defining all such terms to be zero. So, we actually have bn = an−1

for all n.

We have that

L(n) = c+
d∑
i=1

αiL

n− βi − di∑
j=1

L(n− γi,j)

 ,

and we must show for all n > k + 1 that bn = L(n) when 〈b1, b2, . . . , bk+1〉 is given as

the initial condition. We do so by induction.

Suppose that n > k + 1, and furthermore suppose that bm satisfies L for every

k + 1 < m < n. Since (an) is a solution to L, we sometimes write L′(n) to denote an.

We have

L(n) = c+

d∑
i=1

αiL

n− βi − di∑
j=1

L(n− γi,j)


= c+

d∑
i=1

αib
n−βi−

di∑
j=1

L(n−γi,j)
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= c+
d∑
i=1

αib
n−βi−

di∑
j=1

bn−γi,j

= c+
d∑
i=1

αia
n−1−βi−

di∑
j=1

an−1−γi,j

= c+

d∑
i=1

αiL
′

n− 1− βi −
di∑
j=1

L′(n− 1− γi,j)


= L′(n− 1) = an−1 = bn,

as required.

In the forthcoming chapters, we frequently make use of shift invariance.

2.5 Preview of Upcoming Chapters

The remainder of this dissertation is structured as follows. Chapter 3 describes an al-

gorithm for automatically discovering, with proof, linear-recurrent solutions to nested

recurrences (in the vein of Golomb’s and Ruskey’s sequences). Then, Chapters 4 and 5

describe two results that were originally obtained via explorations using the algorithm

in Chapter 3. Chapter 6, which follows, is a fairly self-contained description of a new

slow sequence, which superficially resembles the V -sequence in a few ways. Then,

Chapter 7 introduces a system of three nested recurrences. The resulting sequences are

enigmatic on their own, and together they are interwoven into certain solutions to the

Q-recurrence. The next three chapters, Chapter 8, Chapter 9, and Chapter 10 initiate

a novel methodology for studying nested recurrent sequences. Whereas previous studies

have been primarily concerned with finding initial conditions that lead to prescribed

behavior, these chapters prescribe the form of the initial condition and determine the

resulting sequence behaviors using computational methods. Finally, Chapter 11 sum-

marizes some open problems about nested recurrences and suggests some future research

directions.

Various Maple programs implementing all of the algorithms in this dissertation, as

well as some related procedures, can be found at http://github.com/nhf216/thesis.

http://github.com/nhf216/thesis
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Generally speaking, the procedures in this package offer more general versions of the

algorithms described in this dissertation.
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Chapter 3

Discovering Nice Solutions to Nested Recurrences Using

Symbolic Computation

In the previous chapter, in Section 2.2, we introduced the sequences QG and QR,

Golomb’s [15] and Ruskey’s [30] respective solutions to the Hofstadter Q-recurrence. In

this chapter, we develop a machine to find similar solutions (under the notion of weak

death). In Section 3.1, we introduce a formalism that encapsulates the notion of an

interleaving of simple sequences. Then, in Section 3.2, we describe our algorithm that

finds these special solutions. Finally, in Section 3.3 we describe some notable sequences

found using the methods in this chapter.

A Maple package implementing all of the algorithms in this chapter, as well as some

related procedures, can be found at http://github.com/nhf216/thesis/nicehof.

txt.

3.1 Positive Recurrence Systems

We observed previously that both Golomb’s and Ruskey’s solutions are interleavings of

three simple sequences. But, in order to generalize these, we need a rigorous notion of

what a “simple sequence” is. In the case of Ruskey’s solution, each of the three inter-

leaved sequences can be described by a homogeneous linear recurrence with nonnegative

coefficients: 
ak = ak−1 a0 = 3

bk = bk−1 b0 = 6

ck = ck−1 + ck−2 c1 = 5, c2 = 8.

(Note that these recurrences are not unique.) Golomb’s solution cannot be expressed in

this way, but each of its interleaved sequences can be described by a nonhomogeneous

http://github.com/nhf216/thesis/nicehof.txt
http://github.com/nhf216/thesis/nicehof.txt
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linear recurrence with nonnegative coefficients:
ak = 3 + ak−1 a0 = 3

bk = 3

ck = 3 + ck−1 c1 = 1.

In both of these cases, we have a system of three nonhomogneous linear recurrences

where all coefficients are nonnegative. Here, none of the recurrences refer to each other

in their definitions, but we want to allow for this possibility. This leads to the following

generalization:

Definition 3.1. A positive recurrence system is a system of m nonhomogeneous linear

recurrences of the form 

a
(1)
k = P1(k) +

d∑̀
=1

m∑
j=1

α1,`,ja
(j)
k−`

a
(2)
k = P2(k) +

d∑̀
=1

m∑
j=1

α2,`,ja
(j)
k−`

...

a
(m)
k = Pm(k) +

d∑̀
=1

m∑
j=1

αm,`,ja
(j)
k−`

satisfying the following conditions:

• d is a nonnegative integer.

• P1(k) through Pm(k) are integer-valued polynomials that take nonnegative values

for sufficiently large k. (We call such polynomials eventually nonnegative.)

• Each αi,`,j is a nonnegative integer.

Note that, for convenience, we may sometimes have a recurrence system where a
(i)
k

refers to a
(j)
k for some j < i. This is permissible, as we can just replace a

(j)
k with its

right-hand side in order to conform to Definition 3.1.

The solutions to Hofstadter-like recurrences that we seek are eventual interleavings

of sequences that together satisfy a positive recurrence system. What follows is a

formalization of this notion:
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Definition 3.2. Let m be a positive integer. The sequence (ak)k≥1 is positive-recurrent

with period m if there exists an integer K such that the sequences

{
(ams+r)s≥K : 0 ≤ r < m

}
satisfy a positive recurrence system.

Observe that eventually nonnegative polynomials are trivially positive-recurrent

with period 1, as we can take d = 0. Also, any sequence satisfying a homogeneous

linear recurrence with nonnegative coefficients is positive-recurrent with period 1, as

we can take P1 identically 0.

Any positive-recurrent sequence is itself eventually linear recurrent, as are all of

the component sequences. This is true because a positive recurrence system can be

converted into a linear system of equations for the generating functions of the component

sequences. Each generating function is therefore a rational function. The resulting

linear recurrence may have some negative coefficients, though. The ability to convert

a generic linear recurrent sequence to a positive-recurrent sequence is less clear, even

if the values are eventually positive. The potential difficulty comes entirely from the

positivity requirements on the coefficients in a positive recurrence system, along with

the permissibility of nonhomogeneous parts in such systems.

We are concerned with determining the rate of growth of each sequence in a solution

to a positive recurrence system. In order for things to be well-defined and easy to

analyze, we will need the following technical definition.

Definition 3.3. An initial condition of length N to a positive recurrence system is

called eventually positive if the following conditions hold:

• If k ≥ N , then Pr(k) ≥ 0 for all r and all k.

• For all 0 ≤ i ≤ d, a
(r)
N−i > 0 for all r.

Any long enough positive initial condition is eventually positive. But, this definition

allows for some nonpositive values early in the initial condition, so long as those values

are never used in calculating recursively defined terms. Furthermore, we require all
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of the polynomials to be nonnegative when calculating recursive terms. This will be

useful in our analysis, though it is not strictly necessary. (A much more complicated,

weaker condition would suffice, and, in that case, we would not even need all of the

polynomials to be eventually nonnegative.)

In the case where we have a solution to a positive recurrence system given by an

eventually positive initial condition, the following algorithm determines the order of

growth of each component sequence. This algorithm is based on graphs; for definitions

of any unfamiliar terms, see, for example, Chapter 1 of [4]. In particular, all paths,

cycles, and circuits we consider are directed.

1. Define a weighted directed graph G as follows:

• The vertices of G are the integers {1, . . . ,m}.

• There is an edge from i to j if and only if, for some `, αi,`,j > 0.

• The weight of the edge from i to j is

d∑
`=1

αi,`,j .

2. Initialize variables d1, d2, . . . , dm so that di equals the degree of Pi.

3. Let W denote the set of vertices v in G satisfying one of the following:

• v is in a circuit with at least one edge having weight greater than 1.

• v is in more than one circuit.

For each v ∈ W , set dv to ∞ and delete any outgoing edge from v in G that is

part of a cycle. Call the resulting graph G′. (We can actually delete all outgoing

edges from v, but the form we have stated here will be more useful when we prove

this algorithm’s correctness.)

4. Define the following relation ∼ on {1, 2, . . . ,m}:

i ∼ j if and only if (i = j) or (i and j are in a cycle together in G′).

As a consequence of Step 3, it is easy to check that ∼ is an equivalence relation.

Each equivalence class is either a single vertex or a cycle.
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5. Define a directed graph H as follows:

• The vertices of H are the equivalence classes of {1, 2, . . . ,m} under ∼.

• There is an edge from class I to class J if and only if there is an edge in G′

from some i ∈ I to some j ∈ J .

If H contains a cycle I1, I2, . . . , Iq, then for each 1 ≤ h < q, there is an edge in G′

from some iouth ∈ Ih to some iinh+1 ∈ Ih+1. Also, there is an edge in G′ from some

ioutq ∈ Iq to some iin1 ∈ I1. Furthermore, by the definition of ∼, for each h, there

is a (possibly trivial) path from iinh to iouth within Ih. Concatenating all of these

edges together gives a cycle in G′ that includes elements of multiple equivalence

classes, which contradicts the definition of G′.

So, we can conclude that H contains no cycles.

6. For each vertex I of H, initialize a variable dI = max
i∈I

di.

7. Topologically sort the vertices of H. Consider the vertices I from last to first:

• If I is a cycle in G′ (including a single vertex with a loop), set dI to dI + 1

(unless dI was −∞, in which case it should be set to 0).

• For all J with an edge from J to I, set dJ = max (dJ , dI).

At the end of this process, we have values dI for each equivalence class I. In general,

for an integer r, let r̄ denote its equivalence class under ∼. We now make the following

claim:

Claim 3.4. Suppose we have a positive recurrence system with m component sequences,

along with an eventually positive initial condition. Let 1 ≤ r ≤ m be an integer. If

dr̄ <∞, then a
(r)
k = Θ

(
kdr̄
)
. If dr̄ =∞, then a

(r)
k grows exponentially.

Proof. Since each component sequence has a rational generating function, no compo-

nent sequence can possibly grow faster than exponentially. So, proving only lower

bounds when sequences should grow exponentially suffices. (We take advantage of this

simplification throughout this proof.)



24

For each vertex r in a directed graph F , define the potential of r (denoted φF (r))

as the sum of the lengths of all directed cycles in F containing r (or 0 if r is not in any

cycles). Also, for each r ∈ 〈m〉, define J(r) as the set of immediate successors of r in G′.

We will prove Claim 3.4 by induction on φG(r). We examine three cases (essentially a

special case, a base case, and an inductive step).

φG(r) = 0: In this case, r is in no cycles in G, and r̄ = {r}. Also, every successor of

r in G is in J(r), and every coefficient αr,`,j with j /∈ J(r) is zero. Inductively,

suppose that any j ∈ J(r) satisfies Claim 3.4. (The base case of J(r) = ∅ is

implicitly included here.) We have

a
(r)
k = Pr(k) +

d∑
`=1

∑
j∈J(r)

αr,`,ja
(j)
k−`.

Let D = max
{
dj̄ : j ∈ J(r)

}
(or D = −∞ if this set is empty). If D =∞, then,

by induction, some sequence a
(j)
k with j ∈ J(r) grows exponentially. As a result,

a
(r)
k grows exponentially, and we have dr̄ =∞, as required. On the other hand, if

D < ∞, then we have a
(r)
k = Θ

(
kmax(D,deg(Pr))

)
. Since dr̄ = max (D,deg(Pr)) in

this case, we have a
(r)
k = Θ

(
kdr̄
)
, as required.

φG(r) = 1: In this case, the only cycle of G that r is in is a self-loop, and r̄ = {r}.

Also, every non-r successor of r in G is in J(r), and every coefficient αr,`,j with

j /∈ {r} ∪ J(r) is zero. Inductively, suppose that any j ∈ J(r) satisfies Claim 3.4.

(The base case of J(r) = ∅ is implicitly included here.) We have,

a
(r)
k = Pr(k) +

d∑
`=1

αr,`,ra
(r)
k−` +

d∑
`=1

∑
j∈J(r)

αr,`,ja
(j)
k−`.

Let D = max
{
dj̄ : j ∈ J(r)

}
(or D = −∞ if this set is empty). If D =∞, then,

by induction, some sequence a
(j)
k with j ∈ J(r) grows exponentially. As a result,

a
(r)
k grows exponentially, and we have dr̄ =∞, as required. On the other hand, if

D <∞, then we have

a
(r)
k =

d∑
`=1

αr,`,ra
(r)
k−` + Θ

(
kmax(D,deg(Pr))

)
.
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This is a nonhomogeneous linear recurrence for a
(r)
k with characteristic polynomial

P (x) = xd −
d∑
`=1

αr,`,rx
d−`

If the weight on the self-loop on r is 1, then

d∑
`=1

αr,`,r = 1.

So, p(1) = 0, and we also note that this is a simple root, and the other nonzero

roots of p are all simple and roots of unity. By the theory of linear recurrences,

this results in a solution where a
(r)
k = Θ

(
k1+max(D,deg(Pr))

)
(unless D and deg(Pr)

are both −∞, in which case a
(r)
k = Θ (1)). Since dr̄ = 1 + max (D,deg(Pr)) in

this case, we have a
(r)
k = Θ

(
kdr̄
)
, as required.

If the weight on the self-loop on r is greater than 1, then

d∑
`=1

αr,`,r > 1.

So, p(1) < 0, but p(x) → ∞ as x → ∞. So, p has a real root that is greater

than 1. By the theory of linear recurrences, we have a solution where a
(r)
k grows

exponentially. And, dr̄ =∞ here, as required.

φG(r) > 1: Here r is in some cycle of length at least 2. Consider such a cycle C. Let

s denote the immediate successor of r, and let t denote the immediate successor

of s. We now construct a new positive recurrence system, and if we run our

algorithm on this new system, we will obtain a graph in step 1. Call this graph

G̃. The system and G̃ should have the following properties:

• The system has m− 1 component sequences

b
(1)
k , b

(2)
k , . . . , b

(s−2)
k , b

(s−1)
k , b

(s+1)
k , b

(s+2)
k , . . . , b

(m)
k ,

one corresponding to each sequence a
(i)
k with i 6= s.

• For every i 6= s, if b
(i)
k is given the same initial condition as a

(i)
k , then b

(i)
k ≤

a
(i)
k .
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• If s is in a unique cycle in G, then b
(r)
k = a

(r)
k .

• We have φG̃(r) < φG(r).

Hence, if we inductively assume that Claim 3.4 holds for any component sequence

r′ of smaller potential in any positive recurrence system, this construction com-

pletes the proof. (The properties are sufficient to show that a
(r)
k grows at least

as fast as it should, and the equality case handles the sub-exponential component

sequences.)

We have

a
(s)
k = Ps(k) +

d∑
`=1

m∑
j=1

αs,`,ja
(j)
k−`

≥ Ps(k) +
d∑
`=1

αs,`,ta(t)
k−` +

∑
j∈J(s)

αs,`,ja
(j)
k−`

 .

If s is in a unique cycle in G, then every immediate successor of s other than t

is in J(s). This means that all dropped terms in going from the equality to the

inequality are in fact zero, so we actually have equality here in this case.

We also have

a
(r)
k = Pr(k) +

d∑
`=1

m∑
j=1

αr,`,ja
(j)
k−`

= Pr(k) +

d∑
`=1

αr,`,sa(s)
k−` +

∑
j∈〈m〉\{s}

αr,`,ja
(j)
k−`

 .

Let J ′ = 〈m〉 \ ({t} ∪ J(s)). Combining everything together yields

a
(r)
k ≥ Pr(k) +

d∑
`1=1

αr,`1,s
Ps(k − `1) +

d∑
`2=1

(
αs,`2,ta

(t)
k−`1−`2

+
∑
j∈J(s)

αs,`2,ja
(j)
k−`1−`2

+
∑

j∈〈m〉\{s}

αr,`1,ja
(j)
k−`1


=

(
Pr(k) +

d∑
`=1

αr,`,sPs(k − `)

)

+
d∑

`1=1

αr,`1,ta(t)
k−`1 +

d∑
`2=1

αs,`2,ta
(t)
k−`1−`2
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+

d∑
`1=1

∑
j∈J(s)

αr,`1,ja(j)
k−`1 +

d∑
`2=1

αs,`2,ja
(j)
k−`1−`2


+

d∑
`=1

∑
j∈J ′

αr,`,ja
(j)
k−`.

Again, if s is in a unique cycle in G, we actually have equality here.

Our new positive recurrence system is obtained from the current one as follows:

1. The equation for b
(i)
k for i /∈ {r, s} is

b
(i)
k = Pi(k) +

d∑
`=1

∑
j∈〈m〉\{s}

αi,`,jb
(j)
k−`.

2. We have

b
(r)
k =

(
Pr(k) +

d∑
`=1

αr,`,sPs(k − `)

)

+

d∑
`1=1

αr,`1,tb(t)k−`1 +

d∑
`2=1

αs,`2,tb
(t)
k−`1−`2


+

d∑
`1=1

∑
j∈J(s)

αr,`1,jb(j)k−`1 +

d∑
`2=1

αs,`2,jb
(j)
k−`1−`2


+

d∑
`=1

∑
j∈J ′

αr,`,jb
(j)
k−`.

In the definition of b
(r)
k , the first part is the nonhomogeneous part: a polynomial

of degree max (deg (Pr) ,deg (Ps)). The second part describes the references to(
b
(t)
k

)
. The third part describes the references to

(
b
(j)
k

)
where j ∈ J(s). The

final part describes all the other references. (Note that there are no references to

the nonexistent sequence
(
b
(s)
k

)
.)

From this construction and our calculation, we notice that the first three desired

properties of this new system definitely hold. We can also see how G̃ is obtained

from G:

• First, delete all incoming edges to s, other than the one from r. (This is

accomplished by item 1 above.)
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1 2 3 4 5 6

1 1 2

1
1

1

2

1

1
4

Figure 3.1: The graph G in our example

• Then, contract the edge rs. (This is accomplished by item 2 above.)

• If any multiple edges were created in the previous step, replace them by

a single edge whose weight is the sum of the weights of the edges being

replaced. (This would come up, for example, if r has a self-loop and is also

in a 2-cycle, with s being the other vertex in that cycle. After contracting

rs, r would have two self-loops, which then need to be combined.)

It is clear that every cycle in G containing r corresponds to a cycle in G̃ containing

r, and the latter cycle can be no longer than the original. The cycle corresponding

to C in G̃ is strictly shorter than C, since s has been removed from it. So,

φG̃(r) < φG(r), as required.

We conclude this section with an example run of this graph algorithm. We shall

determine the asymptotic behavior of an arbitrary eventually positive solution to the

following positive recurrence system:

a
(1)
k = a

(2)
k−1

a
(2)
k = a

(1)
k−1 + a

(2)
k−2 + a

(3)
k−1

a
(3)
k = k2 + a

(3)
k−1

a
(4)
k = 1 + a

(3)
k−1 + a

(3)
k−2 + a

(5)
k−1

a
(5)
k = 8k + a

(4)
k−1

a
(6)
k = 4a

(5)
k−1 + 2a

(6)
k−2

(3.1)

Step 1 builds the graph G shown in Figure 3.1. We then, in step 2, initialize d1 = −∞,

d2 = −∞, d3 = 2, d4 = 0, d5 = 1, and d6 = −∞. We now enter step 3. Observe that
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1 2 3 4 5 6

1

1 2

1

1
4

Figure 3.2: The graph G′ in our example

{1} {2} {3} {4, 5} {6}

Figure 3.3: The graph H in our example

vertex 6 in G is in a circuit with an edge of weight 2. Also, observe that vertices 1 and

2 are each in more than one directed circuit. (One of the circuits for vertex 1 follows

the loop on vertex 2; the other does not.) So, W = {1, 2, 6}. We set d1 = d2 = d6 =∞,

and we obtain the graph G′ depicted in Figure 3.2.

We proceed now to steps 4 and 5. Each vertex of G′ is its own equivalence class

except for 4 and 5, which are equivalent to each other. We obtain the graph H shown

in Figure 3.3. In step 6, we initialize the variables d{1} = ∞, d{2} = ∞, d{3} = 2,

d{4,5} = 1, and d{6} =∞. We now move to step 7. One topological order of the vertices

of H is

{6} , {4, 5} , {1} , {2} , {3} ,

so we will process the vertices in the reverse of this order. When we process {3}, d{3}

increases from 2 to 3, as vertex 3 in G′ has a loop. We also must increase d{4,5} to

3, as 3 = max(1, 3). We then process {2} and {1}, which causes no changes. When

we reach {4, 5}, d{4,5} increases to 4, since 4 and 5 are in a cycle together in G′. The

variables that started infinite cannot change, so the final values we obtain are d{1} =∞,

d{2} =∞, d{3} = 3, d{4,5} = 4, and d{6} =∞. This tells us that any eventually positive

solution to the positive recurrence system (3.1) will have a
(1)
k , a

(2)
k , and a

(6)
k growing

exponentially, a
(3)
k growing cubically, and a

(4)
k and a

(5)
k growing quartically.
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3.2 The Algorithm

In this section, we describe our algorithm for discovering positive-recurrent solutions

to nested recurrences, which is implemented in our Maple package as the procedure

FindQgSolutions. In Subsections 3.2.1, 3.2.2, and 3.2.3, we carefully describe and

study how to discover period-m positive-recurrent solutions to a basic recurrence. The

process should resemble an attempt to prove the closed form to Golomb’s solution (2.1)

despite not yet knowing what form is desired. Then, Subsection 3.2.4 consists of a

sample run through the algorithm. Finally, Subsection 3.2.5 discusses some possible

relaxations on the inputs and outputs of the algorithm.

3.2.1 Input and Output

The primary input to the algorithm is a basic nested recurrence L(n). It is perfectly

reasonable to search for positive-recurrent solutions to other linear nested recurrences,

or even nonlinear ones. But we fixate on basic recurrence here, as their simple form

allows us to prove that our algorithm is correct. For discussions of what may happen

with more general recurrences, see Subsection 3.2.5 and Chapter 11.

We also must guarantee that the algorithm terminates. This requires us to limit the

search space in some way. A straightforward choice is to specify, as an input, the period

m of the positive-recurrent solutions we obtain. So, our input is a basic recurrence L(n)

and an integer m ≥ 1 specifying the intended period.

The algorithm outputs a collection of positive-recurrent solutions that it discovers.

Each item that it outputs actually specifies a family of solutions that all satisfy similar

positive recurrence systems. More precisely, each item of the output consists of the

following components:

1. A positive-recurrence system P containing some symbolic parameters

2. A set C of constraints on the symbolic parameters in P

3. Values V for the parameters in P that satisfy all the constraints in C
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4. An initial condition IC that generates a positive-recurrent solution to L(n) that

satisfies P when the values V are substituted for the parameters.

The system P, along with the constraints C, defines a family of positive recurrence

systems that might be realized by solutions to the recurrence L(n). This should be

thought of as a solution template. The values V then provide a certificate that the

constraints are actually satisfiable. Finally, the initial condition IC certifies that the

template is actually realizable in a solution.

We have already seen two examples of period-3 positive-recurrent solutions to the

Hofstadter Q-recurrence, namely those of Golomb and Ruskey. Our algorithm, when

given the Q-recurrence and m = 3 as input, outputs 12 items as described above. One

of these outputs consists of the following items.

• Positive recurrence system P, with symbolic parameters µ1 and µ2:
a

(0)
k = a

(0)

k−µ2
3

+ a
(0)

k−µ1
3

a
(1)
k = µ1

a
(2)
k = µ2

• Constraints C:

– µ1 > 0

– µ2 > 0

– µ1 ≡ 0 (mod 3)

– µ2 ≡ 0 (mod 3)

• Satisfying values V: µ1 = 3, µ2 = 3

• Certifying initial condition: IC = 〈3, 3, 22, 3, 3, 22, 3, 3, 22, 3, 3〉.

This is an infinite family of solutions parametrized by pairs of positive multiples of

three. The certificate given here is for µ1 = 3 and µ2 = 3. But, this family also

contains Ruskey’s solution, obtained from µ1 = 3 and µ2 = 6.
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3.2.2 Steps of the Algorithm

We now describe the steps of the algorithm. Each step discussed in this subsection has

a corresponding example application in Subsection 3.2.4.

Fixing the Behavior of the Subsequences

A positive-recurrent solution to L(n) with period m has the form

L(mk) = a
(0)
k

L(mk + 1) = a
(1)
k

L(mk + 2) = a
(2)
k

...

L(mk + (m− 1)) = a
(m−1)
k

for some sequences
(
a

(0)
k

)
through

(
a

(m−1)
k

)
. (For convenience, we index the interleaved

sequences from zero in this context.) We define the following growth properties that

these component sequences may have:

Definition 3.5.

• Call
(
a

(r)
k

)
constant if, for sufficiently large k, a

(r)
k = A for some constant A.

• Call
(
a

(r)
k

)
linear if, for sufficiently large k, a

(r)
k = Ak+B for some constants A

and B.

• Call
(
a

(r)
k

)
superlinear if a

(r)
k = ω(k).

• Call
(
a

(r)
k

)
standard linear if a

(r)
k = mk +B for some constant B.

• Call
(
a

(r)
k

)
steep linear if a

(r)
k = Ak+B for some constants A and B with A > m.

• Call
(
a

(r)
k

)
steep if

(
a

(r)
k

)
is either steep linear or superlinear.

To start, we need to decide, for each of the m component sequences, are we looking

for a solution where that subsequence is constant, standard linear, or steep? To keep

track of our choices, the algorithm stores variables λ0, λ1, . . . , λm−1. We set λr = 0 if we
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decide that
(
a

(r)
k

)
is to be constant, λr = m if

(
a

(r)
k

)
is standard linear, and λr = ∞

if
(
a

(r)
k

)
is steep. In general, to perform an exhaustive search for positive-recurrent

solutions, we iterate through the 3m possible overall behaviors.

Unpacking the Recurrence

At this stage, we try to mirror the inductive step of the proof of Golomb’s sequence’s

structure. That step consists of three parts; in general, this stage consists of m similar

parts. For each of the expressions L(mk + r) with 0 ≤ r < m, we begin by expanding

out the basic recurrence as

L(mk + r) = P (mk + r) +
d∑
i=1

αiL

mk + r − βi −
di∑
j=1

L(mk + r − γi,j)

 . (3.2)

This gives us a sum of expressions consisting of calls to L themselves containing calls to

L. Continuing to mirror the Golomb proof, we now try to use an inductive hypothesis

to replace the inner calls to L. The (i, j)th inner call is of the form L(mk′i,j + r′i,j) with

0 ≤ r′i,j < m, where either k′i,j < k or both k′i,j = k and r′i,j < r. Specifically, we have

r′i,j = (r − γi,j) modm and k′i,j = k +
r−γi,j−r′i,j

m .

Our inductive hypothesis comes from the behavior choices we make in the first stage

of the algorithm. Observe that if a sequence
(
a

(r)
k

)
is not steep, then

(
a

(r)
k

)
= λrk+µr

for some constant µr, where λr is our variable tracking the growth of
(
a

(r)
k

)
. At this

stage, introduce symbols µr for each of these constants. The inductive hypothesis is

then:

If k′ < k or both k′ = k and r′ < r, then:

• If
(
a

(r′)
k

)
is not steep, then L(mk′ + r′) = λr′k + µr′ .

• If
(
a

(r′)
k

)
is steep, then L(mk′ + r′) ≥ mk + r.

For notational convenience, we also introduce a symbol µr if
(
a

(r)
k

)
is steep and, in a

sense, we “pretend” that
(
a

(r)
k

)
= λrk+µr. This will allow us to treat the second part

of the inductive hypothesis in-line.
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Applying our inductive hypothesis to (3.2) yields

L(mk + r) = P (mk + r) +
d∑
i=1

αiL

mk + r − βi

−
di∑
j=1

(
λr′i,j

(
k +

r − γi,j − r′i,j
m

)
+ µr′i,j

)
= P (mk + r) +

d∑
i=1

αiL

m− di∑
j=1

λr′i,j

 k + r − βi

−
di∑
j=1

µr′i,j −
di∑
j=1

λr′i,j

(
r − γi,j − r′i,j

m

)

Now, for a given value of i, define

`i =
1

m

di∑
j=1

λr′i,j .

The replacement yields the term

L

m (1− `i) k + r − βi −
di∑
j=1

µr′i,j − `im
di∑
j=1

r − γi,j − r′i,j
m

 .

If `i > 1, then the coefficient on k here is negative. This means that the index is

negative for sufficiently large k. We assume inductively that such terms are zero. There

are actually two sub-cases. If some sequence

(
a

(r′i,j)

k

)
is steep, `i = ∞ and the above

term is of the form L(−∞k − c). In an inductive proof, we assume, at this point, that

the terms of the steep sequence are larger than the indices they are being compared to.

In this way, the infinite coefficient is convenient shorthand. If 1 < `i < ∞, then there

are no steep sequences among the

(
a

(r′i,j)

k

)
, but `i of them are standard linear. Then,

as long as k is sufficiently large, the index is negative.

If `i = 1, the unpacking gives

L

r − βi − di∑
j=1

µr′i,j −m
di∑
j=1

r − γi,j − r′i,j
m


= L

r − βi − di∑
j=1

(
γi,j + r′i,j − µr′i,j − r

) .
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Such a term is a reference to a particular evaluation of L, so this term itself is a constant.

Going forward, such terms are treated as additional symbolic parameters.

The only remaining case is where `i = 0. Here, for the given value of i, each

(
a

(r′i,j)

k

)
is constant, and each λr′i,j = 0. So, we obtain an expression of the form L(mk − c) for

a symbolic constant c. Such expressions must themselves be handled inductively. We

know that, in the ith term, the constant c is βi − r +
di∑
j=1

µr′i,j . Denote this quantity by

ci. We know that L(mk− ci) = L(mk′′i − r′′i ) for r′′i = (−ci) mod m and k′′i = k− ci+r
′′
i

m .

The values of r′′i and k′′i depend on the congruence class of ci mod m. But, ci contains

the symbols µr′i,j for 1 ≤ j ≤ di. So, we formally assign every µr′i,j each of the m

possible congruences and iterate through all these possibilities. Once we select these

congruence classes, if λr′′i <∞, we replace L(mk − ci) by λr′′i k
′′ + µr′′i . If λr′′i =∞, we

rewrite the expression as

L(mk − ci) = L(mk′′ + r′′i ) = L

(
m

(
k − ci + r′′i

m

)
+ r′′i

)
without eliminating the call to L.

The above process requires selecting congruences for the symbols µr′i,j that appear

in the constants ci. These constants only appear when λr′i,j = 0, so the only symbols

for which we need to fix congruences are the symbols µr where
(
a

(r)
k

)
is constant.

To summarize, we have now inductively “unpacked” the recurrence to the following

form:

L(mk + r) = P (mk + r) +
∑

1≤i≤d
`i=1

αiL

r − βi − di∑
j=1

(
γi,j + r′i,j − µr′i,j − r

) (3.3)

+
∑

1≤i≤d
`i=0

λr′′
i
<∞

αi

(
λr′′i

(
k − ci + r′′i

m

)
+ µr′′i

)
(3.4)

+
∑

1≤i≤d
`i=0

λr′′
i

=∞

αiL

(
m

(
k − ci + r′′i

m

)
+ r′′i

)
. (3.5)

Line (3.4) can be further divided into a sum of αiµr′′i over those i with λr′′i = 0 and of

αi

(
mk − ci + r′′i + µr′′i

)
over those i with λr′′i = m.
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We can now extract a system of nonhomogeneous linear recurrences from (3.3), (3.4),

and (3.5). To accomplish this, we replace all expressions of the form L(mk̃+ r̃) by a
(r̃)

k̃
.

Specifically, for sequence
(
a

(r)
k

)
we obtain

a
(r)
k = P (mk + r) +

∑
1≤i≤d
`i=1

αiL

r − βi − di∑
j=1

(
γi,j + r′i,j − µr′i,j − r

) (3.6)

+
∑

1≤i≤d
`i=0

λr′′
i
<∞

αi

(
λr′′i

(
k − ci + r′′i

m

)
+ µr′′i

)
(3.7)

+
∑

1≤i≤d
`i=0

λr′′
i

=∞

αia
(r′′i )

k−
ci+r

′′
i

m

. (3.8)

The coefficients in the homogeneous part are αi values. By assumption, these coeffi-

cients are all nonnegative. So, we have obtained a positive recurrence system, provided

that the polynomials

P̃r(k) := P (mk + r) +
∑

1≤i≤d
`i=1

αiL

r − βi − di∑
j=1

(
γi,j + r′i,j − µr′i,j − r

)
+
∑

1≤i≤d
`i=0

λr′′
i
<∞

αi

(
λr′′i

(
k − ci + r′′i

m

)
+ µr′′i

) (3.9)

are all eventually nonnegative.

In a later step, we force the polynomials P̃r(k) to be eventually nonnegative, so we

do actually obtain a positive recurrence system at this stage. For ease of notation going

forward, denote this positive recurrence system by P.

Checking for Structural Consistency

The previous step has given us a positive recurrence system P that is eventually satisfied

by the
(
a

(r)
k

)
’s. But, the structure of P may not be consistent with the original forms

we assigned to the
(
a

(r)
k

)
sequences. First, we check the following conditions:

• If
(
a

(r)
k

)
is constant, the expression in P for a

(r)
k should consist only of constants.
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• If
(
a

(r)
k

)
is standard linear, the expression in P for a

(r)
k should be of the form

mk + c for some expression c not containing any k.

• If
(
a

(r)
k

)
is steep, the expression in P for a

(r)
k should have at least one of the

following:

– A term σk with σ > m.

– A reference to some steep
(
a

(r′)
k

)
.

If any of these is violated for any r, there is no solution with the given A values and con-

gruence conditions, as the inductive step in an attempted proof of such a solution would

fail when setting the inductively computed expressions equal to the target expressions.

If all of the above conditions are satisfied, we must determine the nature of each steep(
a

(r)
k

)
. In particular, we need to determine if each one is steep linear or superlinear.

As a bonus, we will be able to determine the degree of
(
a

(r)
k

)
if it is a polynomial.

Since P is a positive recurrence system, we can use the algorithm from Section 3.1

to accomplish precisely this task, provided we will start with an eventually positive

initial condition. (We construct this initial condition later, on p. 41.) In running this

algorithm, we may find that we actually do not have a solution, as the third case above

includes expressions like a
(r)
k = a

(r)
k−1, which do not result in steep sequences. Again, if

this happens, we can rule out a solution of the type currently under consideration with

the congruences currently under consideration, as the inductive step of the proof would

fail to verify the growth rates of the sequences.

If, during this step, we determine that there are no solutions of the current type,

terminate this branch of the computation without returning anything.

Building a Constraint Satisfaction Problem

If our parameters produce a symbolic solution, we now know precisely what the struc-

ture of that particular solution must be. At this point, we need to see if such a solution

can actually be realized.

In order to have a solution, we must check the following:
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• If
(
a

(r)
k

)
is constant, we must have µr > 0. Otherwise, our solution would have

infinitely many nonpositive values. This is not allowed, as we would then not be

able to explicitly calculate terms of the sequence.

• If
(
a

(r)
k

)
is constant, µr must equal our expression the right side of the expression

for a
(r)
k in P.

• If
(
a

(r)
k

)
is standard linear, µr must equal the constant term on the right side of

the expression for a
(r)
k in P.

• If
(
a

(r)
k

)
is steep linear, we may need a steepness constraint. This constraint is

fairly complicated; we describe it below.

• Any constant that we have forced to have a certain congruence mod m must

actually have that congruence.

• Each polynomial P̃r(k) defined by Equation (3.9) must be eventually nonnegative

in order to force P to be a positive recurrence system. This is automatically the

case if the degree of P̃r is greater than zero. We know that P is eventually non-

negative, and any new linear coefficient introduced in P̃r is one of the nonnegative

αi values. In the case that P̃r is constant, we need to require P̃r ≥ 0.

• For any two constants of the form L(c1) and L(c2) that appear, if c1 = c2 then

L(c1) must equal L(c2).

• If constant L(c) appears, then if c ≤ 0 we must have L(c) = 0.

The last two of these restrictions gives a set of constraints of the form “If X then Y ” to

check. For this reason, we call such constraints conditional. The rest of the constraints

are unconditional constraints.

As mentioned above, constraining steep linear
(
a

(r)
k

)
’s to actually be steep requires

a more complicated constraint. This stems from the fact that steep linear
(
a

(r)
k

)
’s

can arise in three different ways. The steep linear
(
a

(r)
k

)
’s are a subset of the linear(

a
(r)
k

)
’s. In terms of the algorithm in Section 3.1, the linear

(
a

(r)
k

)
’s are the ones for
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which dr̄ = 1 when the algorithm terminates. The following are all the ways this could

happen, in terms of the graphs G′ and H in that algorithm.

1. The expression for L(mk + r) is a degree-1 polynomial.

2. Vertex r is not in a cycle in G′ and, when it came time to assign dr̄ its final value,

the largest d value in H it pointed to was a 1.

3. Vertex r is in a cycle in G′ and, when it came time to assign dr̄ its final value,

the largest d value in H it pointed to was a 0 (or it pointed to no other vertices

in H).

In Case 1,
(
a

(r)
k

)
is steep linear if and only if the leading coefficient of that polynomial

is greater than m. We already checked this in our structural consistency check, so if(
a

(r)
k

)
is linear because of Case 1, we need no steepness constraint. In Case 2, we have

that r is pointing to something else linear. But, our unpacking step would have removed

all references to standard linear
(
a

(r′)
k

)
’s. So, in Case 2, every

(
a

(r′)
k

)
that

(
a

(r)
k

)
still

refers to must be steep linear. This immediately forces
(
a

(r)
k

)
itself to be steep linear

without imposing any extra constraints.

This leaves only Case 3. In this case, r is in a directed cycle in G′, say

r = r0, r1, r2, . . . , rt−1, rt = r. Each of the corresponding sequences has an expression

of the form

a
(ri)
k = qi + a

(ri+1)
k−ei .

Repeated substitution yields the formula

a
(r)
k =

t−1∑
i=0

qi + a
(r)

k−
∑t−1
i=0 ei

for some constants ei. We require that
(
a

(r)
k

)
be steep. This will be accomplished if

we have that
t−1∑
i=0

qi > m
t−1∑
i=0

ei.

So, this is the steepness constraint we add in Case 3. In particular, we arrive at the

same constraint for all sequences in a given equivalence class.

For notational convenience going forward, denote the system of constraints we obtain

in this step by C.
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Solving the Constraint Satisfaction Problem

As mentioned in Subsection 3.2.1, the systems P and C together represent a template

for solutions to the recurrence L(n). Given such a template, the inductive step of

proving the structure of our sequence succeeds. Our goal is now to determine whether

the template is actually satisfiable.

The system of unconditional constraints in C is almost an integer program. The

following modifications can turn it into an integer program:

• Since all variables are integers, strict inequalities of the form x > y can be made

loose by replacing them by the equivalent inequalities x ≥ y + 1.

• Congruence constraints can be converted to equality constraints via the intro-

duction of auxiliary variables. Namely, x ≡ y (modm) is the same constraint as

x = Km+ y, where K is a new auxiliary variable.

Furthermore, the conditional constraints can be incorporated into the integer program.

For each constraint of the form “If (c1 = c2), then (L(c1) = L(c2)),” we consider three

cases. (If one fails, we try the next one.)

• Add the constraints c1 = c2 and L(c1) = L(c2).

• Add the constraint c1 ≤ c2 − 1.

• Add the constraint c1 ≥ c2 + 1.

And, for each constraint of the form “If (c ≤ 0), then (L(c) = 0),” we consider two

cases.

• Add the constraints c ≤ 0 and L(c) = 0.

• Add the constraint c ≥ 1.

Maple has a built-in procedure, LPSolve, that can satisfy linear integer programs.

Since we are only considering linear nested recurrences, the integer program we obtain

is, in fact, linear. Integer linear programming is an np-hard problem [24]. But, experi-

mentally, the instances that arise in this context seem to be not very hard. Heuristically
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guessing µr values that are far apart seems to make satisfying the constraints be a quick

process. In particular, the constraints we obtain are typically satisfiable unless there is

some obvious reason why they should not be. If it turns out the constraint system is

not satisfiable, there is no solution in this branch. In that case, terminate the branch

without returning anything.

Going forward, denote the value assignment we obtain here by V. Now that we have

specific values for the parameters in our template, we can carry out the inductive step

of a Golomb-like proof using specific values. All that remains is the base case.

Constructing an Initial Condition

We now have an eventual solution to our recurrence given by the template P and C

along with the value assignments V. These together suffice to carry out the inductive

step of a Golomb-like proof of the structure of a solution to the recurrence L(n). But,

any proof by induction needs a base case. Much like we do in the proof of Golomb’s

solution (p. 10), we must answer the question: “What do we assume in the inductive

step?” There are a few different types of assumptions that may be made:

1. There are sometimes constraints involving terms of the form L(c) for some con-

stant c.

2. The rewriting of L(mk+r) refers to some terms of the form L(mk′+r′) for various

k′ ≤ k and various r′. Such rewriting is only valid if the referenced terms actually

have the values they are assumed to have. Let k0 be the minimum such k′ that

was referenced for any r. The inductive step is only guaranteed to be valid if

k0 >
⌊
c0
m

⌋
, as there may be anomalous terms at or below L(c0).

3. Also, we sometimes substitute ∞ into expressions when rewriting L(mk + r).

Each time we do this, we are assuming that the terms in a steep sequence
(
a

(r′)
k

)
are greater than the indices referencing these terms. This is eventually true of

any steep sequence, but, it may fail for finitely many initial values.

4. Similarly, rewriting L(mk + r) sometimes includes expressions with negative co-

efficients on m. The inductive step is only valid if k is large enough that all such
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referenced indices are nonpositive.

We now use the above observations to construct an initial condition that allows the

induction to be carried out safely. Let c0 denote the maximum positive constant c so

that L(c) appears in V, or let c0 = 0 if no such positive c exists. Let γ denote the

maximum of the constants γi,j appearing in the recurrence L(n), and, similarly, let β

denote the maximum of the βi. Then, let µ denote the maximum value of µr in V for

any r with
(
a

(r)
k

)
constant. Also, define

κ =

⌈
max

{
−εm
c

: L(εk − c) appears in the unpacking

}⌉
.

Then, let ν be the next integer greater than or equal to c0 + 2m+ max(γ, β+µ, κ) that

is congruent to −1 mod m. Define an initial condition IC as follows:

1. Start with IC = 〈L(1), L(2), . . . , L(ν)〉, a generic initial condition of length ν.

2. Any values of L(c) defined by V should be placed in those positions in IC. (For

example if V contains an assignment of L(2) = 7, then the second entry in IC

should become 7.)

3. If
(
a

(r)
k

)
is not steep, then for each index 1 ≤ mk+r ≤ ν, set L(mk+r) = λrk+µr

in IC, unless this term was already set by item 2.

4. Any remaining symbolic terms in IC are in steep positions. Set each of these

terms to the value 2ν.

We have the following claim:

Claim 3.6. The initial condition IC obtained above generates a positive-recurrent so-

lution to the recurrence L(n) with eventual behavior described by P and V.

Proof. We already know that the inductive step in proving this eventual behavior suc-

ceeds. So, it suffices to show that IC provides a valid base case for that induction. That

is, we must show that the inductive step works for all indices greater than ν, even if a

term in the induction references a term in IC.
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Let mk+r > ν. Importantly, this means that k ≥ ν+1
m . First, suppose we encounter

an inner expression L(mk′ + r′) when unpacking L(mk + r) with mk′ + r′ ≤ ν. We

know that mk′ + r′ ≥ mk+ r− γ. Using the fact that r− r′ ≥ 1−m, we can calculate

k′ ≥ k +
r − γ − r′

m

≥ ν + 1

m
+
r − γ − r′

m

≥ c0 + 2m+ 1 + r − r′

m

≥ c0 +m+ 2

m

>
c0

m
+ 1

>
⌊c0

m

⌋
.

So, rewriting L(mk′ + r′) does not refer to any index with a forced value. This leaves

two possibilities:(
a

(r′)
k

)
is not steep: In this case, item 3 assures us that the value of L(mk′ + r′) is

λr′k
′ + µr′ . This is the value it is assumed to be in the inductive hypothesis.(

a
(r′)
k

)
is steep: In this case, item 4 assures us that the value of L(mk′ + r′) is 2ν.

Since ν ≥ mk′ + r′ ≥ mk + r − γ, we have that mk + r ≤ ν + γ ≤ 2ν. So,

L(mk′ + r′) ≥ mk + r, which is the same assumption we make in the inductive

hypothesis.

Now, suppose we encounter an inner expression L(mk′+r′) when unpacking L(mk+

r) that we replace by µr′ because
(
a

(r′)
k

)
is constant. The outer expression we are left

with is then L(mk+r−βi−µr′) for some i. Suppose we have this mk+r−βi−µr′ ≤ ν.

We know that mk+ r− βi− µr′ = mk′′+ r′′ for some 0 ≤ r′′ < m. Solving for k′′ gives
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k′′ = k +
r−βi−µr′−r′′

m . Using the fact that r − r′′ ≥ 1−m, we can calculate

k′′ ≥ k +
r − βi − µr′ − r′′

m

≥ ν + 1

m
+
r − β − µ− r′′

m

≥ c0 + 2m+ 1 + r − r′′

m

≥ c0 +m+ 2

m

>
⌊c0

m

⌋
.

So, rewriting L(mk′′ + r′′) does not refer to any index with a forced value. This leaves

two possibilities:(
a

(r′′)
k

)
is not steep: In this case, item 3 assures us that the value of L(mk′′ + r′′) is

λr′′k
′ + µr′′ . This is the value it is assumed to be in the inductive hypothesis.(

a
(r′′)
k

)
is steep: In this case, item 4 assures us that the value of L(mk′′ + r′′) is 2ν.

Since ν ≥ mk′′ + r′′ ≥ mk + r − β − µ, we have that mk + r ≤ ν + β + µ ≤ 2ν.

So, L(mk′′ + r′′) ≥ mk + r. At this stage in the unpacking, we did not evaluate

the outer expression. But, this calculation ensures us that our initial condition

values are large enough for all remaining terms of
(
a

(r′′)
k

)
to be large enough.

Finally, suppose we encounter an inner expression L(εk− c) with −∞ < ε < 0 when

unpacking L(mk + r). Since ν ≥ κ ≥ εm
c , we have

k ≥ ν + 1

m
≥

εm
c

m
=
ε

c
.

So, εk − c ≤ 0, which means that, in the induction, our assumption that L(εk − c) = 0

is correct.

The initial condition that we construct here depends on the values V. But, there are

probably infinitely many possible choices of V that could have satisfied C. This method

of constructing an initial condition works for any such choice of V.

Note that the initial condition we obtain in this step is not “optimal.” There may

be shorter initial conditions that generate the same eventual sequence, and some of the
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constraints on symbolic terms in the initial condition may be able to be relaxed some-

what. Our Maple implementation is a more complicated variation on this construction;

it attempts to produce optimal initial conditions.

At this point, this branch of the algorithm is complete. Add the 4-tuple (P, C,V, IC)

to the collection of objects to be returned and terminate this branch of the algorithm.

3.2.3 Correctness, Termination, and Complexity

We claim that the algorithm described throughout Subsection 3.2.2 is correct and ter-

minates. By “correct,” we mean that every item it outputs actually does specify a

positive-recurrent solution. The proof of correctness is scattered throughout the de-

scriptions of the steps themselves. The start, on p. 32, just requires iterating through

3m cases. In the next step (p. 33), we obtain a parametrized positive recurrence system

P that our solution will satisfy. This step involves iterating through congruence choices

for each µr with
(
a

(r)
k

)
constant. So, we only have to spawn finitely many branches

in this step (at most mm of them). Then (p. 36), we use the graph algorithm from

Section 3.1 as a subroutine. That algorithm’s correctness is proved by Claim 3.4, and it

clearly terminates. In the next step (p. 37), we determine what constraints C we require.

Each of the constraints derived there is derived by a finite process. Then, we satisfy

the constraints (p. 40). Here, we use established integer programming algorithms as

subroutines, as well as some backtracking through the conditional constraints. Finally

(p. 41) we, in polynomial time, provably find an initial condition of bounded length.

We can actually make a stronger claim about the correctness of our algorithm. Sup-

pose the recurrence L(n) has a positive-recurrent solution satisfying positive recurrence

system P. As long as every component sequence of P is constant, standard linear,

or steep, our algorithm will have discovered a family of solutions including this so-

lution. At some point, the algorithm will have guessed the correct behaviors for the

subsequences and the correct congruences for the constants. Since the recurrence, by

assumption, has a solution with those parameters, the resulting constraint system will

have definitely been satisfiable. The satisfying values then lead to an initial condition.

In short, the only possible positive-recurrent solutions that our algorithm can miss
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are ones with a component sequence that is not constant, not standard linear, and not

steep. By the graph algorithm in Section 3.1, each component sequence either grows

polynomially or exponentially. So, the only types of solutions that could have been

missed are:

• Solutions with a linear component sequence whose slope lies strictly between 0

and 1

• Solutions with a quasilinear component sequence that is not itself constant or

linear.

Our algorithm can still find solutions of the second type, but it would find them for a

larger input m. No solutions of the first type are known for any basic recurrence with

P (n) = 0 and each di = 1. For an example of such a solution to a basic recurrence with

d = 2, d1 = 2, and d2 = 3, see 3.3.2 at the end of this chapter.

We now analyze the running time of our algorithm. The first step (p. 32), contributes

a factor of 3m to the worst-case complexity. Then, the next step (p. 33) contributes a

worst-case factor of mm. Most of the computation of the following step (p. 36) involves

running the graph algorithm from Section 3.1. This is a polynomial time subroutine,

as it is based on topological sort and graph search algorithms. The only remaining

part that may not run in polynomial time is the constraint satisfaction on p. 40. In

the worst case, this could require checking 3c integer programs for feasibility, where

c is the number of conditional constraints. The complexity of each such check is the

complexity of integer programming, which, as we mentioned, is an np-hard problem.

We can crudely bound the total number of constraints by 4m+md+
(
md
2

)
as follows:

• Each 0 ≤ r < m contributes at most four constraints:

– At most one positivity constraint on µr

– At most one equality constraint for µr or steepness constraint

– At most one congruence constraint on µr

– At most one non-negativity constraint on P̃r(k)
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• There are at most md additional symbolic constants of the form L(c) for some c.

• Each such constant contributes at most one constraint of the form “If c ≤ 0, then

L(c) = 0.”

• Each such pair of constants contributes at most one constraint of the form “If

c1 = c2, then L(c1) = L(c2).”

So, the total number of constraints is at most 4m+md+
(
md
2

)
. This implies that the

worst-case complexity of the algorithm is at most

O

(
(3m)m · 34m+md+(md2 )f

(
4m+md+

(
md

2

)))
,

where f(n) is the complexity of our integer programming instances on at most n vari-

ables and n constraints.

This is a terrible theoretical running time, but, in practice, the algorithm is usable.

First, if the user is only interested in certain sequence behaviors or certain congruences

for constants, the first exponential terms can be reduced. Second, many cases that

do not result in a solution will fail before attempting to satisfy any integer programs.

Third, the integer programming step can stop once we find a solution; we do not need

to continue branching all the way through the conditional constraints. Also, we are

only interested in finding one feasible point in the domain of the integer program; gen-

eral integer programming involves optimizing some objective function over all feasible

points. This fact, along with the specific form of our integer programs, makes solving

these programs not too hard in practice. Additionally, the bound we give on the num-

ber of constraints is very crude, and the constraints can oftentimes be reduced using

some logical rules before even beginning to branch. The Maple implementation makes

use of these and a few other optimizations.

3.2.4 An Example

We follow the steps of the algorithm by applying it to the following input:

Recurrence: BR(n) = BR(n−BR(n− 1)) +BR(n−BR(n− 2)) +BR(n−BR(n− 3)).
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Period: m = 4

We choose this particular example because it will illustrate many facets of the algorithm

without becoming too unwieldy.

Fixing the Behavior of the Subsequences

We seek a solution of the form 

BR(4k) = a
(0)
k

BR(4k + 1) = a
(1)
k

BR(4k + 2) = a
(2)
k

BR(4k + 3) = a
(3)
k .

The full algorithm would now iterate through all 34 possibilities for λ0, λ1, λ2, λ3 ∈

{0, 4,∞}. Going forward, we treat only the case λ0 =∞, λ1 = 4, λ2 = 0, and λ3 = 0.

That is, we are seeking a solution with
(
a

(0)
k

)
steep,

(
a

(1)
k

)
standard linear, and the

other two sequences constant.

Unpacking the Recurrence

Since
(
a

(2)
k

)
and

(
a

(3)
k

)
are constant, we need to decide the congruence classes of µ2

and µ3 mod 4. There are 42 = 16 possibilities here to check. We treat only the case

where µ2 ≡ 0 (mod 4) and µ3 ≡ 3 (mod 4); the full algorithm would treat all 16 cases.

Under these assumptions, here is how the recurrence unpacks:

BR(4k) = BR(4k −BR(4k − 1)) +BR(4k −BR(4k − 2)) +BR(4k −BR(4k − 3))

= R
(

4k − a(3)
k−1

)
+R

(
4k − a(2)

k−1

)
+R

(
4k − a(1)

k−1

)
= BR(4k − 0 (k − 1)− µ3) +BR(4k − 0 (k − 1)− µ2)

+BR(4k − 4 (k − 1)− µ1)

= BR(4k − µ3) +BR(4k − µ2) +BR(4− µ1)

= a
(1)

k−µ3+1
4

+ a
(0)

k−µ2
4

+BR(4− µ1)

= 4

(
k − µ3 + 1

4

)
+ µ1 + a

(0)

k−µ2
4

+BR(4− µ1)
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= 4k − µ3 − 1 + µ1 + a
(0)

k−µ2
4

+BR(4− µ1).

BR(4k + 1) = BR(4k + 1−BR(4k)) +BR(4k + 1−BR(4k − 1))

+BR(4k + 1−BR(4k − 2))

= R
(

4k + 1− a(0)
k

)
+R

(
4k + 1− a(3)

k−1

)
+R

(
4k + 1− a(2)

k−1

)
= BR(4k + 1−∞k − µ0) +BR(4k + 1− 0 (k − 1)− µ3)

+BR(4k + 1− 0 (k − 1)− µ2)

= BR(−∞k + 1− µ0) +BR(4k + 1− µ3) +BR(4k + 1− µ2)

= 0 + a
(2)

k−µ3+1
4

+ a
(1)

k−µ2
4

= 0

(
k − µ3 + 1

4

)
+ µ2 + 4

(
k − µ2

4

)
+ µ1

= µ2 + 4k − µ2 + µ1

= 4k + µ1.

BR(4k + 2) = BR(4k + 2−BR(4k + 1)) +BR(4k + 2−BR(4k))

+BR(4k + 2−BR(4k − 1))

= R
(

4k + 2− a(1)
k

)
+R

(
4k + 2− a(0)

k

)
+R

(
4k + 2− a(3)

k−1

)
= BR(4k + 2− 4k − µ1) +BR(4k + 2−∞k − µ0)

+BR(4k + 2− 0 (k − 1)− µ3)

= BR(2− µ1) +BR(−∞k + 2− µ0) +BR(4k + 2− µ3)

= BR(2− µ1) + 0 + a
(3)

k−µ3+1
4

= BR(2− µ1) + 0

(
k − µ3 + 1

4

)
+ µ3

= BR(2− µ1) + µ3.

BR(4k + 3) = BR(4k + 3−BR(4k + 2)) +BR(4k + 3−BR(4k + 1))

+BR(4k + 3−BR(4k))

= R
(

4k + 3− a(2)
k

)
+R

(
4k + 3− a(1)

k

)
+R

(
4k + 3− a(0)

k

)
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0 1 2 3

1

Figure 3.4: The graph G = G′ at this stage of the algorithm’s execution

= BR(4k + 3− 0k − µ2) +BR(4k + 3− 4k − µ1)

+BR(4k + 3−∞k − µ0)

= BR(4k + 3− µ2) +BR(3− µ1) +BR(−∞k + 3− µ0)

= a
(3)

k−µ2
4

+BR(3− µ1) + 0

= 0
(
k − µ2

4

)
+ µ3 +BR(3− µ1)

= µ3 +BR(3− µ1).

From this unpacking, we obtain the positive recurrence system

P =



a
(0)
k = 4k − µ3 − 1 + µ1 + a

(0)

k−µ2
4

+BR(4− µ1)

a
(1)
k = 4k + µ1

a
(2)
k = BR(2− µ1) + µ3

a
(3)
k = µ3 +BR(3− µ1).

Checking for Structural Consistency

We now verify successfully that
(
a

(1)
k

)
is standard linear (the expression we obtained

for BR(4k+ 1) is 4k+µ1) and that
(
a

(2)
k

)
and

(
a

(3)
k

)
are constant (expressions BR(2−

µ1) + µ3 and µ3 + BR(3 − µ1) respectively). We then run our graph algorithm on P.

The graph G, depicted in Figure 3.4, consists of four vertices. Vertex 0 has a loop with

weight 1; the other three vertices are isolated. We initialize d0 = 1, d1 = 1, d2 = 0,

and d3 = 0. Step 3 of that algorithm does not affect any of the vertices, so G′ = G.

Similarly, ∼ has no nontrivial relations, so H ∼= G via the isomorphism i↔ {i}. When

we process vertex {0} in H, we set d{0} = 2, and this is the only change made in Step 7.

So, we obtain that
(
a

(0)
k

)
is quadratic.
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Building a Constraint Satisfaction Problem

In our example, we obtain the following constraint system C:

•
(
a

(0)
k

)
is superlinear, so there are no constraints associated to it.

•
(
a

(1)
k

)
is standard linear, and we have BR(4k + 1) = 4k + µ1. This gives us the

constraint µ1 = µ1. (This constraint is tautological, but this is okay.)

•
(
a

(2)
k

)
is constant, and we have BR(4k+ 2) = BR(2−µ1) +µ3. This gives us the

following constraints:

– µ2 > 0

– µ2 = BR(2− µ1) + µ3.

•
(
a

(3)
k

)
is constant, and we have BR(4k+ 3) = µ3 +BR(3−µ1). This gives us the

following constraints:

– µ3 > 0

– µ3 = µ3 +BR(3− µ1).

• Our congruence constraints are

– µ2 ≡ 0 (mod 4)

– µ3 ≡ 3 (mod 4).

• The polynomials P̃2(k) = BR(2 − µ1) + µ3 and P̃3(k) = µ3 + BR(3 − µ1) are

constant. This gives us the following constraints:

– BR(2− µ1) + µ3 ≥ 0

– µ3 +BR(3− µ1) ≥ 0.

These constraints end up being redundant, but, like the tautological constraint

above, this is fine.

• Our conditional constraints are

– If 2− µ1 = 3− µ1, then BR(2− µ1) must equal BR(3− µ1).



52

– If 2− µ1 ≤ 0, then BR(2− µ1) = 0.

– If 3− µ1 ≤ 0, then BR(3− µ1) = 0.

One of these constraints is vacuously true, but, again, this is allowed.

Solving the Constraint Satisfaction Problem

At this point, we call an integer program solver to find assignments that satisfy the

constraints C or to determine that no such assignments exist. In our example, the

following assignments V satisfy the constraints C:

• µ1 = 0

• µ2 = 4

• µ3 = 3

• BR(2) = 1 (= BR(2− µ1))

• BR(3) = 0 (= BR(3− µ1)).

This means we have the following eventual solution:

BR(4k) = 4k − 3− 1 + 0 + a
(0)
k−1 +BR(4) = BR(4k − 4) + 4k +BR(4)− 4

BR(4k + 1) = 4k

BR(4k + 2) = 4

BR(4k + 3) = 3.

These constraints have other satisfying values, and each other satisfaction leads to

another eventual solution to the recurrence.

Constructing an Initial Condition

All that remains is to construct an initial condition IC that generates the eventual

solution we have found. We first need to determine the value of ν that we described on

p. 41. The assignments V give values for BR(2) and BR(3), so c0 = 3. Also, we have

µ2 = 4 and µ3 = 3, so µ = 4. The recurrence tells us that β = 0 and γ = 3, and the
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Index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Start B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) B(9) B(10) B(11) B(12) B(13) B(14) B(15)

V B(1) 1 0 B(4) B(5) B(6) B(7) B(8) B(9) B(10) B(11) B(12) B(13) B(14) B(15)

λrk + µr 0 1 0 B(4) 4 4 3 B(8) 8 4 3 B(12) 12 4 3

Steep 0 1 0 30 4 4 3 30 8 4 3 30 12 4 3

Table 3.1: Creation of initial condition IC

other input is m = 4. Also, we do not encounter any expressions with finite negative

coefficients on m, so κ = 0. So, ν ≥ c0 + 2m+ max(γ, β + µ, κ) = 3 + 8 + 4 = 15. Since

15 ≡ −1 (mod 4), ν actually equals 15.

Table 3.1 describes how IC is built. We begin with a generic initial condition of

length ν = 15. The assignment V forces BR(2) = 1 and BR(3) = 0, so we assign those

values of the initial condition first. Then, we fill the remaining non-steep indices (those

indices that are not divisible by four) with values according to the eventual formulas

for those subsequences. Finally, we substitute 30 = 2ν for each remaining symbol. This

gives us the initial condition

IC = 〈0, 1, 0, 30, 4, 4, 3, 30, 8, 4, 3, 30, 12, 4, 3〉 .

The resulting sequence is essentially A268368 in OEIS; that sequence results from op-

timizing the initial condition [31].

Output of Example

We have finished exploring one branch of the algorithm’s execution on input BR(n)

and m = 4. This branch successfully found a family of positive-recurrent solutions to

BR(n) with period 4, and it adds (P, C,V, IC) to the collection of items to output. After

traversing all of the branches, the algorithm outputs a total of 36 items of this form,

corresponding to 36 different infinite families of period-4 positive-recurrent solutions to

the recurrence BR(n).

3.2.5 Possible Generalizations

It makes perfect sense to search for positive-recurrent solutions to general linear nested

recurrences, rather than just to basic ones. The algorithm we have described applies



54

to general linear recurrences with almost no modification. We restrict our analysis to

basic recurrences as we are able to give correctness and termination guarantees in this

context. The primary issues that arise when working with non-basic linear recurrences

are the following:

• In the analysis of the second step of the algorithm (p. 33), we discover that the µr’s

for which we need to specify congruences are precisely the ones for which
(
a

(r)
k

)
is constant. This is no longer true for general linear recurrences; congruences for

µr can matter here even when
(
a

(r)
k

)
is standard linear.

• With a basic recurrence, it is easy to assert that the recurrence system we obtain

at the end of the second step is a positive recurrence system. This is much harder

to guarantee in general with a non-basic recurrence, but specific examples often

do produce positive recurrence systems.

• The procedure (p. 41) for finding initial conditions involves a constant ν that

depends on constants µ, β, γ, κ, and c0. The first three of these are defined

assuming we have a basic recurrence. A similar procedure can work for specific

nonbasic recurrences, but it is more difficult to describe a generic procedure.

The procedure FindQgSolutions in the Maple package, keeping these difficulties in

mind, accepts any linear recurrence with one level of nesting as an input. The output

is only guaranteed to be correct in the basic case, but the implementation generally

succeeds in the nonbasic case also.

As mentioned in 3.2.3, we do not concern ourselves with component sequences inter-

mediate in growth between constant and standard linear. These seem to be uncommon

and can be harder to analyze. But, the Maple package can sometimes handle these, as

long as the user explicitly asks it to.
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3.3 Findings

3.3.1 Hofstadter Q-Recurrence

As our example (3.2.4) illustrates, it is possible to obtain quasi-quadratic solutions

to Hofstadter-like recurrences. This begs the question as to whether higher degree

quasipolynomials are possible. If they are, the algorithm can find them. It turns

out that there are quasipolynomial solutions to the Hofstadter Q-recurrence of every

positive degree [12]. (See Chapter 4 for details of this construction.) In addition, there

are solutions that include both quadratic and exponential subsequences, such as the

sequence obtained from the Hofstadter Q-recurrence with 〈9, 0, 0, 0, 7, 9, 9, 10, 4, 9, 9, 3〉

as the initial condition [31, A275153]. It is likely that a construction similar to the

one for arbitrary degree quasipolynomials [12] will also lead to examples including

higher degree polynomials along with exponentials. There are also solutions to the

Hofstadter Q-recurrence with linear subsequences with slopes greater than 1, and such

subsequences can be obtained by any of the three ways mentioned on p. 39.

• The length-45 initial condition

〈0, 4,−40,−9, 8,−8, 7, 1, 5, 13,−24,−1, 8, 8, 8, 1, 5, 13,−8, 7, 8, 8, 23, 1, 5, 13, 8, 15,

8, 16, 31, 1, 5, 13, 24, 23, 8, 24, 39, 1, 5, 13, 40, 31, 8〉

leads to a period-8 solution with Q(8n+ 3) = 16n− 40. This is the case because

unpacking Q(8n + 3) involves adding two standard linear terms together [31,

A275361].

• The length-16 initial condition

〈−9, 2, 9, 2, 0, 7, 9, 10, 3, 0, 2, 9, 2, 9, 9, 9〉

leads to a period-9 solution where Q(9n + 2) and Q(9n + 8) both have slope

10. But, Q(9n + 2) has slope 10 because unpacking it yields Q(9n − 1) plus a

constant [31, A275362].

• In the previous example, Q(9n + 8) has slope 10 because unpacking it results in



56

10 + Q(9n − 1). This appears to be, by far, the most common way steep linear

solutions arise.

We have used our algorithm to fully explore positive-recurrent solution families to

the Hofstadter Q-recurrence with small periods. Given a solution to the Hofstadter

Q-recurrence, any shift of it is also a solution, since the recurrence only depends on

the relative indices of the terms (and not the absolute indices). So, solution fam-

ilies found by the algorithm can be considered as-is or modulo the shifting opera-

tion. Our algorithm finds no period-1 positive-recurrent solutions to the Hofstadter

Q-recurrence, and it finds two families (one family modulo shifting) of period 2 solu-

tions. These solutions consist of one constant sequence interleaved with one standard

linear sequence. For example, the initial condition 〈2, 2〉 gives rise to the sequence

2, 2, 4, 2, 6, 2, 8, 2, . . . [31, A275365]. There are 12 period 3 solution families (4 mod-

ulo shifting). One of these families includes Golomb’s solution, and another includes

Ruskey’s sequence. The other two families consist of eventually quasilinear solutions

with two constant sequences and one standard linear sequence (and appear to be related

to each other). One of these families includes sequence A264756 [31]; the other includes

sequences A283878 and A284429 [31]; There are 12 period 4 families (5 modulo shifting),

all of which are quasilinear with constant and standard linear sequences. Some of these

families include the period 2 solutions, but each such family also include additional

solutions that do not have period 2. There are 35 period 5 families (7 modulo shifting).

Again, all of these are quasilinear. But, one of these families has a steep linear subse-

quence [31, A269328]. There is a lot more variety beginning at period 6. There are 294

solution families (86 modulo shifting) in this case. These solutions include quadratics as

well as mixing of exponentials with steep linears. A similar diversity of solutions exists

with period 7, where there are 588 solution families (84 modulo shifting). Period 8 has

at least 3256 families (610 modulo shifting). This is possibly all of them, but computing

these caused Maple to report “Warning, limiting number of iterations reached.” So,

there may be more families here that the Maple implementation was unable to find.

Similarly, period 9 has at least 15273 families (2279 modulo shifting). A file containing
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Index

Initial Cond. m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

〈2, 2〉 2 2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18 2 20 2

〈1, 0, 3, 3, 2〉 3 1 0 3 3 2 6 3 2 9 3 2 12 3 2 15 3 2 18 3 2

〈0, 2, 3, 1〉 3 0 2 3 1 3 6 1 3 9 1 3 12 1 3 15 1 3 18 1 3

〈2, 1〉 3 2 1 3 5 1 3 8 1 3 11 1 3 14 1 3 17 1 3 20 1

〈4, 1, 0, 3, 3, 1, 4, 8〉 4 4 1 0 3 3 1 4 8 7 1 4 12 11 1 4 16 15 1 4 20

〈5, 2, 0, 3, 6, 5, 2〉 5 5 2 0 3 6 5 2 5 5 12 5 2 10 5 18 5 2 15 5 24

〈4, 0, 5, 6, 2, 6, 6, 3〉 6 4 0 5 6 2 6 6 3 11 6 2 12 6 3 23 6 2 18 6 3

〈12, 6, 4, 6, 1, 6, 12, 10, 4〉 6 12 6 4 6 1 6 12 10 4 6 13 6 12 16 4 6 25 6 12 26

〈7, 0, 8, 7, 7, 8, 4〉 7 7 0 8 7 7 8 4 7 7 16 7 7 16 4 7 14 24 7 7 32

Table 3.2: Selected Solutions to the Hofstadter Q-recurrence. Bold terms violate even-
tual patterns.

information on all of the solution families examined (through period 9), modulo shift-

ing, can be found at http://github.com/nhf216/thesis/hof_small_periods.txt.

(The notation in this file is somewhat different from the notation in this chapter, and

this is the notation used in the Maple package.) See Table 3.2 for the first 20 terms

of some of these sequences (A275365, A264756, A283878, A284429, A283879, A269328,

A264757, A283880, A283881).

3.3.2 Other Recurrences

We have already seen one example of a solution to a recurrence other than Hofstadter’s

(our example in 3.2.4). Our algorithm has also been used to examine what sorts of

recurrences can be satisfied by exponential subsequences that appear. This has led

to the observation that any homogeneous linear recurrence with positive coefficients

that sum to at least 2 can be realized as a component sequence of some positive-

recurrent solution to some Hofstadter-like recurrence [11]. See Chapter 5 for details of

this construction.

In addition, we have found positive-recurrent solutions to other recurrences, includ-

ing the Conolly recurrence [31, A275363] and the Hofstadter-Conway recurrence [31,

A052928]. This second case is notable because the solution has period 2 with both

subsequences linear. This can happen because the Hofstadter-Conway recurrence is

not basic (see 3.2.5). As a result, the congruence classes of the constant terms in the

linear polynomials end up determining much of the behavior.

http://github.com/nhf216/thesis/hof_small_periods.txt
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We conclude with one more finding: a quasilinear solution including linear subse-

quences with slope strictly between 0 and 1 to a linear Hofstadter-like recurrence [31,

A283904]. In the analysis of our algorithm, we specifically avoid discovering such so-

lutions. But, in the Maple package, the user can specify values for the parameters

Ar to bypass the exhaustive search the algorithm performs, and the values specified

can be strictly between 0 and m (which the algorithm would not otherwise try). The

implementation may then find solutions with such subsequences.

Proposition 3.7. The initial condition 〈1, 1〉 to the recurrence H(n) = H(n− 2H(n−

1)) +H(n− 3H(n− 2)) generates an eventually quasilinear sequence given by

H(6k) = 1

H(6k + 1) = 3k − 1

H(6k + 2) = 3k + 1

H(6k + 3) = 1

H(6k + 4) = 3k + 1

H(6k + 5) = 3k + 2

when the index is at least 41.

Proof. As usual, the proof is by induction on the index. Generating the first 59 terms

of the sequence verifies that the proposition is true through k = 9. So, suppose k ≥ 10,

and suppose the proposition holds for all smaller k values. There are six cases to check.

We check two of them; the rest are similar and are left as exercises.

n = 6k: We have

H(6k) = H(6k − 2H(6k − 1)) +H(6k − 3H(6k − 2))

= H(6k − 2 (3 (k − 1) + 2)) +H(6k − 3 (3 (k − 1) + 1))

= H(2) +H(−3k + 6)

= 1,

as required.
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n = 6k + 1: We have

H(6k + 1) = H(6k + 1− 2H(6k)) +H(6k + 1− 3H(6k − 1))

= H(6k + 1− 2 · 1) +H(6k + 1− 3 (3 (k − 1) + 2))

= H(6k − 1) +H(−3k + 3)

= 3 (k − 1) + 2

= 3k − 1,

as required.
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Chapter 4

Embedding Polynomials in Solutions to the Hofstadter

Q-Recurrence

In Chapter 3, we saw an example of a Hofstadter-like recurrence with a solution in-

cluding an equally-spaced quadratic subsequence. In this chapter, we describe how

to obtain such a solution to the Hofstadter Q-recurrence itself. In fact, we construct

eventually-quasipolynomial solutions to the Q-recurrence of all positive degrees. The

algorithm in Chapter 3 was key to the original exploration leading to the main result

in this chapter.

First, we define the following:

Definition 4.1. Fix integers d ≥ 1 and k ≥ −1. Let

pd,k(n) = 3d

(
n+ k

1 + k

)
+

k∑
i=1

(3i+ 2)

(
n− 1 + k − i

k − i

)
.

Observe that pd,k is a polynomial in n of degree k + 1. In particular, pd,−1 = 3d,

and pd,0 = 3dn. We will prove the following theorem:

Theorem 4.2. Fix a degree d ≥ 1. Define a sequence (am)m≥1 as follows:

a3dn+r =



3d− 2 3dn+ r = 1

0 3dn+ r = 2

pd, r
3
(n) r ≡ 0 (mod 3)

3d r ≡ 1 (mod 3) and 3dn+ r > 2

3 r ≡ 2 (mod 3) and r 6= 3d− 1 and 3dn+ r > 2

2 r = 3d− 1 and 3dn+ r > 2,

where 0 ≤ r < 3d always. Then, (am) satisfies the Hofstadter Q-recurrence after an

initial condition of length 3d+ 2.
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We use the following lemmas:

Lemma 4.3. For all integers d ≥ 1 and k ≥ 0 we have pd,k(n) = pd,k−1(n)+pd,k(n−1).

Proof. We have

pd,k−1(n) + pd,k(n− 1) = 3d

(
n+ k − 1

k

)
+

k−1∑
i=1

(3i+ 2)

(
n− 2 + k − i
k − i− 1

)

+ 3d

(
n+ k − 1

1 + k

)
+

k∑
i=1

(3i+ 2)

(
n− 2 + k − i

k − i

)
= 3d

((
n+ k − 1

k

)
+

(
n+ k − 1

1 + k

))
+

k−1∑
i=1

(3i+ 2)

((
n− 2 + k − i
k − i− 1

)
+

(
n− 2 + k − i

k − i

))
+ (3k + 2)

(
n− 2

0

)
.

Applying Pascal’s Identity yields

pd,k−1(n) + pd,k(n− 1) = 3d

(
n+ k

1 + k

)
+
k−1∑
i=1

(3i+ 2)

(
n− 1 + k − i

k − i

)
+ (3k + 2)

= 3d

(
n+ k

1 + k

)
+

k∑
i=1

(3i+ 2)

(
n− 1 + k − i

k − i

)
= pd,k(n),

as required.

Lemma 4.4. For all integers d ≥ 1, k ≥ 1, and n ≥ 0 we have

pd,k(n) ≥ 3dn+ 3k + 2.

Proof. First, we observe that

pd,k(0) = 3d

(
k

1 + k

)
+

k∑
i=1

(3i+ 2)

(
k − i− 1

k − i

)
.

All of these binomial coefficients are zero, except when i = k, since
(−1

0

)
= 1. So,

pd,k(0) = 3k + 2. This equals 3dn+ 3k + 2, and hence is greater than or equal to it, as

required.
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Now,

pd,k(1) = 3d

(
1 + k

1 + k

)
+

k∑
i=1

(3i+ 2)

(
k − i
k − i

)

= 3d+

k∑
i=1

(3i+ 2)

= 3d+ 3

(
k2 + k

2

)
+ 2k

=
3

2
k2 +

7

2
k + 3d.

So,

pd,k(1)− 3d · 1 + 3k + 2 =
3

2
k2 +

7

2
k + 3d− 3d− 3k − 2

=
3

2
k2 +

1

2
k − 2

=
(3k + 4) (k − 1)

2
.

This is greater than or equal to 0, since k ≥ 1. So, pd,k(1) ≥ 3d+ 3k + 2, as required.

Now, observe that pd,k has nonnegative coefficients, so it is convex. We have seen

that its average slope on the interval [0, 1] is at least 3d, so its derivative for n > 1 must

be strictly larger than 3d everywhere. Therefore, since pd,k(1) ≥ 3d + 3k + 2, we can

conclude that pd,k(n) ≥ 3dn+ 3k + 2 for all n ≥ 0.

We will now prove Theorem 4.2. In this proof, we will use the notation QP (n)

to denote the nth term of the sequence we are constructing. When doing so, we are

inductively assuming that the prior terms satisfy the Q-recurrence.

Proof. We will check the three congruence classes mod 3 separately for m > 3d+ 2. As

usual, m = 3dn + r for 0 ≤ r < 3d. We will proceed by induction, so in each case we

will assume that all previous values of the sequence are what they should be. Also, in

all cases, since m > 3d+ 2, m− 3d > 2. (This will come up when deciding whether or

not we are in the special initial conditions for the first two values.)

r ≡ 0 (mod 3): Assume r ≡ 0 (mod 3). Then, m = 3dn+r for some n. For convenience,

let ` = r
3 . We wish to show that QP (3dn + r) = pd,`(n). Let c = 2 if r = 0;
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otherwise, let c = 3. We have,

QP (3dn+ r) = QP (3dn+ r −QP (3dn+ r − 1))

+QP (3dn+ r −QP (3dn+ r − 2))

= QP (3dn+ r − c) +QP (3dn+ r − 3d)

= QP (3dn+ r − c) +QP (3d(n− 1) + r)

= QP (3dn+ r − c) + pd,`(n− 1).

If r = 0, then ` = 0 and

QP (3dn+ r − c) = QP (3dn+ r − 2) = 3d = pd,`−1(n).

If r 6= 0, then ` > 0 and

QP (3dn+ r − c) = QP (3dn+ r − 3) = pd,`−1(n).

In either case, we have

QP (3dn+ r) = pd,`−1(n) + pd,`(n− 1).

By Lemma 4.3, this equals pd,`(n), as required.

r ≡ 1 (mod 3): Assume r ≡ 1 (mod 3). Then, m = 3dn+r for some n. We wish to show

that QP (3dn+ r) = 3d. For convenience, let ` = r−1
3 . We have,

QP (3dn+ r) = QP (3dn+ r −QP (3dn+ r − 1))

+QP (3dn+ r −QP (3dn+ r − 2))

= QP (3dn+ r − pd,`(n)) +QP (3dn+ r −QP (3dn+ r − 2)).

If ` = 0, then pd,`(n) = 3dn and r = 1. So, in that case, 3dn+ r−pd,`(n) = r = 1.

Also, in that case QP (3dn+ r − 2) = 2, so

QP (3dn+ r −QP (3dn+ r − 2)) = QP (3dn+ r − 2) = 2.

Since QP (1) = 3d− 2, we obtain QP (3dn+ r) = 3d− 2 + 2 = 3d in the case when

r = 1.
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Otherwise, we have ` ≥ 1. In that case, pd,`(n) ≥ 3dn+3`+2 by Lemma 4.4. But,

3`+2 = r+1 so, 3dn+r−pd−1(n) ≤ −1. This causes the first term to underflow,

so QP (3dn+r−pd,`(n)) = 0. Hence, QP (3dn+r) = QP (3dn+r−QP (3dn+r−2)).

In this case, we know r 6= 1, so QP (3dn+ r − 2) = 3. This means that

QP (3dn+ r −QP (3dn+ r − 2)) = QP (3dn+ r − 3) = 3d.

So, QP (3dn+ r) = 3d, as required.

r ≡ 2 (mod 3): Assume r ≡ 2 (mod 3). Then, m = 3dn + r for some n. Let c = 2 if

r = 3d − 1; otherwise, let c = 3. We wish to show that QP (3dn + r) = c. For

convenience, let ` = r−2
3 . We have,

QP (3dn+ r) = QP (3dn+ r −QP (3dn+ r − 1))

+QP (3dn+ r −QP (3dn+ r − 2))

= QP (3dn+ r − 3d) +QP (3dn+ r − pd,`(n))

= QP (3d(n− 1) + r) +QP (3dn+ r − pd,`(n))

= c+QP (3dn+ r − pd,`(n)).

If ` = 0, then pd,`(n) = 3dn and r = 2. So, in that case, 3dn+ r−pd,`(n) = r = 2.

Since QP (2) = 0, we obtain QP (3dn+ r) = c in the case when r = 2.

Otherwise, we have ` ≥ 1. In that case, pd,`(n) ≥ 3dn + 3` + 2 by Lemma 4.4.

But, 3`+ 2 = r so, 3dn+ r− pd−1(n) ≤ 0, an underflow in the second term. This

implies that QP (3dn+ r − pd,`(n)) = 0, so QP (3dn+ r) = c, as required.

Note that the only place we use the 3i + 2 in the definition of pd,k(n) is to obtain

the lower bound of r+2 on the polynomials that we needed when proving Theorem 4.2.

So, 3i + 2 could be replaced by any larger expression, and the proof would still go

through. Also, observe that this construction is not a direct generalization of Golomb’s

construction (see Section 2.2), as the d = 1 case has two constant pieces and one

linear piece, unlike Golomb’s, which has one constant piece and two linear pieces. Also,
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Golomb’s sequence is purely quasilinear, whereas our d = 1 example is only eventually

quasilinear. It is unknown whether there exist purely quasipolynomial solutions to the

Hofstadter Q-recurrence of degrees greater than 1. As an example, we construct a

solution to Hofstadter’s recurrence with a cubic subsequence. To do this, we set d = 3,

which means that the sequence values will depend on the congruence class mod 9 of

the index. We observe that

p3,0 = 9n

p3,1 = 9

(
n+ 1

2

)
+ 5

(
n− 1

0

)
=

9

2
n (n+ 1) + 5

=
9

2
n2 +

9

2
n+ 5

p3,2 = 9

(
n+ 2

3

)
+ 5

(
n

1

)
+ 8

(
n− 1

0

)
=

9

6
n (n+ 1) (n+ 2) + 5n+ 8

=
3

2
n3 +

9

2
n2 + 8n+ 8.

So, our sequence is defined by a1 = 7, a2 = 0, and for 9n+ r > 2,

a9n+r =



9n r = 0

9 r = 1

3 r = 2

9
2n

2 + 9
2n+ 5 r = 3

9 r = 4

3 r = 5

3
2n

3 + 9
2n

2 + 8n+ 8 r = 6

9 r = 7

2 r = 8.

After the initial condition 〈7, 0, 5, 9, 3, 8, 9, 2, 9, 9, 3〉, repeated applications of the Hofs-

tadter Q-recurrence produce the sequence [31, A264758]

7, 0, 5, 9, 3, 8, 9, 2, 9, 9, 3, 14, 9, 3, 22, 9, 2, 18, 9, 3, 32, 9, 3, 54,

9, 2, 27, 9, 3, 59, 9, 3, 113, 9, 2, . . .
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Chapter 5

Embedding Linear-Recurrent Sequences in Solutions to

Nested Recurrences

At the end of the paper where Ruskey [30] presents his solution to the Hofstadter Q-

recurrence, he asks whether every linear recurrent sequence exists as an equally-spaced

subsequence of a solution to some meta-Fibonacci recurrence. Strictly-speaking, a meta-

Fibonacci recurrence is a two-term basic linear nested recurrence [8]. In this chapter,

we answer Ruskey’s question positively for (general) basic linear recurrences and linear

recurrences with positive coefficients. As was the case in Chapter 4, the algorithm in

Chapter 3 was key to the original exploration leading to the main result in this chapter.

In particular, our proof is constructive. Our main theorem is the following:

Theorem 5.1. Let (a(n))n≥0 be a sequence of positive integers satisfying the recurrence

a(n) =

k∑
i=1

bia(n− i),

for some positive integer k and nonnegative integers b1, b2, . . . , bk whose sum is at least 2.

Then, there is a sequence (q(n))n≥0 satisfying some basic linear nested recurrence such

that q(2kn) = a(n) for all n ≥ 0. (We call the number 2k the quasi-period of the

sequence (q(n)).)

Proof. Let (a(n))n≥0 be a sequence of positive integers satisfying the recurrence

a(n) =
k∑
i=1

bia(n− i),

for some positive integer k and nonnegative integers b1, b2, . . . , bk whose sum is at least

2. For each r from 0 to k − 1, define the sequence
(
a(r)(n)

)
n≥1

as

a(r)(n) =
r∑
i=1

bia
(r)(n− k − i+ r) +

k∑
i=r+1

bia
(r)(n− i+ r)
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with a(r)(i) = a(i) for i ≤ k. Notice that a(0)(n) = a(n), and the other sequences satisfy

similar recurrences with the coefficients cycled. Since the coefficients of the recurrences

are nonnegative and sum to at least 2, the sequences
(
a(r)(n)

)
n≥1

exhibit superlinear

growth for all r.

Now, for all m, define the sequence (q(n))n≥0 as follows:
q(2mk + 2j) = a(j)(m) 0 ≤ j < k

q(2mk + 2j + 1) = 2k(k − j) 0 ≤ j < k,

We claim that (q(n))n≥0, with the extension q(n) = 0 for n < 0, eventually satisfies the

basic linear nested recurrence

Ma(n) = Ma(n−Ma(n− 2)) +
k∑
i=1

biMa(n−Ma(n− (2i− 1))).

Notice that this would imply the desired result, since the quasi-period will be 2k. Let

h be an integer satisfying all of the following constraints:

• h ≥ 2k − 1

• h ≥ 2

• For all r, whenever m ≥ h, a(r)(m− 1) ≥ 2(m+ 1)k.

We define a function L as follows:

L(n) =


q(n) n ≤ h

L(n− L(n− 2)) +
k∑
i=1

biL(n− L(n− (2i− 1))) n > h.

In other words, L eventually satisfies the recurrenceMa, and it has an initial condition of

length h that matches (q(n)). The first two conditions on h are required to make L well-

defined. Since all the linear recurrent sequences under consideration grow superlinearly,

the third condition is satisfied by all sufficiently large numbers. Hence, such an h exists,

and all larger values would also be valid choices for h.

We wish to show that L(n) = q(n) for all n. We will proceed by induction on n.

The base case is covered by the fact that L(n) is defined to equal q(n) for n ≤ h. So,
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we will show that, for n > h, L(n) = q(n) under the assumption that L(p) = q(p) for

all 1 ≤ p < n. For this, we will split into two cases:

n is odd: Since n is odd, it is of the form 2mk + 2j + 1 for some m ≥ 0 and some

0 ≤ j < k. By our choice of h, a(r)(m−1) ≥ 2 (m+ 1) k and a(r)(m) ≥ 2 (m+ 2) k.

In particular, both of these are greater than 2mk + 2j + 1. Using this fact, we

have

L(n) = L(n− L(n− 2)) +

k∑
i=1

biL(n− L(n− (2i− 1)))

= L(n− q(n− 2)) +

k∑
i=1

biL(n− q(n− (2i− 1)))

= L(2mk + 2j + 1− q(2mk + 2j − 1))

+
k∑
i=1

biL(2mk + 2j + 1− q(2mk + 2j + 1− (2i− 1)))

= L(2mk + 2j + 1− q(2mk + 2 (j − 1) + 1))

+
k∑
i=1

biL(2mk + 2j + 1− q(2mk + 2 (j − i+ 1)))

= L(2mk + 2j + 1− q(2mk + 2 (j − 1) + 1))

+

j+1∑
i=1

biL(2mk + 2j + 1− a(j−i+1)(m))

+

k∑
i=j+2

biL(2mk + 2j + 1− a(k+j−i+1)(m− 1))

= L(2mk + 2j + 1− q(2mk + 2 (j − 1) + 1)) +

j+1∑
i=1

bi · 0 +

k∑
i=j+2

bi · 0.

If j = 0, then q(2mk + 2 (j − 1) + 1) = 2k; otherwise, q(2mk + 2 (j − 1) + 1) =

2k(k − j + 1). In both cases, it is of the form 2ks for some s. So, we have

L(n) = L(2mk + 2j + 1− 2ks)

= L(2(m− s)k + 2j + 1)

= 2k (k − j)

= q(2mk + 2j + 1)

= q(n),
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as required.

n is even: Since n is even, it is of the form 2mk + 2j for some m ≥ 0 and some

0 ≤ j < k. By our choice of h, a(r)(m−1) ≥ 2 (m+ 1) k and a(r)(m) ≥ 2 (m+ 2) k.

In particular, both of these are greater than 2mk + 2j. Using this fact, we have

L(n) = L(n− L(n− 2)) +
k∑
i=1

biL(n− L(n− (2i− 1)))

= L(n− q(n− 2)) +
k∑
i=1

biL(n− q(n− (2i− 1)))

= L(2mk + 2j − q(2mk + 2j − 2))

+

k∑
i=1

biL(2mk + 2j − q(2mk + 2j − (2i− 1)))

= L(2mk + 2j − q(2mk + 2 (j − 1)))

+
k∑
i=1

biL(2mk + 2j − q(2mk + 2 (j − i) + 1))

If j = 0, then we will have q(2mk + 2 (j − 1)) = a(k−1)(m − 1). Otherwise, we

will have q(2mk + 2 (j − 1)) = a(j−1)(m). In either case, we have L(2mk + 2j −

q(2mk + 2 (j − 1))) = 0. So,

L(n) = 0 +
k∑
i=1

biL(2mk + 2j + 1− q(2mk + 2 (j − i) + 1))

=

j∑
i=1

biL(2mk + 2j − 2k(k − (j − i)))

+

k∑
i=j+1

biL(2mk + 2j − 2k(k − (k + j − i)))

=

j∑
i=1

biL(2mk + 2j − 2k (k − j + i)) +

k∑
i=j+1

biL(2mk + 2j − 2k (i− j))

=

j∑
i=1

biL(2 (m− k − i+ j) k + 2j) +
k∑

i=j+1

biL(2 (m− i+ j) k + 2j)

=

j∑
i=1

biq(2 (m− k − i+ j) k + 2j) +
k∑

i=j+1

biq(2 (m− i+ j) k + 2j)

=

j∑
i=1

bia
(j)(m− k − i+ j) +

k∑
i=j+1

bia
(j)(m− i+ j)
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= a(j)(m)

= q(2mk + 2j)

= q(n),

as required.

In the case where (a(n))n≥0 is the Fibonacci sequence starting from 5, this con-

struction does not give Ruskey’s sequence. Rather, we obtain the sequence

〈5, 8, 5, 4, 8, 8, 8, 4, 13, 8, 13, 4, 21, 8, 21, 4, . . .〉

that eventually satisfies the recurrence

Ma(n) = Ma(n−Ma(n− 1)) +Ma(n−Ma(n− 2)) +Ma(n−Ma(n− 3)).

The Fibonacci numbers each appear twice in this sequence because the Fibonacci re-

currence is invariant under rotation (and each rotation of it appears once).

Since any linear recurrent sequence satisfies infinitely many linear recurrences, this

construction actually gives infinitely many nested recurrences that can include a given

linear-recurrent sequence. In addition, the construction can be tweaked in a number

of ways to yield slightly different sequences. For example, one could start from a

rotation of the desired sequence. Or, the initial conditions for the rotations could be

chosen differently, since their values are not critical to the construction. (We only care

about the growth rate and recurrent behavior of the rotations.) But, none of these

modifications would suffice to cause our construction to yield Ruskey’s sequence, since

his sequence has quasi-period 3 and our construction only yields sequences with even

quasi-periods. This fact seems to indicate that there are many more nested recurrences

generating a given linear recurrent sequence than our construction can generate.

In our construction, we put two constraints on the b values. First, we require them

to be nonnegative. With our conventions, it would be impossible to have a solution to a

generalized meta-Fibonacci recurrence with infinitely many nonpositive entries. There

are many linear recurrent sequences with positive terms but some negative coefficients.

But, our construction fails for these sequences, since some rotation of such a sequence
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will have infinitely many nonpositive entries. Ruskey’s question remains open for such

sequences. Second, we require the sum of the b values to be at least 2. This was

necessary to force the terms of (a(n)) to grow superlinearly. If the b values sum to

zero, then they must all be zero, in which case the sequence (a(n)) is eventually zero,

and, hence, not a sequence of positive integers. If the b values sum to 1, then all of

them must be zero except for one. So, the recurrence we obtain is a(n) = bia(n− i) for

some i. So, in this case, (a(n)) is eventually periodic. Eventually constant sequences

eventually satisfy the recurrence M(n) = M(n−M(n− 1)), but it is unclear whether

higher periods can always be realized within generalized meta-Fibonacci sequences.

The following example should illustrate most of the nuances of our construction.

Consider the sequence (a(n))n≥0 defined by a(0) = 30, a(1) = 40, a(2) = 60, and

a(n) = a(n − 1) + 2a(n − 3) for n ≥ 3. (The large initial values allow us to avoid

having an unreasonably long initial condition.) The first few terms of this sequence

are (30, 40, 60, 120, 200, 320, 560, 960, . . .). The rotations of (a(n)) have the same initial

conditions and are given by the following recurrences:

a(0)(n) = a(0)(n− 1) + 2a(0)(n− 3) (30, 40, 60, 120, 200, 320, 560, 960, . . .)

a(1)(n) = a(1)(n− 3) + 2a(1)(n− 2) (30, 40, 60, 110, 160, 280, 430, 720, . . .)

a(2)(n) = a(2)(n− 2) + 2a(2)(n− 1) (30, 40, 60, 160, 380, 920, 2220, 5360, . . .)

The construction gives the sequence (q(n))n≥0 defined by
q(6m+ 2j) = a(j)(m) 0 ≤ j < 4

q(6m+ 2j + 1) = 6(3− j) 0 ≤ j < 4

as eventually satisfying the recurrence

Ma(n) = Ma(n−Ma(n− 1)) +Ma(n−Ma(n− 2)) + 2Ma(n−Ma(n− 5)).

Sure enough, the initial condition

〈30, 18, 30, 12, 30, 6, 40, 18, 40, 12, 40, 6, 60, 18, 60, 12, 60, 6〉
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suffices. The next term is

Ma(18) = Ma(18−Ma(17)) +Ma(18−Ma(16)) + 2Ma(18−Ma(13))

= Ma(18− 6) +Ma(18− 60) + 2Ma(18− 18)

= Ma(12) +Ma(−42) + 2Ma(0)

= 60 + 0 + 2 · 30

= 120

= a(0)(3),

as required. The term after this is

Ma(19) = Ma(19−Ma(18)) +Ma(19−Ma(17)) + 2Ma(19−Ma(14))

= Ma(19− 120) +Ma(19− 6) + 2Ma(19− 60)

= Ma(−101) +Ma(13) + 2Ma(−41)

= 0 + 18 + 2 · 0

= 18

= 6(3− 0),

as required. The rest of the desired terms can continue to be generated this way.
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Chapter 6

A Slow Solution to a Hofstadter-like Nested Recurrence

In this chapter, we present a new example of a slow solution to a nested recurrence.

(See Section 2.3 in Chapter 2 for background on slow solutions.) Most of the known

examples of slow sequences have at least one of the following properties (see p. 12):

• A “Conway-like term” (e.g. the Hofstadter-Conway recurrence [28]).

• A “shift” in at least one of the recurrence terms (e.g. Conolly’s recurrence [7]).

In fact, the only previously known ones that have neither property are the V -sequence [3]

and sequences constructed from it [20]. We decided to search for additional slow,

Hofstadter-like sequences without shifts and without inner positive coefficients. The

investigation of Hofstadter and Huber [19] (see p. 12) empirically rules out two-term

recurrences, so we began our search by considering the generic 3-term recurrence

Qr,s,t(n) = Qr,s,t(n−Qr,s,t(n− r)) +Qr,s,t(n−Qr,s,t(n− s)) +Qr,s,t(n−Qr,s,t(n− t))

with integers 0 < r < s < t. The all-ones initial condition proved fruitless in our

investigation. However, the initial conditions 〈1, 2, 3, 4〉 generate the V -sequence as

well (offset by 3 terms) [3]. Thus, we focused our search on slow sequences with initial

conditions of the form Qr,s,t(i) = i for i ≤ t. This allowed us to find an interesting

sequence with (r, s, t) = (1, 2, 3). In this chapter, we prove that this sequence is slow.

In fact, we completely characterize the terms of this sequence and exhibit an efficient

algorithm for computing the nth term. In particular, each term of this sequence appears

at most twice, in contrast to the V -sequence, whose terms appear at most three times [3].

Section 9.4 in Chapter 9 discusses failed attempts to generalize this construction.

We consider the sequence defined by the recurrence

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))
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and the initial conditions 〈1, 2, 3, 4, 5〉. The first few terms of this sequence are [31,

A278055]

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21, . . .

The main thing we wish to prove is the following:

Theorem 6.1. For all n, B(n) − B(n − 1) ∈ {0, 1}. In other words, the sequence

(B(n))n≥1 is slow.

We actually prove considerably more than just Theorem 6.1. We completely deter-

mine the structure of this sequence. In the terms listed above, each positive integer

appears no more than twice (and at least once). We show that this is the case for all

numbers, and we completely characterize which numbers repeat.

We make use of the following auxiliary sequence (ai)i≥1. Let a1 = 3, and for i ≥ 1,

let ai = 3ai−1−1. This sequence [31, A057198] has the closed form ai = 5
23i−1 + 1

2 . We

have the following theorem.

Theorem 6.2. Let m be a positive integer. If there exists some integer k ≥ 1 such that

m = k · 3i + ai for some i ≥ 1, then m appears in the B-sequence twice. Otherwise, m

appears once. Furthermore, the B-sequence is monotone increasing.

Theorem 6.2 implies Theorem 6.1, since Theorem 6.2 asserts both that the sequence

is monotone and that each positive integer appears in the sequence. Throughout the

rest of this section, we end up proving Theorem 6.2, and consequently Theorem 6.1, by

induction. In doing so, we frequently assume that Theorem 6.2 holds up to some point.

To make this clear, we define the following indexed families of propositions (where m

and n are positive integers):

• Let Pm denote the proposition “For all integers 1 ≤ m′ ≤ m, if there exists some

integer k ≥ 1 such that m′ = k · 3i + ai for some i ≥ 1, then m′ appears in the

B-sequence twice. Otherwise, m′ appears once. Furthermore, the B-sequence is

monotone increasing as long as its terms are at most m.” In this way, Pm is

essentially the statement “Theorem 6.2 holds through value m.”
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• Let Tn denote the proposition “The first n terms of the B-sequence are monotone

increasing. Furthermore, for all m appearing as one of these first n terms, if there

exists some integer k ≥ 1 such that m = k ·3i+ai for some i ≥ 1, then m appears

in these first n terms twice (unless this second occurrence would be in position

n+ 1). Otherwise, m appears once.” In this way, Tn is essentially the statement

“Theorem 6.2 holds through index n.”

It should be clear from these definitions that the following are equivalent:

• Theorem 6.2 is true.

• Pm holds for all m ≥ 1.

• Tn holds for all n ≥ 1.

We call a pair of positive integers (k, i) a witness pair for m if m = k · 3i + ai, and

we call such an i a witness for m. (Theorem 6.2 says that a value m is repeated if and

only if it has a witness.) We now show that every m has at most one witness.

Lemma 6.3. For any positive integer m, there is at most one i ≥ 1 such that m ≡

ai
(
mod 3i

)
.

Proof. Suppose for a contradiction that, for some integers i, j ≥ 1, k1 · 3i + ai =

k2 · 3i+j + ai+j . Then

ai+j − ai = k1 · 3i − k2 · 3i+j = 3i(k1 + k2 · 3j).

In particular, ai+j − ai must be divisible by 3i.

But, using the closed form,

ai+j − ai =

(
5

2
· 3i+j−1 +

1

2

)
−
(

5

2
· 3i−1 +

1

2

)
=

5

2

(
3i+j−1 − 3i−1

)
=

5

2
· 3i−1

(
3j − 1

)
.

This is clearly not divisible by 3i, a contradiction. Therefore, no such i and j can exist,

so there is at most one i ≥ 1 such that m ≡ ai
(
mod 3i

)
, as required.



76

For a value m, we now examine the number of values less than m that are repeated.

Define r(m, i) = max
(
0,
⌊
m−ai−1

3i

⌋)
. This floored quantity counts the witness pairs

(k, i) for numbers less than m. If Pm holds, then this is also the number of repeated

values m′ < m with witness i. If we now let

r(m) =
∞∑
i=1

r(m, i),

we have that r(m) is the total number of repeated values less than m (provided that

Pm holds.) This sum converges because only the logarithmically many terms with

ai − 1 ≤ m are nonzero.

We now have the following lemmas.

Lemma 6.4. Let m be a positive integer. Suppose Pm−1 holds. Then, B(m+r(m)−1) =

m− 1, and B(m + r(m)) ≥ m. (In other words m + r(m)− 1 is the last index in our

sequence with value at most m− 1.)

Proof. The number of terms before the first occurrence of a term greater than or equal

to m is at least m − 1, since each number smaller than m must appear at least once.

The first occurrence of such a term is “delayed” by 1 index for every smaller value that

is repeated. The number of such repeated values is r(m). So, there are m − 1 + r(m)

terms before the first occurrence of a term greater than or equal to m. This means that

the last occurrence of m− 1 is in position m+ r(m)− 1, as required.

An immediate consequence of Lemma 6.4 is that B(m + r(m)) in fact equals m,

provided that Pm holds.

Lemma 6.5. Let m be a multiple of 3. If i ≥ 2 is a witness for m− 1, then r(m, i) =

r
(
m
3 , i− 1

)
+ 1. Otherwise, r(m, i) = r

(
m
3 , i− 1

)
.

Proof. The lemma is clearly true if ai + 1 ≥ m, so we can assume without loss of

generality that ai + 1 < m and thereby ignore the max in the definition of r(m, i) when

proving this lemma.

We have

r(m, i) =

⌊
m− ai − 1

3i

⌋
=

⌊
m

3i
− ai + 1

3i

⌋
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and

r
(m

3
, i− 1

)
=

⌊ m
3 − ai−1 − 1

3i−1

⌋
=

⌊
m

3i
− ai−1 + 1

3i−1

⌋
.

Since ai = 5
2 · 3

i−1 + 1
2 ,

ai + 1

3i
=

5

6
+

1

2 · 3i

and

ai−1 + 1

3i−1
=

5

6
+

1

2 · 3i−1
.

The first of these definitely smaller, so r(m, i) ≥ r
(
m
3 , i− 1

)
. Furthermore, the above

fractions differ by 1
3i

, so r(m, i) ≤ r
(
m
3 , i− 1

)
+ 1.

The only way they could not be equal is if there is some integer ` such that

m

3i
− ai−1 + 1

3i−1
< ` ≤ m

3i
− ai + 1

3i
.

Since the bounds differ by 1
3i

and they have common denominator 3i, this can only

happen if ` = m
3i
− ai+1

3i
. This gives that m − ai + 1 = ` · 3i, or m − 1 = ` · 3i + ai for

some integer `. Since ai+ 1 < m, we must have ` ≥ 1. So, for r(m, i) = r
(
m
3 , i− 1

)
+ 1,

we obtain that i must be a witness for m− 1, as required.

Lemma 6.6. Let m be a multiple of 3. Then,

m

3
+ r
(m

3

)
=


r(m) + 1, if m− 1 has a witness;

r(m) + 2, if m− 1 does not have a witness.

Proof. As a consequence of Lemma 6.5 and Lemma 6.3,

r(m) =


r(m, 1) + r

(
m
3

)
, if m− 1 does not have a witness;

r(m, 1) + r
(
m
3

)
+ 1, if m− 1 has a witness.

We also have

r(m, 1) =

⌊
m− a1 − 1

3

⌋
=

⌊
m− 4

3

⌋
=
m

3
− 2.

Substituting this into the above and rearranging terms gives the required form.

Lemma 6.7. Let m be a multiple of 3. Then m− 1 has a witness if and only if m
3 has

a witness.
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Proof. (=⇒) Suppose m − 1 = k · 3i + ai for some positive integers k and i. Then,

m = k · 3i + ai + 1. But, ai = 3ai−1 − 1, so m = k · 3i + 3ai−1. This means that

m
3 = k · 3i−1 + ai−1, so i− 1 is a witness for m

3 .

(⇐=) Suppose m
3 = k ·3i+ai for some positive integers k and i. Then, m = 3k ·3i+3ai.

But, ai+1 = 3ai−1, som = k·3i+1+ai+1+1. This means thatm−1 = k·3i+1+ai+1,

so i+ 1 is a witness for m− 1.

Lemma 6.8. Let m ≥ 6 be a multiple of 3. Suppose Pm−1 holds. Then, if m−1 repeats

we have B(r(m) + 1) = m
3 . If m− 1 does not repeat we have B(r(m) + 1) = m

3 − 1. In

both cases we have 
B(r(m) + 2) = m

3 ;

B(r(m) + 3) = m
3 + 1.

Proof. We examine the two cases separately.

m− 1 repeats: Then, m− 1 has a witness. So, by Lemma 6.6, r(m) + 1 = m
3 + r

(
m
3

)
.

By Lemma 6.4, B(r(m) + 1) = m
3 . Furthermore, by Lemma 6.7, m

3 has a witness

(and hence repeats), so B(r(m) + 2) = m
3 as well. Since values appear at most

twice, we then have B(r(m) + 3) = m
3 + 1, as required.

m− 1 does not repeat: Then, m − 1 does not have a witness. So, by Lemma 6.6,

r(m)+2 = m
3 +r

(
m
3

)
. By Lemma 6.4, B(r(m)+2) = m

3 and B(r(m)+1) = m
3 −1.

Furthermore, by Lemma 6.7, m
3 has no witness (and hence does not repeat), so

B(r(m) + 3) = m
3 + 1.

We are now ready to prove Theorem 6.2.

Proof. The proof is by induction on n, the index in the sequence. For the base case,

observe that each term in the initial condition appears once, and no such term has a

witness.
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Now, suppose that Tn−1 holds, and suppose that we wish to show that B(n) = m

for some m ≥ 6. Also, suppose that Pm−1 holds. There are seven cases to consider,

which cover all possibilities. (Note that no repeated term is congruent to 1 mod 3, since

a1 is divisible by 3 and ai ≡ 2 (mod 3) for all i ≥ 2.)

m ≡ 0 (mod 3), first occurrence, m− 1 not repeated: In this case, m − 1 has no

witness and, by Lemma 6.4, n = m+ r(m). We have (using Lemma 6.8)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+ r(m)− (m− 1)) +B(m+ r(m)− (m− 2))

+B(m+ r(m)− (m− 3))

= B(r(m) + 1) +B(r(m) + 2) +B(r(m) + 3)

=
(m

3
− 1
)

+
m

3
+
(m

3
+ 1
)

= m,

as required.

m ≡ 0 (mod 3), first occurrence, m− 1 repeated: In this case, m− 1 has a witness

and, by Lemma 6.4, n = m+ r(m). We have (using Lemma 6.8)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+ r(m)− (m− 1)) +B(m+ r(m)− (m− 1))

+B(m+ r(m)− (m− 2))

= B(r(m) + 1) +B(r(m) + 1) +B(r(m) + 2)

=
m

3
+
m

3
+
m

3

= m,

as required.

m ≡ 0 (mod 3), second occurrence, m− 1 not repeated: In this case, m−1 has no

witness and, by Lemma 6.4, n = m+ r(m) + 1. We have (using Lemma 6.8)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))
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= B(m+ r(m) + 1−m) +B(m+ r(m) + 1− (m− 1))

+B(m+ r(m) + 1− (m− 2))

= B(r(m) + 1) +B(r(m) + 2) +B(r(m) + 3)

=
(m

3
− 1
)

+
m

3
+
(m

3
+ 1
)

= m,

as required.

m ≡ 0 (mod 3), second occurrence, m− 1 repeated: In this case, m− 1 has a wit-

ness and, by Lemma 6.4, n = m+ r(m) + 1. We have (using Lemma 6.8)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+ r(m) + 1−m) +B(m+ r(m) + 1− (m− 1))

+B(m+ r(m) + 1− (m− 1))

= B(r(m) + 1) +B(r(m) + 1) +B(r(m) + 2)

=
m

3
+
m

3
+
m

3

= m,

as required.

m ≡ 1 (mod 3): In this case, m − 1 is divisible by 3 and therefore definitely repeats

(since a1 = 3). This also means that r(m − 1) = r(m) − 1. By Lemma 6.4,

n = m+ r(m). We have (using Lemma 6.8)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+ r(m)− (m− 1)) +B(m+ r(m)− (m− 1))

+B(m+ r(m)− (m− 2))

= B(r(m) + 1) +B(r(m) + 1) +B(r(m) + 2)

= B(r(m− 1) + 2) +B(r(m− 1) + 2) +B(r(m− 1) + 3)

=
m− 1

3
+
m− 1

3
+

(
m− 1

3
+ 1

)
= m,
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as required.

m ≡ 2 (mod 3), first occurrence: In this case, m − 2 is divisible by 3 and therefore

definitely repeats. This also means that r(m − 2) = r(m) − 1. By Lemma 6.4,

n = m+ r(m). We have (using Lemma 6.8)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+ r(m)− (m− 1)) +B(m+ r(m)− (m− 2))

+B(m+ r(m)− (m− 2))

= B(r(m) + 1) +B(r(m) + 2) +B(r(m) + 2)

= B(r(m− 2) + 2) +B(r(m− 2) + 3) +B(r(m− 2) + 3)

=
m− 2

3
+

(
m− 2

3
+ 1

)
+

(
m− 2

3
+ 1

)
= m,

as required.

m ≡ 2 (mod 3), second occurrence: In this case, m has a witness, so r(m + 1) =

r(m) + 1. Also, r(m − 2) = r(m) − 1. By Lemma 6.4, n = m + r(m) + 1. We

have (using Lemma 6.8)

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3))

= B(m+ r(m) + 1−m) +B(m+ r(m) + 1− (m− 1))

+B(m+ r(m) + 1− (m− 2))

= B(r(m) + 1) +B(r(m) + 2) +B(r(m) + 3)

= B(r(m− 2) + 2) +B(r(m− 2) + 3) +B(r(m+ 1) + 2)

=
m− 2

3
+

(
m− 2

3
+ 1

)
+

(
m+ 1

3

)
= m,

as required.

We have the following corollary.
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Corollary 6.9. We have

lim
n→∞

B(n)

n
=

2

3
.

Proof. If B(n) = m, then n = m + r(m) or n = m + r(m) + 1. So, it will suffice to

show that

lim
m→∞

m

m+ r(m)
=

2

3
,

for which it is sufficient to show that

lim
m→∞

r(m)

m
=

1

2
.

For each i ≥ 1, we have

lim
m→∞

r(m, i)

m
=

1

3i
.

So,

lim
m→∞

r(m)

m
= lim

m→∞

1

m

∞∑
i=1

r(m, i) =
∞∑
i=1

lim
m→∞

r(m, i)

m
=
∞∑
i=1

1

3i
=

1

2
,

as required.

Theorem 6.2 leads to an efficient algorithm for calculating B(n). Observe that,

for each m and i, r(m, i) can be computed efficiently. Since only logarithmically many

terms in the sum for r(m) are nonzero, this means that r(m) can be computed efficiently.

To compute B(n), we seek an m such that n = m+ r(m). It may be the case that

no such m exists, in which case we need to be able to say that no such m exists, and we

need to find m such that n = m + r(m) + 1. This task can be done efficiently using a

binary search. We know that B(n) ≤ n, so for an initial upper bound on m we can use

n (and we can use 1 as a lower bound). So, in at most O(log(n)) steps, we can either

find an m so that n = m+ r(m) or show that none exists. In the latter case, the final

lower bound we find for m is such that n = m + r(m) + 1. The total running time of

this algorithm is O(log2(n)).
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Chapter 7

Semi-Predictable Solutions

This chapter serves as a transition between the material in the preceding chapters and

the material in the upcoming chapters. The former content is primarily concerned with

determining initial conditions that produce prescribed sequence behavior; the latter

content is primarily concerned with determining the behavior of sequences generated

by prescribed initial conditions. This chapter’s results contain elements of both groups.

Proposition 7.2, the main result in this chapter, involves finding an initial condition to

generate a specific type of sequence. But, it was originally discovered when exploring the

sequences in Chapter 9, and Proposition 7.2 is referenced again in 9.1.2. Chapters 9

and 10 also contain many intermediate results that resemble Proposition 7.2. Aside

from this main result, the rest of this chapter consists of preliminary observations and

is self-contained.

We define the following sequences in terms of a system of nested recurrences:

Definition 7.1. Define sequences R(n) for n ≥ 1, S(n) for n ≥ 0, and T (n) for n ≥ 0:

• R(1) = 1, R(2) = 2, R(n) = R(n−R(n− 1)) + S(n− 1) for n ≥ 3

• S(0) = 1, S(1) = 1, S(n) = S(n−R(n)) + S(n−R(n− 1)) for n ≥ 2

• T (0) = 1, T (n) = T (n−R(n)) + T (n− S(n)) for n ≥ 1

These are sequences A272611, A272612, and A272613 respectively in OEIS [31].

They appear to behave fairly chaotically, and, much like the Q-sequence, it is unknown

whether they live, persist, or strongly die. Empirically, R(n) grows approximately like

n
2 , S(n) grows like n

4 and T (n) grows like nα for some α strictly between 1 and 2. It

would make some sense if α were the number such that 4α = 2α + 3α (approximately
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Figure 7.1: Plot of R(1) through R(2000)

1.507), though it is unclear if this is actually the case. For plots of these sequences, see

Figures 7.1, 7.2, and 7.3 respectively.

The R, S, and T sequences are of interest because we can generate them with the

Hofstadter Q-recurrence. We make the following observation:

Proposition 7.2. Let K ≥ 0, λ ≥ 9 and µ ≥ K + 6 be integers. The initial condition

〈a1, a2, . . . , aK , 5, λ, 4, µ〉 (each ai an arbitrary integer) for the Hofstadter Q-recurrence

generates the following pattern for indices n ≥ K + 5,

• QT (K + 5k) = 5R(k)

• QT (K + 5k + 1) = 5S(k)

• QT (K + 5k + 2) = λT (k)

• QT (K + 5k + 3) = 4

• QT (K + 5k + 4) = 5R(k).

The pattern lasts as long as the R, S, and T sequences live and as long as λT (k) ≥

K + 5k + 4.
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Figure 7.2: Plot of S(0) through S(2000)

0

2000

4000

6000

8000

10000

500 1000 1500 2000

Figure 7.3: Plot of T (0) through T (2000)
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Figure 7.4: The first 2000 terms of A272610 (Initial Condition 〈5, 9, 4, 6〉)

The condition λT (k) ≥ K + 5k + 4 may seem somewhat restrictive, but it appears

to be satisfied for sufficiently large λ. If K = 0, experimental evidence indicates that

λ = 9 suffices. It fails for λ = 8, as T (10) = 6, and it is not true that 48 ≥ 54. The

case K = 0, λ = 9 and µ = 6, A272610 in OEIS, is depicted in Figure 7.4.

Proof. The proof is by induction on n. As a base case, we first manually check n = K+5

through n = K + 8.

• QT (K + 5) = QT (K + 5− µ) +QT (K + 5− 4) = QT (K + 1) = 5 = 5R(1).

• QT (K + 6) = QT (K + 6− 5) +QT (K + 6− µ) = QT (K + 1) = 5 = 5S(1).

• QT (K + 7) = QT (K + 7− 5) +QT (K + 7− 5) = 2QT (K + 2) = 2λ = λT (1).

• QT (K + 8) = QT (K + 8− 2λ) +QT (K + 8− 5) = QT (K + 3) = 4.

We now proceed by induction on n for n ≥ K + 9. There are 5 cases to consider.
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K + n ≡ 0 (mod 5): Here, n = K + 5k for some k ≥ 2. We have

QT (K + 5k) = QT (K + 5k −QT (K + 5k − 1))

+QT (K + 5k −QT (K + 5k − 2))

= QT (K + 5k − 5R(k − 1)) +QT (K + 5k − 4)

= 5R(k −R(k − 1)) + 5S(k − 1)

= 5R(k),

as required.

K + n ≡ 1 (mod 5): Here, n = K + 5k + 1 for some k ≥ 2. We have

QT (K + 5k + 1) = QT (K + 5k + 1−QT (K + 5k))

+QT (K + 5k + 1−QT (K + 5k − 1))

= QT (K + 5k + 1− 5R(k)) +QT (K + 5k + 1− 5R(k − 1))

= 5S(k −R(k)) + 5S(k −R(k − 1))

= 5S(k),

as required.

K + n ≡ 2 (mod 5): Here, n = K + 5k + 2 for some k ≥ 2. We have

QT (K + 5k + 2) = QT (K + 5k + 2−QT (K + 5k + 1))

+QT (K + 5k + 2−QT (K + 5k))

= QT (K + 5k + 2− 5S(k)) +QT (K + 5k + 2− 5R(k))

= λT (k − S(k)) + λT (k −R(k))

= λT (k),

as required.
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K + n ≡ 3 (mod 5): Here, n = K + 5k + 3 for some k ≥ 2. We have

QT (K + 5k + 3) = QT (K + 5k + 3−QT (K + 5k + 2))

+QT (K + 5k + 3−QT (K + 5k + 1))

= QT (K + 5k + 3− λT (k)) +QT (K + 5k + 3− 5S(k))

= 0 + 4

= 4,

as required.

K + n ≡ 4 (mod 5): Here, n = K + 5k + 4 for some k ≥ 1. We have

QT (K + 5k + 4) = QT (K + 5k + 4−QT (K + 5k + 3))

+QT (K + 5k + 4−QT (K + 5k + 2))

= QT (K + 5k + 4− 4) +QT (K + 5k + 4− λT (k))

= QT (K + 5k) + 0

= 5R(k),

as required.

What assumptions do we make about λ and µ? When computing QT (K + 6), we

definitely require µ ≥ 6. After this, we never see µ again. As far as λ goes, when

computing QT (K + 5k + 3), we need λT (k) ≥ K + 5k + 4 for every k, as required.

Proposition 7.2 illustrates that we can (at least for awhile, and conjecturally for-

ever) generate an unusual solution to the Hofstadter Q-recurrence consisting of five

interleaved subsequences. Four of the subsequences appear to behave chaotically, but

one of the subsequences is constant (fours, in this case). This begs the question: do

other, similar solutions exist for the Q-recurrence (and for other recurrences)? The

Maple code http://github.com/nhf216/thesis/RSTsearch.txt is designed to help

search for more of them. The main procedure in this package tries to find a solution

to the Q-recurrence consisting of m interleaved sequences, one of which is a constant

sequence with every term equal to bm − 1 for some constant b ≥ 1. It does this by

http://github.com/nhf216/thesis/RSTsearch.txt
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generating the sequence with a certain symbolic initial condition. (See Chapter 8 for an

introduction to symbolic initial conditions.) Manual inspection of the resulting solution

and bounds on symbols lead to conjectures. In particular, if generating more terms does

not cause the sequence to strongly die and does not increase the lower bound required

on the symbolic terms, this is evidence in favor of an (R,S, T )-like solution. (This is

analogous to how, in Proposition 7.2, we obtain bounds on symbols that we are able to

satisfy.)

Our conjecture is the following: Exploration yields the following empirical observa-

tions for m ≥ 4:

• If m ≡ 2 (mod 3), then there appears to be a solution to the Hofstadter Q-

recurrence with m interleaved sequences, including one constant m− 1 sequence.

(Proposition 7.2 gives an example of such a sequence. Another example is given

by the initial condition

〈7, N, 8, 8, 8, 8, 8, N, 7, 8, 16, 16, 16, 16, 16, N〉 ,

as long as N ≥ 26. See Figures 7.5 and 7.6.) As seen in Figure 7.6, some of

the other interleaved sequences are quite chaotic, others are mildly chaotic, and

others (beyond the m− 1 sequence) are predictable.

• For every integer b ≥ 2, there appears to be a solution to the Hofstadter Q-

recurrence with 5 interleaved sequences, each one chaotic except for one constant

5b− 1 sequence. (For example, the initial condition

〈9, N, 5, 5, N, 9, N, 5, 5, N, 9, 5, 10, 10, N〉

seems to generate one of these with b = 2, as long as N ≥ 20. See Figure 7.7.)

• If m ≡ 0 (mod 3), then for every integer b ≥ 2, there appears to be a finite, but

fairly long-lasting, solution to the Hofstadter Q-recurrence with m interleaved

sequences, each one chaotic except for one constant bm−1 sequence. (For example,

the initial condition

〈11, N, 6, 6, 6, N, 11, N, 6, 6, 6, N, 11, 6, 12, 12, 12, N〉
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Figure 7.5: First 1000 terms of Hofstadter Q-recurrence with initial condition
〈7, 26, 8, 8, 8, 8, 8, 26, 7, 8, 16, 16, 16, 16, 16, 26〉 (A284054), log plot
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Figure 7.6: First 2000 terms of Hofstadter Q-recurrence with initial condition
〈7, 26, 8, 8, 8, 8, 8, 26, 7, 8, 16, 16, 16, 16, 16, 26〉 (A284054), giant terms removed
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Figure 7.7: First 2000 terms of Hofstadter Q-recurrence with initial condition
〈9, 20, 5, 5, 20, 9, 20, 5, 5, 20, 9, 5, 10, 10, 20〉 (A284053)

generates one of these of length 2179 with m = 6 and b = 2, as long as N ≥ 20.

See Figure 7.8.)

• If m ≡ 1 (mod 3), then there appears to be a temporary solution to the Hofstadter

Q-recurrence with m interleaved sequences, each one chaotic except for one con-

stant m − 1 sequence. The duration of this solution depends on how large the

symbolic terms in the initial condition are. (For example, the initial condition

〈6, N, 7, 7, 7, 7, N, 6, 7, 14, 14, 14, 14, N〉

generates such a solution with m = 7. As N is taken larger, the pattern lasts

longer.)

• No solution of this sort arises in this exploration for any values of m and b not

described above.

Notably, these observations suggest that m = 5 is the only case where we can take

b ≥ 2 and obtain infinite sequences. The reason for this and, more generally, the reasons



92

0

2000

4000

6000

8000

10000

500 1000 1500 2000

Figure 7.8: All 2179 terms of Hofstadter Q-recurrence with initial condition
〈11, 20, 6, 6, 6, 20, 11, 20, 6, 6, 6, 20, 11, 6, 12, 12, 12, 20〉 (A283903)

for all of the cases, remain mysterious. Also, no solutions like these are known for any

other recurrences, though perhaps they do exist.

We conclude by questioning whether the R, S, and T sequences are the only chaotic

but seemingly stable solutions to their own system of nested recurrences. The initial

condition 〈4, N, 5, 5, N, 4, 5, 10, 10, N〉 (where N is some large integer) generates a solu-

tion similar to QT from Proposition 7.2, but the chaotic sequences, at first glance, are

slightly different. But, further observation shows that the original R and S sequences

do appear, but they start later (around index 28). The corresponding T -like sequence

is different, though.
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Chapter 8

Background on Parametrized Families of Initial

Conditions

The work of Chapters 3, 4, 5, 6, and, to some extent, 7, as well as most of the litera-

ture (e.g. [15,30,32]), is primarily concerned with finding solutions to nested recurrences

where the solutions have some specific properties. Given a desired behavior, the goal

has been to find an initial condition that realizes that behavior. In Chapter 9 and in

Chapter 10, we flip the conventional process on its head, and this chapter gives the

background we need for the analysis in those chapters. Instead of focusing on a par-

ticular style of solution, we now focus on a particular style of initial condition. From

there, we try to characterize the resulting behaviors. Usually, the solutions die (either

weakly or strongly; we have results for both notions). The theorems tend to be of the

flavor, “For all sufficiently long/large initial conditions of a given type, the sequence

defined by some recurrence weakly/strongly dies in a specific way.”

We would like to be able to consider infinite families of similar initial conditions

simultaneously. So, we consider initial conditions that contain one or more symbolic

parameters. Each setting of the parameters then gives an initial condition. For exam-

ple, Chapter 9 is an extensive study of the family of initial conditions 〈1, 2, 3, . . . , N〉,

where N is a parameter. If we specialize N to be, say, N = 7, the initial condition

becomes 〈1, 2, 3, 4, 5, 6, 7〉. Generally speaking, our results hold when the parameters

are sufficiently large, and each result includes a description of what “sufficiently large”

means.

Going forward, there are four different approaches to viewing the parameters in our

initial conditions.

Large Integers: As we just mentioned, our results apply when the parameters are
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sufficiently large integers. Consequently, it is most straightforward to treat the

parameters as large integers whose values have yet to be determined. The pri-

mary disadvantage of this point of view is that, a priori, we do not know what

“sufficiently large” means; our process of discovering and proving theorems, as a

consequence, defines this term in each case. The other viewpoints do not suffer

from this shortcoming, though they are less natural.

Symbols: When doing computations involving unknown parameters, our procedures

treat them as symbols. But, plain symbols do not contain enough information to

compute everything. So, we must endow our symbols with the following auxiliary

information:

• A symbol N is treated as larger than every natural number. (This success-

fully circumnavigates the “sufficiently large” concern.)

• A symbol N may be assigned to congruence classes modulo some positive

integers. (These congruence classes must be consistent with one another.

For example, we cannot simultaneously have N ≡ 1 (mod 2) and N ≡ 6

(mod 8).) This is necessary because computing terms of sequences with

parameters in them frequently depends on arithmetic properties of N . (See

any theorem on strong death in Chapter 9 for an example.)

• Two different symbols N1 and N2 appearing in the same initial condition

are given a relative ordering, say, N1 < N2. Furthermore, N2 is treated as

larger than any expression built only out of N1’s (and real numbers).

Nonstandard Integers: The properties described above that we need to assign to our

symbols are reminiscent of nonstandard arithmetic [25]. The existence of nonstan-

dard models of arithmetic is implied by Gödel’s Incompleteness Theorems [14].

Such models must contain “infinite” numbers, that is, natural numbers that are

larger than any standard natural number. As natural numbers, these infinite

numbers are endowed with intrinsic arithmetic properties. Most notably, for any

natural numbers N and M (standard or nonstandard), N mod M is defined. (In
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particular, any two congruence classes that N falls into must be mutually con-

sistent.) The theorems we prove in the next two chapters can be thought of as

theorems about nonstandard integer sequences (where indices and terms can each

be nonstandard).

p-Adic Integers: For an integer p ≥ 2, a p-adic integer [17] is a formal sum
∞∑
k=0

akp
k

for some integers ak, each ranging from 0 to p − 1 (inclusive). A generic p-adic

integer is often written as a left-nonterminating string of digits: · · · a4a3a2a1a0 p.

The subscript p means that it is p-adic; if p is clear from context, the subscript is

often omitted. The natural numbers are contained in the p-adic integers. If the

sequence (ak)k≥0 is eventually zero, then the resulting p-adic integer is a natural

number (written in its base-p representation). But there are uncountably many

p-adic integers. Addition and multiplication of p-adic integers is done as if they

were base-p integers.

Negative integers are also p-adic integers, as we can write

−1 = · · · (p− 1) (p− 1) (p− 1)p .

(One way to see this is to formally sum this as a geometric series; another way is

to add 1 and observe how the carried digits cause the result to become zero.) In

this way, the p-adic integers form a ring, and, if p is prime, they form an integral

domain. Some fractions are also p-adic integers. (For example, −1
2 = · · · 1111113.)

At times, it can be helpful to think of our initial condition parameters as p-adic

integers. In our main result of Section 9.1.2, the eventual behavior of a sequence

depends on the value of a parameter N mod higher and higher powers of 5. If N

is a 5-adic integer, it is easy to work with these congruences, as they are obtained

from the low-order digits of the 5-adic expansion of N .

A disadvantage of working with p-adic integers is the fact that fractions and

negative numbers can be p-adic integers. Important to our analysis is that the

natural numbers are totally ordered and that there is no largest natural number.

But, the p-adic integers violate these properties as a whole. That being said, we
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still sometimes refer to parameters as p-adic integers when it appears that they do

not end up corresponding to negative integers and when we only mod by powers

of p. (The values of our sequences at negative integers is given on page 7 in the

definition of strong death, and taking a p-adic integer mod something other than

a power of p is a messy operation.)

In Chapter 9, we consider various recurrences under initial conditions of the form

〈1, 2, 3, . . . , N〉. In Chapter 10, we consider initial conditions of the form 〈N, 2〉, 〈2, N〉,

〈N, 4, N, 4〉, and 〈4, N, 4, N〉. In Section 8.1, we discuss in more detail the general

method we use in these next two chapters.

8.1 The General Method

We now describe the general method of analyzing sequences generated by a given

parametrized family of initial conditions for a nested recurrence. The same proce-

dure works for either notion of death, so when we say a sequence dies, we mean it dies

according to whichever convention we are choosing to work with. This process is imple-

mented in the Maple package http://github.com/nhf216/thesis/nonstdhof.txt in

the procedures ProveEventualSolution and ProveLongTermEventualSolution.

1. At the start, we are given a recurrence and a parametrized initial condition family.

The goal is to determine the values of all terms in the sequence. If, when doing

so, we realize that the sequence must refer to an illegal index at some point,

then we additionally conclude that the sequence dies. If the recurrence under

consideration is basic, then strong death is synonymous with referencing a zero

or negative term when computing a sequence value.

2. Generate the next terms of the sequence. It may be necessary to specify certain

properties of the parameters in order to generate these terms. (These can either be

specified at the outset, or we can iterate through all possibilities.) Keep generating

terms until one of the following things happens:

• The sequence dies.

http://github.com/nhf216/thesis/nonstdhof.txt
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• A regular pattern (a la Golomb [15] or Ruskey [30]) emerges.

3. If the sequence dies, then we are done. Otherwise, try to prove by induction that

the observed pattern actually exists for some amount of time. If this succeeds,

carefully examine the assumptions made in the proof and try to extract from it

the first index where the pattern no longer persists. (This will typically be some

function of the parameters, though it will sometimes be∞, as patterns can persist

forever.) On the other hand, if the proof of the pattern’s persistence fails, return

to step 2 and generate more terms.

4. Return to step 2, replacing the previously-considered initial condition by all of

the sequence values that we now know about.

In a sense, this process is a close relative of the main algorithm in Chapter 3, as it

can be used to show that a solution to a nested recurrence is eventually an interleaving

of linear-recurrent sequences. But, this process requires a specific family of initial

conditions as an input, and it does not discover infinite families of solutions.

This process is fairly simple to describe, and there are many applications of it in the

upcoming chapters. But, the implementation requires navigating many messy details.

The difficulties arise from the following sources:

• We need to keep track of arithmetic properties of symbols.

• We need to compare symbolic expressions to see which is larger.

• More generally, given a partition of the (nonstandard) integers into intervals (each

corresponding to an interval where a certain pattern exists), we need to be able

to determine which interval a given expression falls into.

• We need to automatically look for patterns, which requires a precise notion of

what a “pattern” is.

• We need to be able to algebraically determine where patterns come to an end.

None of these tasks is particularly straightforward, and, as a result, the implementation

is fairly involved.
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Sometimes, the sequences we discover consist of “patterns of patterns,” meaning

that applying this method to such a sequence will never tell the whole story. Rather,

the patterns we see in the sequence keep recurring in some form. In order to properly

analyze such solutions, it would be necessary to employ a second-order version of this

methodology that searches for such meta-patterns. (For an example of a sequence family

with a meta-pattern, see p. 150.) Of course, why stop at second order? This sort of thing

could continue for arbitrarily many orders. But, our implementation currently only

natively handles first order patterns, though, as is done in Chapter 10, the procedure

can sometimes be adapted to handle specific cases of higher-order patterns.
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Chapter 9

Nested Recurrences with Initial Conditions 1 through N

The Hofstadter Q-sequence appears to be approximately linear. Keeping this in mind,

it may be fruitful to examine the Q-recurrence under linear initial conditions. Since our

initial conditions must contain only integers, an obvious first initial condition to try is

〈1, 2, 3, . . . , N〉. In Section 9.1, we use the process described in Chapter 8 to explore the

sequences generated by the Q-recurrence under these initial conditions. In Sections 9.2

and 9.3, we explore related recurrences under the same initial conditions. Finally, in

Section 9.4, we use these initial conditions and the methodology of Chapter 8 to prove

that certain sequences that naturally generalize the slow sequence in Chapter 6 are not

slow.

9.1 The Hofstadter Q-Recurrence

In this section, we consider sequences obtained from the Hofstadter Q-recurrence and

an initial condition of the form 〈1, 2, 3, . . . , N〉, the result of which we denote by QN .

Observe that Q2 is precisely the Q-sequence with all terms shifted left by one index.

(This follows almost immediately from Proposition 2.7.)

9.1.1 Weak Death

Our first result is a description of the behavior of the sequences QN under weak death.

Theorem 9.1. For N = 8, N = 11, N = 12, or N ≥ 14, QN weakly dies.

The proof of Theorem 9.1 will serve as a basic illustration of the first part of our

general method from Chapter 8.
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Proof. It is straightforward to verify that Q8(420) = 430, Q11(199) = 206, and

Q12(69) = 77, so these sequences all weakly die [31, A278060,A278063,A278064].

Now, suppose N ≥ 14. We compute 28 terms following the initial condition and

obtain values

3, N + 1, N + 2, 5, N + 3, 6, 7, N + 4, N + 6, 10, 8, N + 6, N + 10, 12, N + 7, 14,

N + 12, 11, N + 11, N + 15, 16, 13, 17, 15, N + 14, 20, 20, 2N + 8

See Appendix B for explicit computations of these terms.

Note that, as we compute these values, we use the fact that QN (i) = i for i ≤ 13.

But, QN (13) (when computing QN (N + 27)) is the largest term we evaluate whose

argument does not include an N . Now, observe that 2N +8 ≥ N +1 whenever N ≥ 21.

This means that, if N ≥ 21, then QN (N+29) will fail to exist (since we are considering

weak death). So, the sequence weakly dies whenever N ≥ 21.

This just leaves the values 14 ≤ N ≤ 20 to examine. This is a finite range, so it

suffices to check all of these values individually. But, these seven sequences all weakly

die according to the same pattern, and our proof below will illustrate this. Suppose

14 ≤ N ≤ 20. We now compute four more terms.

QN(N + 29) = QN (N + 29−QN (N + 28)) +QN (N + 29−QN (N + 27))

= QN (N + 29− (2N + 8)) +QN (N + 29− (20))

= QN (−N + 21) +QN (N + 9) = −N + 21 +N + 6 = 27

QN(N + 30) = QN (N + 30−QN (N + 29)) +QN (N + 30−QN (N + 28))

= QN (N + 30− (27)) +QN (N + 30− (2N + 8))

= QN (N + 3) +QN (−N + 22) = N + 2−N + 22 = 24

QN(N + 31) = QN (N + 31−QN (N + 30)) +QN (N + 31−QN (N + 29))

= QN (N + 31− (24)) +QN (N + 31− (27))

= QN (N + 7) +QN (N + 4) = 7 + 5 = 12
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QN(N + 32) = QN (N + 32−QN (N + 31)) +QN (N + 32−QN (N + 30))

= QN (N + 32− (12)) +QN (N + 32− (24))

= QN (N + 20) +QN (N + 8) = N + 15 +N + 4 = 2N + 19.

Here we use the facts that 21−N and 22−N both lie in the initial condition. We now

observe that 2N + 19 ≥ N + 33 whenever N ≥ 14. This means that, if 14 ≤ N ≤ 20,

then QN (N + 33) fails to exist. So, the sequence weakly dies whenever 14 ≤ N ≤ 20,

as required.

Theorem 9.1 says that QN weakly dies for all but finitely many N . This begs

the question of what happens when N ∈ {2, 3, 4, 5, 6, 7, 9, 10, 13}. We have already

mentioned that the case N = 2 is Hofstadter’s sequence shifted by 1 position, so it is

unknown whether Q2 dies (see Chapter 2). Since Q2(3) = 3, Q3 = Q2, and we have

that N = 3 also gives Hofstadter’s sequence. The remaining N values in this set give

sequences that are different from Hofstadter’s sequence and different from each other.

Like Hofstadter’s, it is unknown whether any of these sequences dies. All of these

sequences last for at least 30 million terms. See Appendix C for plots of the first 2000

terms of all eight sequences. Observe that, as N increases, the plots appear to progress

from the characteristic “sausage” pattern of the Hofstadter Q-sequence to more of a

wedge shape.

9.1.2 Strong Death

General Structure of QN

We now examine what happens to the sequences QN under the strong death convention.

Surprisingly, the behavior beyond the weak death point depends on the congruence class

of N modulo 5. For fixed N , we define the following sequences:

Definition 9.2. Define A0 = N − 2, A1 = 2N + 4 and

B1 = −11N − 22.
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Then, for i ≥ 1, define

Ai+1 = Ai

(
Ai −Ai−1 + 2

5

)
+Bi

and Bi+1 = Ai+1 − Ai. Next, define C1 = (N − 1) mod 5, and for i ≥ 2, define

Ci = (Ai+2i+1) mod 5. Finally, for all i ≥ 1, define C ′i = max(0, ((3−Ci) mod 5)−1).

Also, recall the R, S, and T sequences from Chapter 7. We have the following

theorem:

Theorem 9.3. Let N be a natural number (standard, nonstandard, or nonnegative and

5-adic). Let j be the first index where Cj 6= 1 (or j =∞ if Cj = 1 for all j). Provided

N ≥ 35, the sequence QN (n) has the following properties:

• For all 1 ≤ i ≤ N , QN (i) = i.

• For 1 ≤ k ≤ 28, QN (N + k) is as in Theorem 9.1. The next six terms are

QN (N+29) = N+6, QN (N+30) = 24, QN (N+31) = 32, QN (N+32) = 2N+4,

QN (N + 33) = 3, QN (N + 34) = 32. Thereafter, for 35 ≤ 5k + r ≤ A1 +C ′1 with

0 ≤ r < 5,

– QN (N + 5k) = A1k +B1

– QN (N + 5k + 1) = 5

– QN (N + 5k + 2) = A1

– QN (N + 5k + 3) = 3

– QN (N + 5k + 4) = 5

• For each 1 ≤ m < j, QN (Am + 2) = 5, QN (Am + 3) = 8, QN (Am + 4) = Am+1,

QN (Am + 5) = 3, QN (Am + 6) = 8, and for all 7 ≤ 5k + r ≤ Am+1 + C ′m+1 with

0 ≤ r < 5,

– QN (Am + 5k) = 3

– QN (Am + 5k + 1) = 5

– QN (Am + 5k + 2) = Am+1k +Bm+1
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– QN (Am + 5k + 3) = 5

– QN (Am + 5k + 4) = Am+1

• If Cj = 0 and N ≥ 118, then QN strongly dies after Aj + 160 terms. See Ap-

pendix D for the remaining 158 terms.

• If Cj = 2, then QN (Aj + 1) = 4, QN (Aj + 2) = Aj

(
Aj−Aj−1−4

5

)
+ Bj + 2, and

thereafter, for 5k + r ≥ 3 with 0 ≤ r < 5

– QN (Aj + 5k) = AjT (k)

– QN (Aj + 5k + 1) = 4

– QN (Aj + 5k + 2) = 5R(k)

– QN (Aj + 5k + 3) = 5R(k + 1)

– QN (Aj + 5k + 4) = 5S(k + 1)

assuming the R, S, and T sequences from Chapter 7 do not weakly die and as-

suming the T sequence stays large enough.

• If Cj = 3, then QN strongly dies after Aj + 4 terms. The remaining 4 terms are:

– QN (Aj + 1) = 6

– QN (Aj + 2) = Aj + 5

– QN (Aj + 3) = Aj

(
Aj−Aj−1−5

5

)
+Bj

– QN (Aj + 4) = 0

• If Cj = 4, then QN strongly dies after Aj + 14 terms. The remaining 11 terms

are:

– QN (Aj + 4) = 7

– QN (Aj + 5) = Aj + 5

– QN (Aj + 6) = 4

– QN (Aj + 7) = Aj + 2

– QN (Aj + 8) = 13
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– QN (Aj + 9) = Aj

(
Aj−Aj−1−6

5

)
+Bj + 7

– QN (Aj + 10) = 5

– QN (Aj + 11) = 4

– QN (Aj + 12) = Aj + 15

– QN (Aj + 13) = Aj

(
Aj−Aj−1−6

5

)
+Bj + 7

– QN (Aj + 14) = 0

The proof of Theorem 9.3 requires the following lemma:

Lemma 9.4. Let K ≥ 0 be an integer, and let λ and µ be any integers satisfying

λ > K + 5 and λ + µ > K + 6. Then, for arbitrary integers a1, a2, . . . , aK , the initial

condition 〈a1, a2, . . . , aK , µ, 5, λ, 3〉 generates the pattern

• QC(K + 5k) = 5

• QC(K + 5k + 1) = λk + µ

• QC(K + 5k + 2) = 5

• QC(K + 5k + 3) = λ

• QC(K + 5k + 4) = 3

satisfies the Hofstadter Q-recurrence from QC(K + 1) through QC(λ).

In addition, the pattern can only end when computing the 3 or the second 5 (the

terms referring to λ), so the pattern may extend to index QC(λ + i) for some i ≤ 3

(depending on the congruence class of λ mod 5).

Proof. The proof is by induction on the index. The base cases are QC(K + 1) through

QC(K + 4), which are part of the initial condition. Now, suppose K + 5 ≤ n ≤ λ, and

suppose that QC(n′) is what we want for all K + 1 ≤ n′ < n. There are five cases to

consider:
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n−K ≡ 0 (mod 5): In this case, n = K + 5k for some k. Applying the Q-recurrence,

we have

QC(K + 5k) = QC(K + 5k −QC(K + 5k + 4))

+QC(K + 5k −QC(K + 5k + 3))

= QC(K + 5k − 3) +QC(K + 5k − λ)

= 5 + 0

= 5,

as required.

n−K ≡ 1 (mod 5): In this case, n = 5k + 1 for some k. Applying the Q-recurrence,

we have

QC(K + 5k + 1) = QC(K + 5k + 1−QC(K + 5k))

+QC(K + 5k + 1−QC(K + 5k − 1))

= QC(K + 5k + 1− 5) +QC(K + 5k + 1− 3)

= λ(k − 1) + µ+ λ

= λk + µ,

as required.

n−K ≡ 2 (mod 5): In this case, n = K+5k+2 for some k. Applying the Q-recurrence,

we have

QC(K + 5k + 2) = QC(K + 5k + 2−QC(K + 5k + 1))

+QC(K + 5k + 2−QC(K + 5k))

= QC(K + 5k + 2− (λk + µ)) +QC(K + 5k + 2− 5)

= 0 + 5

= 5,

as required.
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n−K ≡ 3 (mod 5): In this case, n = 5k + 3 for some k. Applying the Q-recurrence,

we have

QC(K + 5k + 3) = QC(K + 5k + 3−QC(K + 5k + 2))

+QC(K + 5k + 3−QC(K + 5k + 1))

= QC(K + 5k + 3− 5) +QC(K + 5k + 3− (λk + µ))

= λ+ 0

= λ,

as required.

n−K ≡ 4 (mod 5): In this case, n = 5k + 4 for some k. Applying the Q-recurrence,

we have

QC(5k + 4) = QC(K + 5k + 4−QC(K + 5k + 3))

+QC(K + 5k + 4−QC(K + 5k + 2))

= QC(K + 5k + 4− λ) +QC(K + 5k + 4− 5)

= 0 + 3

= 3,

as required.

This completes the proof of the pattern. Examining which terms refer to which other

terms gives the extendability observation, as the first and last cases are the only ones

that care about the specific value of λ.

We now prove Theorem 9.3.

Proof. We now refer the reader back to Theorem 9.1 for terms QN (1) through QN (N +

28). From there, it is easy to compute QN (N + 29) through QN (N + 34), and each one

equals its purported value. We now compute the next five terms:

• QN (N + 35) = QN (N + 3) +QN (N + 32) = (N + 2) + (2N + 4) = 3N + 6.

• QN (N + 36) = QN (N + 4) = 5.
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• QN (N + 37) = QN (N + 32) = 2N + 4 = A1.

• QN (N + 38) = QN (N + 33) = 3.

(Note that N ≥ 35 is required when computing QN (N+39), as we need 2N+4 ≥ N+39.

This is the strongest requirement we impose anywhere on the size of N .) By Lemma 9.4,

taking K = N + 34, these four terms spawn a period-5 pattern:

• QN (N + 34 + 5k) = 5

• QN (N + 34 + 5k + 1) = (2N + 4) k + (3N + 6)

• QN (N + 34 + 5k + 2) = 5

• QN (N + 34 + 5k + 3) = 2N + 4

• QN (N + 34 + 5k + 4) = 3,

and this pattern persists through at least QN (A1). Shifting indices and recalling the

definitions of A1 and B1 allows us to rewrite this pattern as

• QN (N + 5k) = A1k −B1

• QN (N + 5k + 1) = 5

• QN (N + 5k + 2) = A1

• QN (N + 5k + 3) = 3

• QN (N + 5k + 4) = 5,

which is the required form.

In order to complete the proof of the first part of the theorem, we must show that

the pattern continues through index A1 +C ′1. The value of C ′1 is determined completely

by N mod 5; it is 3 if N ≡ 0 (mod 5), 2 if N ≡ 1 (mod 5), 1 if N ≡ 2 (mod 5), and 0

otherwise. We now determine when the pattern ends in each case.

N ≡ 0 (mod 5): Here, A1 ≡ 4 (mod 5). This means that QN (A1 + 1) falls into the

QN (N + 5k) case. By Lemma 9.4, the pattern can end only once we reach the
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QN (N+5k+3) case. So, the pattern persists through QN (A1+3) = QN (A1+C ′1),

as required.

N ≡ 1 (mod 5): Here, A1 ≡ 1 (mod 5). This means that QN (A1 + 1) falls into the

QN (N +5k+1) case (since N itself is congruent to 1 mod 5). By Lemma 9.4, the

pattern can end only once we reach the QN (5k+ 3) case. So, the pattern persists

through QN (A1 + 2) = QN (A1 + C ′1), as required.

N ≡ 2 (mod 5): Here, A1 ≡ 3 (mod 5). This means that QN (A1 + 1) falls into the

QN (N +5k+2) case (since N itself is congruent to 2 mod 5). By Lemma 9.4, the

pattern can end only once we reach the QN (5k+ 3) case. So, the pattern persists

through QN (A1 + 1) = QN (A1 + C ′1), as required.

N ≡ 3 (mod 5): Here, A1 ≡ 0 (mod 5). This means that QN (A1 + 1) falls into the

QN (N +5k+3) case (since N itself is congruent to 3 mod 5). By Lemma 9.4, the

pattern ends immediately. So, the pattern persists through QN (A1) = QN (A1 +

C ′1), as required.

N ≡ 4 (mod 5): Here, A1 ≡ 2 (mod 5). This means that QN (A1 + 1) falls into the

QN (N +5k+4) case (since N itself is congruent to 4 mod 5). By Lemma 9.4, the

pattern ends immediately. So, the pattern persists through QN (A1) = QN (A1 +

C ′1), as required.

We now prove the portion of Theorem 9.3 that refers to a parameter 1 ≤ m < j.

Suppose inductively that we are considering the value m < j, and the theorem is true

for m − 1. In other words, we are at the conclusion of the period-5 pattern that ends

at QN (Am + C ′m). Since m < j, it must be the case that C ′m = 1 (as Cm = 1 implies

C ′m = 1). So we must start our examination with QN (Am + 2). Also, we must have

QN (Am + 1) = Am. (We include this as part of our inductive hypothesis.)

Technically, m = 1 should be treated as a base case. But, we see that m = 0

corresponds to the pattern that ends with QN (A1 + 1) = A1. So, we do not actually

need to treat m = 1 any differently from other m values, and m = 0 can serve as our

(already proved) base case.
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We compute the next 9 terms:

• QN (Am + 2) = QN (2) +QN (Am − 3) = 2 + 3 = 5.

• QN (Am + 3) = QN (Am − 2) +QN (3) = 5 + 3 = 8.

• QN (Am + 4) = QN (Am − 4) + QN (Am − 1). We have that QN (Am − 4) = Am.

But, QN (Am − 1) = Amk +Bm, where k = Am−Am−1−3
5 . So,

QN (Am + 4) = Am

(
1 +

Am −Am−1 − 3

5

)
+Bm

= Am

(
Am −Am−1 + 2

5

)
+Bm

= Am+1.

This term is much larger than Am.

• QN (Am + 5) = QN (Am − 3) = 3.

• QN (Am + 6) = QN (Am + 1) = 8.

• QN (Am + 7) = QN (Am− 1) +QN (Am + 4). We have from before QN (Am− 1) =

Amk+Bm, where k = Am−Am−1−3
5 . But, our calculations in the QN (Am+4) step

allow us to write QN (Am − 1) = Am+1 − Am. So, QN (Am + 7) = Am+1 − Am +

Am+1 = 2Am+1 −Am.

• QN (Am + 8) = QN (Am) = 5.

• QN (Am + 9) = QN (Am + 4) = Am+1.

• QN (Am + 10) = QN (Am + 5) = 3.

The first five of these terms are what we want. And, by Lemma 9.4, the last four

terms generate a period-5 pattern as in the lemma statement (with K = Am + 6). The

resulting pattern can be written as

• QN (Am + 5k) = 3

• QN (Am + 5k + 1) = 5
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• QN (Am + 5k + 2) = Am+1k +Am+1 −Am = Am+1k +Bm+1

• QN (Am + 5k + 3) = 5

• QN (Am + 5k + 4) = Am+1,

and this pattern persists at least through QN (Am+1), as required.

We must now show that the pattern continues through index Am1 + C ′m+1. The

argument is similar to the earlier argument we used regardingA1+C ′1; in short, it suffices

to determine which case QN (Am+1) falls into. This, in turn, requires determining

(Am+1 −Am) mod 5. We know that Cm+1 ≡ (Am+1 + 2m+ 3) mod 5. This means

that Am+1 ≡ (Cm+1 − 2m− 3) mod 5. Similarly, Am ≡ (Cm − 2m− 1) mod 5. But,

we know that Cm = 1. So, Am ≡ −2m mod 5. Combining these yields Am+1 − Am ≡

(Cm+1 − 3) mod 5. We now examine the different cases.

Cm+1 = 0: Here, QN (Am+1) = Am+1

(
Am+1−Am−2

5

)
+ Bm+1, so the pattern persists

through QN (Am+1 + 2). In this case, we have C ′m+1 = 2, as required.

Cm+1 = 1: Here, QN (Am+1) = 5 (the second instance of 5), so the pattern persists

through QN (Am+1 + 1). In this case, we have C ′m+1 = 1, as required.

Cm+1 = 2: Here, QN (Am+1) = Am+1, so the pattern ceases immediately. In this case,

we have C ′m+1 = 0, as required.

Cm+1 = 3: Here, QN (Am+1) = 3, so the pattern ceases immediately. In this case, we

have C ′m+1 = 0, as required.

Cm+1 = 4: Here, QN (Am+1) = 5 (the first instance of 5), so the pattern persists

through QN (Am+1 + 3). In this case, we have C ′m+1 = 3, as required.

All that remains is to determine the eventual behaviors for Cj ∈ {0, 2, 3, 4}.

Cj = 0: The first unknown term here is QN (Aj + 3). We compute the next 158

terms (see Appendix D), and we observe that the sequence strongly dies because

QN (Aj + 160) = 0. Computation of these terms assumes that N ≥ 118, because

computing QN (Aj + 157) refers to QN (118), which we assume equals 118 (and

this is the strongest requirement we use anywhere in the calculations).
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Cj = 2: The first unknown term here is QN (Aj + 1). We compute the next 2 terms

(keeping in mind that QN (Aj) = Aj and QN (Aj − 1) = 5):

• QN (Aj + 1) = QN (1) +QN (Aj − 4) = 1 + 3 = 4.

• QN (Aj + 2) = QN (Aj − 2) +QN (2) = Aj

(
Aj−Aj−1−4

5

)
+Bj + 2.

By Proposition 7.2 (and Proposition 2.7), this results in the pattern

• QN (Aj + 5k) = AjT (k)

• QN (Aj + 5k + 1) = 4

• QN (Aj + 5k + 2) = 5R(k)

• QN (Aj + 5k + 3) = 5R(k + 1)

• QN (Aj + 5k + 4) = 5S(k + 1),

as required. (Of course, this assumes that Aj is sufficiently large to the degree

required by Proposition 7.2, but in all cases checked it appears to be sufficiently

large.)

Cj = 3: The first unknown term here is QN (Aj + 1). We compute the next 4 terms,

obtaining the values in the theorem statement. We observe that the sequence

strongly dies because QN (Aj + 4) = 0.

Cj = 4: The first unknown term here is QN (Aj + 4). We compute the next 11 terms,

obtaining the values in the theorem statement. We observe that the sequence

strongly dies because QN (Aj + 14) = 0.

See Figure 9.1 for a plot of the first 30000 terms of Q42. For N = 42, j = 3 and

C3 = 2, so, after the initial condition, there is the zone before it weakly dies, followed by

a (very short) quasilinear piece, followed by two (successively longer) quasilinear pieces,

followed by the eventual R,S, T -like behavior. Both axes have logarithmic scales, as

otherwise the third quasilinear piece would dominate the plot. (Remember, the Ai’s

grow very rapidly.)
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Figure 9.1: The first 30000 terms of Q42 (A274055, both axes log scale)

Theorem 9.3 is, in a sense, rather mysterious. It completely characterizes the be-

havior of QN (as long as N is sufficiently large and as long as conjectures about the R,

S, and T sequences hold), but the characterization of which N result in which behavior

is somewhat convoluted. Every N with Cj < ∞ (which is every known value of N) is

associated to a pair (j, Cj) ∈ Z>0 × {0, 2, 3, 4}. We denote these values by j(N) and

C(N) respectively. We also use notation like Ai(N), Bi(N), and Ci(N) to denote Ai,

Bi, and Ci values for N . Our first observation is the following:

Proposition 9.5. Let N be a positive integer, and let j = j(N). For all 1 ≤ i ≤ j,

Ai(N + 5j) ≡ Ai(N)
(
mod 5j−i+1

)
.

Proof. The proof is by induction on i. If i = 1, then A1(N) = 2N+4 and A1(N+5j) =

2
(
N + 5j

)
+ 4 = 2N + 4 + 2 · 5j . Then, A1(N + 5j)−A1(N) = 2 · 5j , which is divisible

by 5j = 5j−1+1, as required. If i = 2, then

A2(N) =
2

5
N2 − 7N − 78

5

and

A2(N + 5j) =
2

5
N2 − 7N − 78

5
+ 2 · 52j−1 − 7 · 5j + 4 · 5j−1.
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The difference is divisible by 5j−1, as required.

Now, suppose i ≥ 3 and suppose that Proposition 9.5 holds for all smaller i values.

Recall that

Ai = Ai−1

(
Ai−1 −Ai−2 + 2

5

)
+Bi−1.

Since i ≥ 3, Bi−1 = Ai−1 −Ai−2, so we can eliminate Bi−1 and write

Ai = Ai−1

(
Ai−1 −Ai−2 + 7

5

)
−Ai−2.

By induction, Ai−1(N + 5j) = Ai−1(N) + α · 5j−i+2 for some integer α. Similarly,

Ai−2(N + 5j) = Ai−2(N) + β · 5j−i+3 for some integer β.

We now evaluate

Ai(N + 5j)−Ai(N) = Ai−1(N + 5j)

(
Ai−1(N + 5j)−Ai−2(N + 5j) + 7

5

)
−Ai−2(N + 5j)−Ai−1(N)

(
Ai−1(N)−Ai−2(N) + 7

5

)
−Ai−2(N)

=
(
Ai−1(N) + α · 5j−i+2

)
·

((
Ai−1(N) + α · 5j−i+2

)
−
(
Ai−2(N) + β · 5j−i+3

)
+ 7

5

)

−
(
Ai−2(N) + β · 5j−i+2

)
−Ai−1(N)

(
Ai−1(N)−Ai−2(N) + 7

5

)
−Ai−2(N).

Evaluating this expression with Maple yields

Ai(N + 5j)−Ai(N) = 5j−i+1 (2αAi−1(N)− 5βAi−1(N)− αAi−2(N)

+α2 · 5j−i+2 − α · 5j−i+3 + 7α− 25β
)
,

which is divisible by 5j−i+1, as required.

Of course, Proposition 9.5 immediately generalizes to replacing 5j with any integer

multiple of 5j . We have the following corollary to Proposition 9.5 (which also generalizes

in this way):

Corollary 9.6. For all N , and for all 1 ≤ i ≤ j(N), Ci
(
N + 5j(N)

)
= Ci(N). In

particular, j
(
N + 5j(N)

)
= j(N).
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Proof. Let j = j(N). Let 1 ≤ i ≤ j. By Proposition 9.5,

Ai(N + 5j) ≡ Ai(N)
(
mod 5j−i+1

)
.

Since Ci is a function solely of Ai mod 5 and of i, we have Ci(N + 5j) = Ci(N). Since i

was arbitrary, we have Ci(N+5j) = Ci(N) for every such i, as required. Also, Ci(N) = 1

if i < j (by the definition of j). So, by the definition of j, we have j
(
N + 5j

)
= j(N),

as required.

Corollary 9.6 tells us that, to determine the behavior of QN , we should first look

at N mod 5. If C1(N) = 1, then we need to look at N mod 25. If C2(N) = 1, then we

need to look at N mod 125, etc. This observation suggests that treating N as a 5-adic

integer may be helpful. In fact, a subset of the strings {0, 1, 2, 3, 4}∗ form a tree as

follows:

• The root is the empty string, and it has the five length-1 strings as children.

• For a string w, interpret it as a base 5 integer Nw. Let C = C|w|(Nw) (where |w|

denotes the length of w). If C = 1, then w has children {xw : x ∈ {0, 1, 2, 3, 4}};

otherwise w is a leaf of type C.

To determine the behavior of QN , read the base-5 digits of N from right to left and

traverse the tree. When a leaf is reached, stop, and the leaf’s type will determine the

behavior. The tree has a level structure; level i consists of the strings of length i that

appear in the tree.

So, the key to understanding QN is to understand this tree (Figure 9.2). If i ∈

{1, 2, 3, 4, 5}, there is one leaf of each type of level i, as well as one internal node.

(The internal nodes correspond to 2 mod 5 (2), 17 mod 25 (32), 117 mod 125 (432),

492 mod 625 (3432), and 1742 mod 3125 (23432).) It would be convenient if this struc-

ture continued, but, alas, it does not. There is no N such that j(N) = 6; whenever

C5(N) = 1, C6(N) = 1 also. Thereafter, it appears that all of the children of a given

node are of the same type (type 0, type 2, type 3, type 4, or internal). Going deeper,

there are also no N with j(N) = 11, and there are no N with j(N) = 16. The obvious

conjecture is that there is no N with j(N) ≡ 1 (mod 5) (except, of course, for j = 1).
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But, the node types and locations in this tree, despite being somehow “balanced” be-

tween the five types, appear somewhat random. The main structural observation is that

there appears to be a fivefold explosion of internal nodes at levels congruent to 1 mod

5, and then a twofold multiplication at the next level. Unfortunately, this exponential

growth makes computing the full tree difficult beyond level 16.

Figure 9.2 depicts levels 0 through 11 of the tree. The nodes are color coded. Type

0 nodes are red, type 2 are yellow, type 3 are green, type 4 are blue, and internal (type

1) nodes are black. Figure 9.3 depicts levels 9 through 14 starting from the internal

node 313223432 (the higher of the two internal nodes on level 9 with internal children in

Figure 9.2). Figure 9.3 also depicts levels 13 through 17 starting from the internal node

2310313223432. (In the left part of Figure 9.3, first find the lower group of internal

nodes on level 13 with internal children. Node 2310313223432 is the middle node of

this group.)

We do not know if this tree is infinite. But, it has finite branching (each node has

zero or five children), so, if it is infinite, König’s Tree Lemma [26] implies the existence

of an infinite branch. This infinite branch corresponds to a 5-adic integer N0 for which

QN consists entirely of period-5 pieces, and, hence, persists forever without entering the

realm of the R, S, and T sequences. (See 9.2.2 for some finitary sequences with similar

sorts of behaviors.) It is theoretically possible that such an N0 could be an ordinary

integer, though this seems unlikely.

Analysis of Sporadic N Values

Theorem 9.3 characterizes the behavior of QN for all

N /∈ {n : 2 ≤ n ≤ 34} ∪ {n : 1 < n < 118 and n ≡ 1 (mod 5)} ∪ {57, 67, 82, 107, 117} .

These 55 values can be studied individually by generating the sequences and observing

the terms. A file detailing all of these findings can be found at http://github.com/

nhf216/thesis/Hof1thruN.txt. What follows is a summary of the findings. IfN ≤ 27,

QN appears to behave chaotically and persist for a long time (at least 10 million terms),

unless N ∈ {19, 23, 26}, in which case QN strongly dies after not too long. Thereafter,

http://github.com/nhf216/thesis/Hof1thruN.txt
http://github.com/nhf216/thesis/Hof1thruN.txt


116

4
3

2

42

32

432

4432

3432

43432
33432

23432

423432
4423432

3423432

2423432

1423432

0423432

323432
4323432

3323432

2323432

1323432

0323432

223432

4223432

44223432

34223432

24223432

14223432

04223432

3223432

43223432

443223432

343223432

243223432

143223432

043223432

33223432

433223432

333223432

233223432

133223432

033223432

23223432

423223432

323223432

223223432

123223432

023223432

13223432

413223432

4413223432

3413223432

2413223432

1413223432

0413223432

313223432

4313223432

44313223432

34313223432

24313223432

14313223432

04313223432

3313223432

43313223432

33313223432

23313223432

13313223432

03313223432

2313223432

42313223432

32313223432

22313223432

12313223432

02313223432

1313223432

41313223432

31313223432

21313223432

11313223432

01313223432

0313223432

40313223432

30313223432

20313223432

10313223432

00313223432

213223432

4213223432

3213223432

2213223432

1213223432

0213223432

113223432

4113223432

3113223432

2113223432

1113223432

0113223432

013223432

4013223432

3013223432

2013223432

1013223432

0013223432

03223432

403223432

303223432

203223432

103223432

003223432

2223432

42223432

32223432

22223432

12223432

02223432

1223432

41223432

31223432

21223432

11223432

01223432

0223432

40223432

30223432

20223432

10223432

00223432

123432

4123432

44123432

444123432

344123432

244123432

144123432

044123432

34123432

434123432

334123432

234123432

134123432

034123432

24123432

424123432

324123432

224123432

124123432

024123432

14123432

414123432

4414123432

44414123432

34414123432

24414123432

14414123432

04414123432

3414123432

43414123432

33414123432

23414123432

13414123432

03414123432

2414123432

42414123432

32414123432

22414123432

12414123432

02414123432

1414123432

41414123432

31414123432

21414123432

11414123432

01414123432

0414123432

40414123432

30414123432

20414123432

10414123432

00414123432

314123432

4314123432

3314123432

2314123432

1314123432

0314123432

214123432

4214123432

3214123432

2214123432

1214123432

0214123432

114123432

4114123432

3114123432

2114123432

1114123432

0114123432

014123432

4014123432

3014123432

2014123432

1014123432

0014123432

04123432

404123432

304123432

204123432

104123432

004123432

3123432

43123432

33123432

23123432

13123432

03123432

2123432

42123432

32123432

22123432

12123432

02123432

1123432

41123432

31123432

21123432

11123432

01123432

0123432

40123432

30123432

20123432

10123432

00123432

023432
4023432

3023432

2023432

1023432

0023432

13432
03432

2432
1432
0432

332
232
132
032

22
12
02

1
0

Figure 9.2: Levels 0 through 11 of the tree of behaviors
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Figure 9.3: Levels 9 through 14 of the tree of behaviors, starting from 313223432 (left),
and levels 13 through 17 of the tree of behaviors, starting from 2310313223432 (right)
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the remaining QN die, except for N ∈ {33, 36, 67, 71}. These all eventually behave like

the case Cj = 2 in Theorem 9.3 and persist forever if the R, S, and T sequences live

forever.

Of the N values exceeding 27, all but N = 67 and N = 117 can be computed

explicitly until the (R,S, T )-pattern is entered or the sequence dies. For N = 117,

j = 4, C4 = 0, and Theorem 9.3 describes the first 3346939303913 terms. After this, the

terms in Appendix D through Q117(A4 +156) are all still valid. Then, Q117(A4 +157) =

36 instead of 151. But, the following two terms are still “large”, so the sequence

ends up dying after 3346939304071 terms [31, A283883]. For, N = 67, j = 3 and

C3 = 0. Theorem 9.3 characterizes the terms through Q67(309260). These terms, and

some subsequent ones, can be generated easily enough. Starting with Q67(309403), the

following pattern emerges:

• Q67(5k) = 19047817435

• Q67(5k + 1) = 3

• Q67(5k + 2) = 5

• Q67(5k + 3) = 19047817435k − 1178640853737358

• Q67(5k + 4) = 5

This pattern breaks when indices exceed 19047817435, though it will last until then.

This is too many terms to compute. But, 19047817435 ≡ 0 (mod 5). We then compute

• Q67(19047817436) = Q67(1) +Q67(19047817431) = 4

• Q67(19047817437) = Q67(19047817433) +Q67(2) = 72562691147516441054.

By Proposition 7.2, this settles into a pattern like the Cj = 2 case of Theorem 9.3, and

this pattern persists as long as the R, S, and T sequences live (which we conjecture to

be forever) [31, A283882].
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9.2 Three-term Hofstadter Recurrence

In the previous section, we consider the Hofstadter Q-recurrence Q(n) = Q(n−Q(n−

1)) + Q(n − Q(n − 2)) with initial conditions |1, 2, 3, . . . , N |. In this section and the

next section, we consider this same initial condition as input to obvious generalizations

of the Q-recurrence. In the current section, we examine the three-term recurrence

B(n) = B(n − B(n − 1)) + B(n − B(n − 2)) + B(n − B(n − 3)), which we previously

encountered in Chapters 6 and 3 (and also briefly near the end of Chapter 5).

We have the following definition:

Definition 9.7. Let N ≥ 3 be a positive integer. Define the sequence BN (n) to

be the sequence generated by the above B-recurrence above with the initial condition

〈1, 2, 3, . . . , N〉.

9.2.1 General Structure of BN

In this subsection, we discuss the general behavior of the sequences BN . Theorem 9.8,

classifies the behavior for all but finitely many N . The remaining subsections analyze

some specific values from these finitely many remaining N .

Theorem 9.8. Let N be a natural number. Then, BN weakly dies after N + 24 terms,

provided N ≥ 14. Under the strong death convention, if N ≥ 74, then the following

period-7 pattern begins at index N + 67:

• BN (N + 7k) = 7k + 2

• BN (N + 7k + 1) = N + 7k + 2

• BN (N + 7k + 2) = N + 7k + 4

• BN (N + 7k + 3) = 7

• BN (N + 7k + 4) = 2N + 2k + 45

• BN (N + 7k + 5) = 2N + k − 7

• BN (N + 7k + 6) = N − 2
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This pattern lasts through index 2N + ν, where ν = max(−2,−3 + ((2−N) mod 7)).

After this,

• If N ≡ 0 (mod 7) and N ≥ 196, then BN strongly dies after 2N + 27 terms.

• If N ≡ 1 (mod 7) and N ≥ 2087, then BN strongly dies after 2N + 254 terms.

• If N ≡ 2 (mod 7) and N ≥ 3201, then BN strongly dies after 2N + 524 terms.

• If N ≡ 3 (mod 7) and N ≥ 4315, then BN strongly dies after 2N + 560 terms.

• If N ≡ 4 (mod 7) and N ≥ 200, then BN strongly dies after 2N + 20 terms.

• If N ≡ 5 (mod 7) and N ≥ 32478, then BN strongly dies after 2N + 4547 terms.

• If N ≡ 6 (mod 7) and N ≥ 118, then BN strongly dies after 2N + 9 terms.

Proof. The proof of Theorem 9.8 is similar in style to the proof of Theorem 9.3,

but much longer (due to the large constants appearing in the theorem) and some-

what more tedious (due to the need to prove a period-7 pattern instead of a pe-

riod 5 pattern and the need to check thousands of assumptions on N to see which

ones are dominant). For this reason, we omit the full proof of Theorem 9.8 and in-

stead only summarize it here. All of the terms of BN for general N can be found in

the file http://github.com/nhf216/thesis/trihofform.txt. These were generated

by the procedure ProveLongTermEventualSolution in http://github.com/nhf216/

thesis/nonstdhof.txt. There are seven items in this file, one for each congruence

class for N mod 7.

The first thing to do is to generate generic terms of BN , starting from BN (N + 1).

Doing so, we observe that BN (N + 24) = 2N + 11. Generating this sequence to this

point requires that N be at least 9. If N ≥ 14, then 2N + 11 ≥ N + 25, so, in that

case, the sequence weakly dies after N + 24 terms, as required.

Continuing to generate terms using the strong death convention, we notice that

the proposed period-7 pattern develops beginning in index N + 67, assuming N ≥ 74.

Proving that this pattern persists for awhile follows from a straightforward but tedious

inductive argument akin to the one used in Lemma 9.4. We then need to determine

http://github.com/nhf216/thesis/trihofform.txt
http://github.com/nhf216/thesis/nonstdhof.txt
http://github.com/nhf216/thesis/nonstdhof.txt
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Figure 9.4: All 69503 terms of B32478 (A274058, log plot)

how long the pattern persists. The only cases of the inductive argument that make any

assumptions that eventually are violated are the ones that refer to BN (N+7k+6) case.

We assume inductively in these three cases (the N + 7k, N + 7k + 1, and N + 7k + 2

cases) that subtracting N−2 puts us into the initial condition. So, if (2N − 1 mod 7) ∈

{0, 1, 2}, then the pattern ceases after index 2N − 2. Otherwise, the pattern continues

until we reach an index that is divisible by 7, at which point it ceases. This behavior

is summarized by the constant ν defined in the theorem statement.

The final step is to generate more terms after the pattern ends. This, of course,

depends on N mod 7, so there are seven cases to consider. In each case, the sequence

strongly dies after a constant number of additional terms. When computing these

terms, we keep track of the assumptions we make on the size of N . Doing both of these

things results in the totality of the final part of the theorem statement.

Figure 9.4 shows the full sequence B32478. The y-axis is logarithmic, as otherwise

only the giant terms near the end would be visible.

Theorem 9.8 describes the behavior of BN for all but 6079 values of N . A file
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containing information about these unclassified values can be found at http://github.

com/nhf216/thesis/TriHof1thruN.txt. What follows is a summary of the findings.

We know that B5 and B6 live forever (do not weakly die), as these slow sequences are

the subject of Chapter 6. (These are actually the same sequence.) If N ∈ {7, 8, 9}, BN

is not known to die weakly. (These sequence each live for at least 108 terms.) For all

other values of N , BN dies weakly. For

N ∈ {5, 6, 81, 182, 193, 429, 822, 1892, 2789, 3442, 7292, 23511, 25163} ,

BN is known not to strongly die. For N ∈ {4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18}, it is

unknown whether BN strongly dies. For all other N , BN strongly dies, though B20830

lives for 84975 · 2560362 + 31 terms.

The following proposition leads to a proof that BN does not strongly die for

N ∈ {81, 182, 429, 822, 1892, 2789, 7292, 23511, 25163}.

Proposition 9.9. Let K be a nonnegative integer, and let M ≥ K + 5. For any

integers a1, a2, . . . , aK , the initial condition 〈a1, a2, . . . , aK , 2,M, 2〉 to the B-recurrence

generates a sequence with pattern

• Bp(K + 2k) = 2k−1 ·M

• Bp(K + 2k + 1) = 2

for all indices greater than K.

Proof. The proof is by induction on the index. The indices K + 1, K + 2, and K + 3

constitute the base case, and the proposition holds for these as they fall in the initial

condition.

Now, suppose the index is at least K + 4, and suppose the proposition holds for all

prior indices. There are two cases to consider.

http://github.com/nhf216/thesis/TriHof1thruN.txt
http://github.com/nhf216/thesis/TriHof1thruN.txt
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Index K + 2k: In this case, we have

Bp(K + 2k) = Bp(K + 2k −Bp(K + 2k − 1)) +Bp(K + 2k −Bp(K + 2k − 2))

+Bp(K + 2k −Bp(K + 2k − 3))

= Bp(K + 2k − 2) +Bp(K + 2k − 2k−2 ·M) +Bp(K + 2k − 2)

= 2k−2 ·M +Bp(K + 2k − 2k−2 ·M) + 2k−2 ·M.

Since M ≥ K + 5 and k ≥ 2, we have that Bp(K + 2k − 2k−2 · M) = 0, so

Bp(K + 2k) = 2k−1 ·M , as required.

Index K + 2k + 1: In this case, we have

Bp(K + 2k + 1) = Bp(K + 2k + 1−Bp(K + 2k))

+Bp(K + 2k + 1−Bp(K + 2k − 1))

+Bp(K + 2k + 1−Bp(K + 2k − 2))

= Bp(K + 2k + 1− 2k−1 ·M) +Bp(K + 2k + 1− 2)

+Bp(K + 2k + 1− 2k−2 ·M)

= Bp(K + 2k + 1− 2k−1 ·M) + 2 +Bp(K + 2k + 1− 2k−2 ·M).

Since M ≥ K + 5 and k ≥ 2, we have that Bp(K + 2k + 1 − 2k−1 ·M) = 0 and

Bp(K + 2k + 1− 2k−2 ·M) = 0, so Bp(K + 2k + 1) = 2, as required.

When computing terms of BN for

N ∈ {81, 182, 429, 822, 1892, 2789, 7292, 23511, 25163} ,

eventually a consecutive subsequence 2,M, 2 appears for some sufficiently large M .

(In fact, usually the occurrence of a 2 late in the sequence is enough to cause this to

happen.) Then, by Proposition 9.9, the sequence persists with this alternating pattern.

Philosophically, it feels somewhat like these sequences strongly die, but they eventually

contain a 2 rather than a 0. For this reason, we might say that these sequences have

“lobotomies,” but they do not strongly die.
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N K M

81 527 565

182 390 461

429 1268 1313

822 3689 4161

1892 5872 6103

2789 9234 10510

7292 22135 22948

23511 69983 70559

25163 75661 82457

Table 9.1: BN : K and M values for special N values

The K and M values (as in Proposition 9.9) for each of these N values are summa-

rized in Table 9.1.

Most of the remaining strongly-dying BN can be computed entirely, right up until

a zero occurs. Assuming these computations handle any sequence dying before index

80 million, only the cases N = 193, N = 3442, N = 19395, N = 20830, and N = 27298

remain to be analyzed. The first two of these are handled in the next subsection, the

last three in Subsection 9.2.3.

9.2.2 Analysis of B193 and B3442

In this subsection, we show that the sequences B193 (A283884) and B3442 (A283885)

persist. They do not persist because of an interaction with Proposition 9.9; instead,

they have a more complicated recursive structure. To easily describe what happens

in these sequences, we need the following proposition, which can be thought of as a

relative of Lemma 9.4 and Proposition 9.9.

Proposition 9.10. Let K ≥ 3 and µ ≥ 1 be integers. Then, for any integers

a4, a5, . . . , aK , the initial condition

〈1, 2, 3, a4, a5, . . . , aK ,K + µ, 3,K + 3,K + µ+ 1, 5〉

to the B-recurrence generate the pattern

• BC(K + 5k) = 5
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• BC(K + 5k + 1) = K + 3k + µ

• BC(K + 5k + 2) = 3

• BC(K + 5k + 3) = K + 5k + 3

• BC(K + 5k + 4) = K + 3k + µ+ 1

through BC

(
K +

⌊
5µ−15

2

⌋)
.

Proof. As usual, the proof is a straightforward induction argument, so we leave the

details as an exercise. When checking the different cases, the assumptions that BC(1) =

1, BC(2), BC(3) = 3, 3k + µ ≥ 5k + 4, and 3k + µ + 1 ≥ 5k + 7 are necessary. These

last two are the only assumptions that are eventually violated. This happens when the

slope-1 terms overtake the slope-3
5 terms, which is first when k = µ

2 − 3. Converting

this condition to an index results in the final part of the proposition, regarding the end

of the pattern.

Analysis of B193 and of B3442 involves Proposition 9.10. After generating some terms

of B193, we observe that it settles in to a pattern described by Proposition 9.10 with

parameters K = 441 and µ = 793. This pattern then lasts until at least index 2416;

in fact, it lasts through B193(2417), but then B193(2418) = 4. Later on, the sequence

arrives at another such pattern with K = 2858 and µ = 5627 that persists through

B193(16919), after which B193(16920) = 4. More of these patterns continue, and they

are summarized by the following proposition:

Proposition 9.11. Let K0 = 441, and recursively let Ki = 6Ki−1 + 212 for i ≥ 1.

The sequence B193, beginning at index 442, consists entirely of patterns described by

Proposition 9.10 with parameters K = Ki and µ = 2Ki − 89 for each i. Pattern i

persists until index 6Ki − 229 = Ki+1 − 441, after which there are 441 sporadic terms

that are parametrized by i.
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Proof. Let B193,K denote the sequence generated by the B-recurrence with initial con-

dition

〈B193(1), B193(2), . . . , B193(440), B193(441), a442, a443, . . . , aK−1, aK ,

3K − 89, 3,K + 3, 3K − 88, 5〉 ,

where a442 through aK are arbitrary integers. We claim the following about B193,K :

1. A Proposition 9.10 pattern with K = K and µ = 2K − 89 persists from index

K + 1 through index 6K − 229.

2. This sequence is an instance of B193,6K+212. (By instance, we mean that some of

the aj values have been assigned specific values.)

Item 1 follows almost immediately from Proposition 9.10. The only thing that needs

to be checked is the termination point, which is easy to verify.

To prove item 2, we use the procedure KExplore193 in http://github.com/nhf216/

thesis/ProveTriHof1thruN.txt to generate terms and find and prove the next pat-

tern that B193,K reaches. Provided K ≥ 111, this pattern is precisely a Proposition 9.10

pattern with K = 6K + 212 and µ = 12K + 335. Since the form of the general se-

quence B193,K is completely determined by the first 441 and final five terms of the

initial condition, it is clear that B193,K is an instance of B193,6K+212, as required.

Since B193 itself is B193,K0 (and K0 ≥ 111), Proposition 9.11 follows.

For a listing of the 441 sporadic terms, see http://github.com/nhf216/thesis/

TriHof193Sporadic.txt. Interestingly, the ith instance of these terms contain a brief

Proposition 9.10 pattern with K = 6Ki + 54 and µ = 54. For a plot of B193, see

Figure 9.5.

The behavior of B3442 is similar to that of B193, and it is governed by a similar rule

to Proposition 9.11.

Proposition 9.12. Let K0 = 95123, and recursively thereafter let Ki = 6Ki−1 + 11714

for i ≥ 1. The sequence B3442, beginning at index 95124, consists entirely of patterns

described by Proposition 9.10 with parameters K = Ki and µ = 2Ki−89 for each i ≥ 1.

http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/TriHof193Sporadic.txt
http://github.com/nhf216/thesis/TriHof193Sporadic.txt
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Figure 9.5: First 40000 terms of B193 (A283884)

Pattern i persists until index 6Ki − 229 = Ki+1 − 11943, after which there are 11943

sporadic terms that are parametrized by i.

The proof of Proposition 9.12 is nearly identical to that of Proposition 9.11. Instead

of K0 ≥ 111, we need K0 ≥ 1457, but we do have that. The proof is carried out by the

procedure KExplore193 in http://github.com/nhf216/thesis/ProveTriHof1thruN.

txt. For a listing of the 11943 sporadic terms, see http://github.com/nhf216/

thesis/TriHof3442Sporadic.txt. Much like B193, the ith instance of these terms

in B3442 contains a brief Proposition 9.10 pattern with K = 6Ki + 3286 and µ = 3362.

Also, B3442 has an earlier, long Proposition 9.10 pattern with K = 13889 and µ = 27719

that lasts through index 83180.

Other sequences besides B193 and B3442 contain Proposition 9.10 patterns but die

afterwards. Examples include B20592, B23378, and B32471.

9.2.3 Analysis of B19395, B20830, and B27298

In this subsection, we study the sequencesB19395, B20830, andB27298 (A283886, A283887,

and A283888 respectively). These three sequences all strongly die, but they all last too

http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/TriHof3442Sporadic.txt
http://github.com/nhf216/thesis/TriHof3442Sporadic.txt
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long to reasonably compute all of the terms, and the terms become large very rapidly.

(B19395 dies after 80444792 terms, B20830 dies after 84975·2560362 +31 terms, and B27298

dies after 141895479 terms.) Even though they all strongly die, the analysis of these

sequences will resemble the analysis of B193 and B3442 from Subsection 9.2.2. Much

like before, we have a unifying pattern that will assist us, though this time the pattern

is somewhat more complicated.

Proposition 9.13. Let K be a nonnegative integer. Let λ, µ1, µ2, and ν be any

positive integers with λ ≥ 31 + K and the others exceeding λ. Then, for any integers

a1, a2, . . . , aK the initial condition

〈a1, a2, . . . , aK , λ, 7, µ2, 16, µ2, 16, µ1, λ, 7, µ2, 16, 2µ2, 16, µ2, 25, ν, λ, 7〉

to the B-recurrence generates the pattern

• BU (K + 16k) = µ1 · 2k−1 + ν − µ1

• BU (K + 16k + 1) = λ

• BU (K + 16k + 2) = 7

• BU (K + 16k + 3) = µ2 · 2k

• BU (K + 16k + 4) = 16

• BU (K + 16k + 5) = µ2 · 2k

• BU (K + 16k + 6) = 16

• BU (K + 16k + 7) = µ1 · 2k

• BU (K + 16k + 8) = λ

• BU (K + 16k + 9) = 7

• BU (K + 16k + 10) = µ2 · 2k

• BU (K + 16k + 11) = 16

• BU (K + 16k + 12) = µ2 · 2k+1

• BU (K + 16k + 13) = 16

• BU (K + 16k + 14) = µ2 · 2k

• BU (K + 16k + 15) = 25

through term BU (λ). (The pattern begins in index K + 1.)

Proof. As usual, the proof is a fairly straightforward but tedious induction argument,

so we leave the details as an exercise. The only somewhat interesting case is K + 16k,
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so we do that one here explicitly.

BU (K + 16k) = BU (K + 16k −BU (K + 16k − 1))

+BU (K + 16k −BU (K + 16k − 2))

+BU (K + 16k −BU (K + 16k − 3))

= BU (K + 16k − 25) +BU (K + 16k − µ2 · 2k−1)

+BU (K + 16k − 16)

= µ1 · 2k−2 + 0 + µ1 · 2k−2 + ν − µ1

= µ1 · 2k−1 + ν − µ1,

as required. (Automatically discovering the formula for this case requires solving a

nonhomogenous linear recurrence, but checking the formula is quite mechanical.)

When checking the different cases, the assumptions that λ and each of the non-

constant terms are always at least the index are necessary. Only the first of these

assumptions is eventually violated, which happens after index λ, as required.

(The parameter bounds in this proposition are not tight, but they suffice for our

purposes.)

We begin by analyzing B19395. We claim that this sequence strongly dies after

80444792 terms. To obtain this result, we make use of the following lemma, which is

related to the proofs of Propositions 9.11 and 9.12.

Lemma 9.14. Let λ ≥ 78116 be an integer congruent to 4 mod 16. Let B19395,λ denote

the sequence generated by the B-recurrence with initial condition

〈B19395(1), B19395(2), . . . , B19395(77733), B19395(77734), λ, 7, 310800, 16, 310800,

16, 321833900, λ, 7, 310800, 16, 621600, 16, 310800, 25, 402278561, λ, 7〉 .

We claim the following about B19395,λ:

1. A Proposition 9.13 pattern with K = 77734, λ = λ, µ1 = 321833900, µ2 = 310800,

and ν = 402278561 persists from index 77735 through index λ+ 1.

2. This sequence strongly dies after λ+ 132 terms, because B19395,λ(λ+ 132) = 0.
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Figure 9.6: All 80136 terms of B19395,80004 (A283886, y-axis doubly logarithmic)

Proof. Item 1 follows almost immediately from Proposition 9.13 and the definition of

B19395,λ. The only extra thing to check is that B19395,λ(λ + 1) is what it is supposed

to be, which can easily be verified. Item 2 can also be easily checked by a computer.

The computation is only valid if λ ≥ 78110, and 78116 is the next number congruent to

4 mod 16 exceeding 78110. This proof is carried out by the procedure Explore19395

in http://github.com/nhf216/thesis/ProveTriHof1thruN.txt. For a listing of the

131 final terms, see http://github.com/nhf216/thesis/TriHof19395Lfinal.txt or

http://github.com/nhf216/thesis/TriHof19395final.txt.

The fact that B19395 strongly dies after 80444792 terms follows from Lemma 9.14 and

from the facts that B19395 = B19395,80444660, 80444660 ≡ 4 (mod 16), and 80444660 ≥

78116.

We cannot give a plot of B19395, but we can give a plot of B19395,80004. Such a plot

is given in Figure 9.6. The y-axis is doubly logarithmic.

We now analyze B27298. We claim that this sequence strongly dies after 141895479

terms. Here, we make use of the following lemma, which is quite similar to Lemma 9.14.

http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/TriHof19395Lfinal.txt
http://github.com/nhf216/thesis/TriHof19395final.txt
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Lemma 9.15. Let λ ≥ 113441 be an integer congruent to 1 mod 16. Let B27298,λ denote

the sequence generated by the B-recurrence with initial condition

〈B27298(1), B27298(2), . . . , B27298(112948), B27298(112949), λ, 7, 903192, 16, 903192,

16, 1135082696, λ, 7, 903192, 16, 1806384, 16, 903192, 25, 1276977978, λ, 7〉 .

We claim the following about B27298,λ:

1. A Proposition 9.13 pattern with K = 112949, λ = λ, µ1 = 1135082696, µ2 =

903192, and ν = 1276977978 persists from index 112950 through index λ+ 1.

2. This sequence strongly dies after λ+ 198 terms, because B27298,λ(λ+ 198) = 0.

Proof. Item 1 follows almost immediately from Proposition 9.13 and the definition of

B27298,λ. The only extra thing to check is that B27298,λ(λ+ 1) is what it is supposed to

be, which can easily be verified. Item 2 can also be easily checked by a computer. The

computation is only valid if λ ≥ 113438, and 113441 is the next number congruent to

1 mod 16 exceeding 113438. This proof is carried out by the procedure Explore27298

in http://github.com/nhf216/thesis/ProveTriHof1thruN.txt. For a listing of the

197 final terms, see http://github.com/nhf216/thesis/TriHof27298Lfinal.txt or

http://github.com/nhf216/thesis/TriHof27298final.txt.

The fact that B27298 strongly dies after 141895479 terms follows from Lemma 9.15

and from the facts that B27298 = B27298,141895281, 141895281 ≡ 1 (mod 16), and

141895281 ≥ 113441.

We conclude with a study of B20830, the most complicated of the three sequences

in this subsection. We claim that this sequence strongly dies after 84975 · 2560362 + 31

terms. Whereas the preceding two sequences could conceivably be computed in their

entireties (though the terms of those sequences become quite large), B20830 does not

stand a chance to be computed fully. There are two intermediate claims on our way to

describing this sequence. First, we need to describe another pattern.

Proposition 9.16. Let K be a nonnegative integer. Let λ, µ1, µ2, ν1, ν2, and ν3 be

any positive integers with λ ≥ 31+K and the others exceeding λ. Then, for any integers

http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/TriHof27298Lfinal.txt
http://github.com/nhf216/thesis/TriHof27298final.txt
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a1, a2, . . . , aK the initial condition

〈a1, a2, . . . , aK , 16, µ2, 7, ν2, λ, 16, λ, 16, µ1, 10, ν3, µ2, 7, λ, 16, ν1〉

to the B-recurrence generates the pattern

• BU ′(K + 16k) = ν1 +
(
2k − 2

)
µ1

• BU ′(K + 16k + 1) = 16

• BU ′(K + 16k + 2) = µ2 · 2k

• BU ′(K + 16k + 3) = 7

• BU ′(K + 16k + 4) = 7k + ν2

• BU ′(K + 16k + 5) = λ

• BU ′(K + 16k + 6) = 16

• BU ′(K + 16k + 7) = λ

• BU ′(K + 16k + 8) = 16

• BU ′(K + 16k + 9) = µ1 · 2k

• BU ′(K + 16k + 10) = 10

• BU ′(K + 16k + 11) = 16k + ν3

• BU ′(K + 16k + 12) = µ2 · 2k

• BU ′(K + 16k + 13) = 7

• BU ′(K + 16k + 14) = λ

• BU ′(K + 16k + 15) = 16

through term BU ′(λ). (The pattern begins in index K + 1.)

Proof. As usual, the proof is a fairly straightforward but tedious induction argument,

so we leave the details as an exercise. The only somewhat interesting case is K + 16k,

so we do that one here explicitly.

BU ′(K + 16k) = BU ′(K + 16k −BU ′(K + 16k − 1))

+BU ′(K + 16k −BU ′(K + 16k − 2))

+BU ′(K + 16k −BU ′(K + 16k − 3))

= BU ′(K + 16k − 16) +BU ′(K + 16k − λ)

+BU ′(K + 16k − 7)

= ν1 +
(

2k−1 − 2
)
µ1 + 0 + µ1 · 2k−1

= ν1 +
(

2k − 2
)
µ1,

as required.
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When checking the different cases, the assumptions that λ and each of the non-

constant terms are always at least the index are necessary. Only the first of these

assumptions is eventually violated, which happens after index λ, as required.

(The parameter bounds in this proposition are not tight, but they suffice for our

purposes.)

We now introduce a fairly complicated lemma:

Lemma 9.17. Let λ ≥ 85031 be an integer congruent to 7 mod 16. Let B20830,λ denote

the sequence generated by the B-recurrence with initial condition

〈B20830(1), B20830(2), . . . , B20830(85008), B20830(85009), λ, 7, 339900, 16, 339900,

16, 36128364, λ, 7, 339900, 16, 679800, 16, 339900, 25, 45179140, λ, 7〉 .

Next, let λ′ ≥ λ+125 be an integer congruent to 0 mod 16. (The constant 125 is not

tight.) Select integers ν ′2 < µ′2 < µ′1 < ν ′1 < ν ′3 with ν ′2 > λ′. Let B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3

denote the sequence generated by the B-recurrence with initial condition

〈
B20830,λ(1), B20830,λ(2), . . . , B20830,λ(λ+ 24), B20830,λ(λ+ 25), 16, µ′2, 7, ν

′
2, λ
′, 16, λ′,

16, µ′1, 10, ν ′3, µ
′
2, 7, λ

′, 16, ν ′1
〉
.

We claim the following about B20830,λ and about B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3
:

1. A Proposition 9.13 pattern with K = 85009, λ = λ, µ1 = 36128364, µ2 = 339900,

and ν = 45179140 persists from index 85010 through index λ.

2. The sequence B20830,λ is the same as the sequence B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3

with

• λ′ = µ2 · 2560360

• µ′1 = 2λ+ µ2 · 2560361

• µ′2 = 2λ+ µ2 · 2560360

• ν ′1 = 2µ1 + µ2 · 2560362

• ν ′2 = 15 + µ2 · 2560360

• ν ′3 = λ+ 35 + µ1 · 2560359.
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(In particular, λ′ ≡ 0 (mod 16), and we have λ′ < ν ′2 < µ′2 < µ′1 < ν ′1 < ν ′3.)

3. A Proposition 9.16 pattern with K = λ+ 25, λ = λ′, µ1 = µ′1, µ2 = µ′2, ν1 = ν ′1,

ν2 = ν ′2, and ν3 = ν ′3 persists from index λ+ 26 through index λ′.

4. The sequence B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3

strongly dies after λ′ + 31 terms, because

B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3
(λ′ + 31) = 0.

Proof. Item 1 follows immediately from Proposition 9.13 and the definition of B20380,λ.

Item 2 can be easily checked by a computer. Generating 41 terms beginning with

B20380,λ(λ+ 1) yields terms that form an initial condition in line with the definition of

B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3
. The computations are only valid if λ ≥ 85025, and 85031 is the

next number congruent to 7 mod 16 exceeding 85025.

Item 3 follows immediately from Proposition 9.16 and the definition of

B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3
. Item 4 can be easily checked by a computer. Generating 31 terms

beginning with B20830,λ′,µ′1,µ
′
2,ν
′
1,ν
′
2,ν
′
3
(λ′ + 1) yields 31 terms, where the last one is 0.

This proof is carried out by the procedures Explore20380a and Explore20380c in

http://github.com/nhf216/thesis/ProveTriHof1thruN.txt. For a listing of the

intermediate 25 terms between the two patterns, see http://github.com/nhf216/

thesis/TriHof20830Lmid.txt or

http://github.com/nhf216/thesis/TriHof20830mid.txt. For a listing of the fi-

nal 31 terms, see http://github.com/nhf216/thesis/TriHof20830Lfinal.txt or

http://github.com/nhf216/thesis/TriHof20830final.txt.

The fact that B20830 strongly dies after 84975 · 2560362 + 31 terms follows from

Lemma 9.17 and from the following facts:

• B20830 = B20830,9050775

• 9050775 ≡ 7 (mod 16)

• 9050775 ≥ 85031

• λ′ = 339900 · 2560360 = 84975 · 2560362.

http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/TriHof20830Lmid.txt
http://github.com/nhf216/thesis/TriHof20830Lmid.txt
http://github.com/nhf216/thesis/TriHof20830mid.txt
http://github.com/nhf216/thesis/TriHof20830Lfinal.txt
http://github.com/nhf216/thesis/TriHof20830final.txt
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9.3 Four-plus-term Hofstadter-like Recurrence

The obvious next step is to consider the four-term generalization of the Hofstadter

Q-recurrence. The four-term generalization has analogous behavior to the five-term,

six-term, seven-term, etc. generalizations. For the remainder of this section, let Gd,N (n)

denote the nth term in the sequence generated by the recurrence

Gd(n) =

d∑
i=1

Gd(n−Gd(n− i))

with the initial condition 〈1, 2, 3, . . . , N〉.

We have the following theorem on weak death.

Theorem 9.18. Let N be a natural number, and let d ≥ 4. Then, the sequence Gd,N

weakly dies after N + 1
2d

3 + 3
2d+ 1 terms, provided N ≥ d2 + 3.

The proof involves describing all of the terms. Since some of these descriptions are

more widely applicable, we extract the following proposition, which consists of the bulk

of the proof of Theorem 9.18.

Proposition 9.19. Let d be a positive integer, and let D = d2+d
2 . Let N ≥ D be

another positive integer. Then, we have the following characterization of Gd,N (n) for

N − d+ 1 ≤ n ≤ N + (D − d+ 1) (d+ 1):

1. For 0 ≤ k ≤ D − d, Gd,N (N + k (d+ 1) + 1) = D + kd.

2. For −1 ≤ k ≤ D−d and 2 ≤ r ≤ d+ 1, Gd,N (N +k (d+ 1) + r) = N +kd+ r−1,

as long as we do not have both k = D − d and r = d+ 1.

3. Gd,N (N + (D − d+ 1) (d+ 1)) = D + (D − d+ 1) d− 1

Proof. The proof is by induction on the index. We observe that the k = −1 possibility

in case 2 is correct, as these terms are part of the initial condition.

Now, suppose N + 1 ≤ n ≤ N + (D − d+ 1) (d+ 1) − 1, and suppose inductively

that the formulas hold for all indices less than n. There are three cases to consider,

which we actually group into two calculations:



136

n in case 1: Suppose n = N + k (d+ 1) + 1 for some 0 ≤ k ≤ D − d. We have

Gd,N (n) =

d∑
i=1

Gd,N (n−Gd,N (n− i))

=
d∑
i=1

Gd,N (N + k (d+ 1) + 1−Gd,N (N + k (d+ 1) + 1− i))

=
d∑
i=1

Gd,N (N + k (d+ 1) + 1−Gd,N (N + (k − 1) (d+ 1) + d+ 2− i))

=
d+1∑
r=2

Gd,N (N + k (d+ 1) + 1−Gd,N (N + (k − 1) (d+ 1) + r))

=
d+1∑
r=2

Gd,N (N + k (d+ 1) + 1− (N + (k − 1) d+ r − 1))

=

d+1∑
r=2

Gd,N (d+ k − r + 2).

The indices here range from k + 1 through k + d. As long as k ≤ D − d, all

the indices are at most D. These all fall in the initial condition, allowing us to

conclude

Gd,N (n) =
d+1∑
r=2

Gd,N (d+ k − r + 2)

=
d+1∑
r=2

(d+ k − r + 2)

= d (d+ k + 2)− (D + d)

= d2 + d+ kd−D

= D + kd,

as required.

n in case 2 or 3: Suppose n = N + k (d+ 1) + r for some 0 ≤ k ≤ D − d and

2 ≤ r ≤ d+ 1. We have

Gd,N (n) =
d∑
i=1

Gd,N (n−Gd,N (n− i))

=

d∑
i=1

Gd,N (N + k (d+ 1) + r −Gd,N (N + k (d+ 1) + r − i))

= Gd,N (N + k (d+ 1) + r −Gd,N (N + k (d+ 1) + 1))
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+

r−2∑
i=1

Gd,N (N + k (d+ 1) + r −Gd,N (N + k (d+ 1) + r − i))

+
d∑
i=r

Gd,N (N + k (d+ 1) + r −Gd,N (N + k (d+ 1) + r − i))

= Gd,N (N + k (d+ 1) + r −Gd,N (N + k (d+ 1) + 1))

+
r−2∑
i=1

Gd,N (N + k (d+ 1) + r −Gd,N (N + k (d+ 1) + r − i))

+

d∑
i=r

Gd,N (N + k (d+ 1) + r

−Gd,N (N + (k − 1) (d+ 1) + r − i+ d+ 1))

= Gd,N (N + k (d+ 1) + r − (D + kd))

+
r−2∑
i=1

Gd,N (N + k (d+ 1) + r − (N + kd+ r − i− 1))

+
d∑
i=r

Gd,N (N + k (d+ 1) + r − (N + (k − 1)d+ r − i+ d))

= Gd,N (N −D + k + r) +

r−2∑
i=1

Gd,N (k + i+ 1) +

d∑
i=r

Gd,N (k + i).

Since N ≥ D, if k + r ≤ D, then Gd,N (N − D + k + r) = N − D + k + r. The only

time we would not have k + r ≤ D is if k = D− d and r = d+ 1. In this case, we have

Gd,N (N −D+k+ r) = Gd,N (N + 1) = D (see case 1). The other terms (k+ i+ 1 when

i is at most r − 2, which is at most d − 1, and k + i when i is at most d) always fall

within the initial condition. So, if k < D − d or r < d+ 1, then we have

Gd,N (n) = Gd,N (N −D + k + r) +

r−2∑
i=1

Gd,N (k + i+ 1) +

d∑
i=r

Gd,N (k + i)

= N −D + k + r +
r−2∑
i=1

(k + i+ 1) +
d∑
i=r

(k + i)

= N −D + k + r + (k + 1) (r − 2) +
(r − 2) (r − 1)

2

+ (d− r + 1) k +D − r (r − 1)

2

= N + dk + r − 1,

as required. If k = D − d and r = d+ 1, then all of the calculations above go through,

except for one term. For that term, instead ofN−D+k+r = N−D+(D − d)+(d+ 1) =
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N + 1, we obtain D. So, we have (keeping in mind that k = D − d and r = d+ 1)

Gd,N (N + (D − d) (d+ 1) + d+ 1) = Gd,N (N + (D − d+ 1) (d+ 1))

= D + (D − d+ 1) (d− 1) +
(d− 1) d

2

+ (d− (d+ 1) + 1) (D − d) +D − (d+ 1) d

2

=
1

2
d3 +

3

2
d− 1

= D + (D − d+ 1) d− 1,

as required.

The rest of the terms of Gd,N are characterized by the following lemma:

Lemma 9.20. Let d be a positive integer. Let D = d2+2
2 , and let

D′ = (D − d+ 1) (d+ 1). Let N ≥ D + 1 be a positive integer. For N +D′ + 1 ≤ n ≤

N +D′ + d, we have the following values of Gd,N (n):

1. Gd,N (N +D′ + 1) = N + (D − d+ 1) d+ 1, provided d ≥ 3.

2. For 2 ≤ r ≤ d− 2, Gd,N (N +D′+ r) = N + (D − d+ 1) d+ r− 1, provided d ≥ 3.

3. Gd,N (N +D′ + d− 1) = D + (D − d+ 2) d− 3, provided d ≥ 3.

4. Gd,N (N +D′ + d) = 2N + (D − d+ 1) (d− 1), provided d ≥ 4.

Proof. The proof is by induction on n. We prove each case in turn, using Proposi-

tion 9.19 whenever applicable. For this reason, we do not actually need a base case.

(We also omit straightforward but tedious algebraic manipulations.) So, whenever we

examine an n value, we are assuming that this lemma holds for all smaller n values.

n in case 1: Here, n = N +D′ + 1. We have

Gd,N (n) =
d∑
i=1

Gd,N (n−Gd,N (n− i))

=
d∑
i=1

Gd,N (N +D′ + 1−Gd,N (N +D′ + 1− i))

= Gd,N (N +D′ + 1−Gd,N (N +D′))
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+
d∑
i=2

Gd,N (N +D′ + 1−Gd,N (N +D′ + 1− i))

= Gd,N (N +D′ + 1− (D + (D − d+ 1) d− 1))

+
d∑
i=2

Gd,N (N +D′ + 1− (N + (D − d) d+ d− i+ 1))

= Gd,N (N − d+ 3) +
d∑
i=2

Gd,N (D − d+ i+ 1).

The first term falls in the initial condition as long as d ≥ 3. The remaining terms

all fall in the initial condition, since N ≥ D + 1. Since this case assumes d ≥ 3,

we can proceed:

Gd,N (n) = Gd,N (N − d+ 3) +

d∑
i=2

Gd,N (D − d+ i+ 1)

= N − d+ 3 +
d∑
i=2

(D − d+ i+ 1)

= N − d+ 3 + (d− 1) (D − d+ 1) +D − 1

= N + (D − d+ 1) d+ 1,

as required.

n in case 2 or 3: Here, n = N +D′ + r for some integer 2 ≤ r ≤ d− 1. We have

Gd,N (n) =

d∑
i=1

Gd,N (n−Gd,N (n− i))

=
d∑
i=1

Gd,N (N +D′ + r −Gd,N (N +D′ + r − i))

= Gd,N (N +D′ + r −Gd,N (N +D′))

+Gd,N (N +D′ + r −Gd,N (N +D′ + 1))

+
r−2∑
i=1

Gd,N (N +D′ + r −Gd,N (N +D′ + r − i))

+

d∑
i=r+1

Gd,N (N +D′ + r −Gd,N (N +D′ + r − i))

= Gd,N (N +D′ + r − (D + (D − d+ 1) d− 1))

+Gd,N (N +D′ + r − (N + (D − d+ 1) d+ 1))
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+

r−2∑
i=1

Gd,N (N +D′ + r − (N + (D − d+ 1) d+ r − i− 1))

+

d∑
i=r+1

Gd,N (N +D′ + r − (N + (D − d) d+ d+ r − i))

= Gd,N (N − d+ r + 2) +Gd,N (D − d+ r)

+
r−2∑
i=1

Gd,N (D − d+ i+ 2) +
d∑

i=r+1

Gd,N (D − d+ i+ 1).

We now consider cases 2 and 3 separetely. If we are in case 2, then r ≤ d− 2. In

our calculations, we use earlier versions of this case, and we use case 1. So, we

need d ≥ 3. But, under this assumption, all terms in the last expression above

fall in the initial condition. This allows us to proceed:

Gd,N (n) = Gd,N (N − d+ r + 2) +Gd,N (D − d+ r)

+
r−2∑
i=1

Gd,N (D − d+ i+ 2) +
d∑

i=r+1

Gd,N (D − d+ i+ 1)

= (N − d+ r + 2) + (D − d+ r)

+
r−2∑
i=1

(D − d+ i+ 2) +
d∑

i=r+1

(D − d+ i+ 1)

= (N − d+ r + 2) + (D − d+ r) + (r − 2) (D − d+ 2)

+
(r − 2) (r − 1)

2
+ (d− r) (D − d+ 1) +D − r (r + 1)

2

= N + (D − d+ 1) d+ r − 1,

as required.

If we are in case 3, then r = d − 1. In this case, N − d + r + 2 = N + 1, so

Gd,N (N − d + r + 2) = D. By the same logic we use for case 2, we need d ≥ 3.

But, under this condition, all the other terms are in the initial condition. So, we

proceed:

Gd,N (n) = Gd,N (N − d+ (d− 1) + 2) +Gd,N (D − d+ (d− 1))

+

d−3∑
i=1

Gd,N (D − d+ i+ 2) +

d∑
i=d

Gd,N (D − d+ i+ 1)
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= D + (D − d+ (d− 1)) +
d−3∑
i=1

(D − d+ i+ 2) + (D − d+ d+ 1)

= D + (D − 1) + (d− 3) (D − d+ 2) +
(d− 3) (d− 2)

2
+ (D + 1)

= D + (D − d+ 2) d− 3,

as required.

n in case 4: Here, n = N +D′ + d. We have

Gd,N (n) =

d∑
i=1

Gd,N (n−Gd,N (n− i))

=

d∑
i=1

Gd,N (N +D′ + d−Gd,N (N +D′ + d− i))

= Gd,N (N +D′ + d−Gd,N (N +D′))

+Gd,N (N +D′ + d−Gd,N (N +D′ + 1))

+Gd,N (N +D′ + d−Gd,N (N +D′ + d− 1))

+
d−2∑
r=2

Gd,N (N +D′ + d−Gd,N (N +D′ + r))

= Gd,N (N +D′ + d− (D + (D − d+ 1) d− 1))

+Gd,N (N +D′ + d− (N + (D − d+ 1) d+ 1))

+Gd,N (N +D′ + d− (D + (D − d+ 2) d− 3))

+

d−2∑
r=2

Gd,N (N +D′ + d− (N + (D − d+ 1) d+ r − 1))

= Gd,N (N + 2) +Gd,N (D) +Gd,N (N − d+ 4) +
d−2∑
r=2

Gd,N (D − r + 2).

If d ≥ 2, then Gd,N (N+2) = N+1. Also, we know that D ≤ N , so Gd,N (D) = D.

Similarly, the terms in the summation all fall in the initial condition, as the indices

are all at most D. If d ≥ 4, the remaining term also falls in the initial condition.

So, if d ≥ 4, we can proceed:

Gd,N (n) = Gd,N (N + 2) +Gd,N (D) +Gd,N (N − d+ 4) +
d−2∑
r=2

Gd,N (D − r + 2)

= N + 1 +D +N − d+ 4 +
d−2∑
r=2

(D − r + 2)
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= 2N +D − d+ 5 + (d− 3) (D + 2)− (d− 2) (d− 1)

2
+ 1

= 2N + (D − d+ 1) (d− 1) ,

as required.

We now complete the proof of Theorem 9.18.

Proof. Let d ≥ 4 and N ≥ d2 + 3 be integers. Let D and D′ be as in Lemma 9.20.

Proposition 9.19 and Lemma 9.20 (and the initial condition) give the values of the first

N + D′ + d terms of Gd,N . (This is valid as the most restrictive conditions in any of

these cases are d ≥ 4 and N ≥ D + 1, which are satisfied here.) So, the sequence lives

at least this long. Note that D′ = 1
2d

3 + 1
2d+ 1. So, N +D′ + d = N + 1

2d
3 + 3

2d+ 1.

This is exactly the number of terms we wish to show that Gd,N lives for, so all that

remains is to show that Gd,N weakly dies at this point.

According to Lemma 9.20, Gd,N (N +D′ + d) = 2N + (D − d+ 1) (d− 1). This has

a 2N in it, so for sufficiently large N , it will exceed N + D′ + d + 1. If this happens,

the sequence weakly dies. This inequality is satisfied precisely when N ≥ d2 + 3, which

is what we have here. So, our sequence weakly dies at index N + 1
2d

3 + 3
2d + 1, as

required.

In Sections 9.1 and 9.2, we also have a characterization of when the sequences consid-

ered there strongly die. Such a characterization for Gd,N when d ≥ 4 seems much more

difficult. Empirically, under the strong death convention, these sequences frequently

exhibit quasilinear behavior for awhile. But, there is a point at which such behavior

ends, after which the terms look completely chaotic. See Figures 9.7 through 9.10 for

some examples. These figures emphasize that a small change in the initial conditions

can lead to a large change in the behavior, despite some global similarities.

For some values of d (including d ∈ {4, 5, 6, 8, 12, 13}), the sequence Gd,N settles into

a long quasilinear stretch with period d + 1. All but two of the interleaved sequences

have slope d
d+1 . One of the other two has slope 1, and the other has slope d−1

d+1 . For other
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values of d (including d ∈ {7, 9, 10, 11, 14, 15, 16}), the sequence reaches a comparatively

short quasilinear stretch, also with period d + 1. But, all of the component sequences

here have slope d
d+1 . Following the first quasilinear stretch, both types of initial stretch

sometimes lead to multiple additional stretches of this second type, interrupted by

chaotic interludes. (See Figure 9.7 for a good example of this with d = 4.) Eventually,

though, the quasilinear parts appear to end and devolve in to complete chaos. When

employing our symbolic method, eventual chaos manifests itself as a rapid dependence

on stronger and stronger congruence constraints on N (for example, each successive

term depending on N mod the next power of 2).

9.4 Failure of a Slow Solution to Generalize

In Chapter 6, we analyze the recurrence B(n) = B(n − B(n − 1)) + B(n − B(n −

2)) + B(n − B(n − 3)) with the initial condition 〈1, 2, 3, 4, 5〉. We discover there that

the resulting sequence is slow. (See Section 2.3 in Chapter 2 for an introduction to

slow sequences.) In this section, we discuss possible generalizations of this result. In

particular, we use results from Section 9.3 to show that obvious generalizations of our

solution do not generate a slow sequence.

According to the work of Isgur et al. [20], our B-sequence is the fundamental member

of an infinite family of slow sequences with similar recurrences. (The next one satisfies

the recurrence B′(n) = B′(n − B′(n − 2)) + B′(n − B′(n − 4)) + B′(n − B′(n − 6)).)

As mentioned in Chapter 2, this family and the family resulting from the V -sequence

comprise the only known examples of slow Hofstadter-like sequences with all recur-

rence terms of the form D(n − D(n − i)) for some i. We have conducted a search

for other such sequences without finding another (nontrivial) example. (See http:

//github.com/nhf216/thesis/slowsearch.txt for code to conduct such a search,

and see http://github.com/nhf216/thesis/slowseqs.txt for some slow solutions

found.) An obvious idea would be to generalize the B-recurrence to the d-term recur-

rence

Gd(n) =
d∑
i=1

Gd(n−Gd(n− i))

http://github.com/nhf216/thesis/slowsearch.txt
http://github.com/nhf216/thesis/slowsearch.txt
http://github.com/nhf216/thesis/slowseqs.txt
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that appears in Section 9.3. If d = 1, the initial condition 〈1〉 generates the all-ones

sequence, which, while technically slow, is not particularly interesting. We have the

following non-existence result:

Theorem 9.21. The B-sequence is the only nontrivial slow sequence resulting from a

recurrence Gd with an initial condition of the form 〈1, 2, 3, . . . , N〉 for some N .

The bulk of the Theorem 9.21 follows from the following proposition:

Proposition 9.22. Suppose d ≥ 4. Let D = d2+d
2 . The sequence Gd,D (see Section 9.3

for a definition of this notation) satisfies

Gd,D

(
1

2
d3 +

1

2
d2 + 2d+ 1

)
= Gd,D

(
1

2
d3 +

1

2
d2 + 2d

)
+ 2.

In particular, the sequence has a jump of difference 2, so it is not slow. Moreover, the

sequence is slow before this jump.

Proof. Proposition 9.19 in the previous section characterizes the sequence Gd,D through

Gd,D(D + (D − d+ 1) (d+ 1)). Since N = D, it is easy to see that the successive

differences are all 0 or 1 throughout these terms.

Now, for simplicity of notation, let D′ = (D − d+ 1) (d+ 1). We will now show

that, for 1 ≤ r ≤ d − 2, Gd,D(D + D′ + r) = D + (D − d+ 1) d + r − 1. Inductively,

suppose this holds for all r′ < r. We now calculate

Gd,D(D +D′ + r)

=
d∑
i=1

Gd,D(D +D′ + r −Gd,D(D +D′ + r − i))

=

r∑
i=1

Gd,D(D +D′ + r −Gd,D(D +D′ + r − i))

+

d∑
i=r+1

Gd,D(D +D′ + r −Gd,D(D +D′ + r − i))

=
r∑
i=1

Gd,D(D +D′ + r − (D + (D − d+ 1) d+ r − i− 1))

+

d∑
i=r+1

Gd,D(D +D′ + r − (D + (D − d) d+ (d+ 1 + r − i)− 1))
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=
r∑
i=1

Gd,D(D′ + i+ 1− (D − d+ 1) d) +
d∑

i=r+1

Gd,D(D′ + i− (D − d+ 1) d)

=

r∑
i=1

Gd,D(D − d+ i+ 2) +

d∑
i=r+1

Gd,D(D − d+ i+ 1)

= D +
r∑
i=1

(D − d+ i+ 2) +
d−1∑
i=r+1

(D − d+ i+ 1)

= Dd− (d− 1) d+ r + (d− 1) +
d2 − d

2

= (D − d+ 1) d+ r − 1 +

(
d+

d2 − d
2

)
= D + (D − d+ 1) d+ r − 1,

as required. The above calculation is also valid for r = d − 1, except that Gd,D(D −

d+ i+ 2) would be Gd,D(D + 1) when i = d− 1. Recall that Gd,D(D + 1) = D, rather

than D + 1. So, we obtain Gd,D(D +D′ + d− 1) = D + (D − d+ 1)d+ d− 3.

We now compute

Gd,D(D +D′ + d)

=

d∑
i=1

Gd,D(D +D′ + d−Gd,D(D +D′ + d− i))

= Gd,D(D +D′ + d−Gd,D(D +D′ + d− 1))

+

d∑
i=2

Gd,D(D +D′ + d−Gd,D(D +D′ + d− i))

= Gd,D(D +D′ + d− (D + (D − d+ 1) d+ d− 3))

+
d∑
i=2

Gd,D(D +D′ + d− (D + (D − d+ 1) d+ d− i− 1))

= Gd,D(D′ − (D − d+ 1) d+ 3) +
d∑
i=2

Gd,D(D′ − (D − d+ 1) d+ i+ 1)

= Gd,D(D − d+ 4) +

d∑
i=2

Gd,D(D − d+ i+ 2)

= Gd,D(D − d+ 4) +

d−2∑
i=2

Gd,D(D − d+ i+ 2) +Gd,D(D + 1) +Gd,D(D + 2)

= D − d+ 4 +

d−2∑
i=2

(D − d+ i+ 2) + 2D + 1
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= 3D − d+ 5 + (d− 3)D − d(d− 3) + 2 (d− 3) +

(
(d− 2) (d− 1)

2
− 1

)
= Dd− d+ 4− d (d− 3) + 2 (d− 3) +

(d− 2) (d− 1)

2

= Dd− d+ 4− d (d− 1) + 2d+ 2d− 6 + (D − d− (d− 1))

= D + (D − d+ 1) d+ d− 1.

(Observe that these calculations are only valid because d ≥ 4, as otherwise D − d+ 4

would be larger than D.) So, we have Gd,D(D +D′ + d) = Gd,D(D +D′ + d− 1) + 2.

Recalling the values of D and D′, we have that D + D′ + d = 1
2d

3 + 1
2d

2 + 2d + 1, as

required.

We will now complete the proof of Theorem 9.21.

Proof. Fix a positive integerN . Consider the sequenceGd,N . Suppose that the sequence

we obtain is slow. Clearly, we need N ≥ d, or else Gd,N is undefined. Supposing that

N ≥ d, we have

Gd,N (N + 1) =
d∑
i=1

Gd,N (N + 1−Gd,N (N + 1− i))

=
d∑
i=1

Gd,N (N + 1− (N + 1− i))

=

d∑
i=1

Gd,N (i)

=

d∑
i=1

i

=
d2 + d

2
.

So, unless N ∈
{
d2+d

2 − 1, d
2+d
2

}
, we would not have Gd,N (N + 1)−Gd,N (N) ∈ {0, 1}.

According to Proposition 9.22, N = d2+d
2 does not result in a slow sequence for d ≥ 4.

Similarly, N = d2+d
2 −1 does not result in a slow sequence for k ≥ 4, as this sequence is

identical to the one for N = d2+d
2 (since the first N terms are the same). So, we must

have d ≤ 3. The case d = 1 results in a trivial sequence, d = 2 give the Hofstadter

Q-sequence (which is not slow), and d = 3 gives our B-sequence. Therefore, the B-

sequence is the only nontrivial slow sequence of the form Gd,N , as required.
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Chapter 10

Nested Recurrences with other Symbolic Initial

Conditions

Chapter 9 studies initial conditions of the form 〈1, 2, 3, . . . , N〉. There are a multitude

of other types of initial conditions to study. In this chapter, we consider the Hofs-

tadter Q-recurrence with initial conditions of the form 〈N, 2〉, 〈2, N〉, 〈N, 4, N, 4〉, and

〈4, N, 4, N〉. The motivations for studying these initial conditions are as follows:

• Each of these is a parametrized family of constant-length initial conditions.

• The terms immediately after the initial condition continue alternating between 2

or 4 and N , through index N . In this way, the initial condition generates a long,

temporary period-2 quasilinear solution to the Q-recurrence.

This second motivation explains why we do not consider alternations of threes and N ’s.

10.1 Twos and N ’s

We have the following result for the initial condition 〈N, 2〉:

Theorem 10.1. Let N be a natural number. Let QN,2 be the sequence resulting from

the Hofstadter Q-recurrence and the initial condition 〈N, 2〉. We have the following

cases:

1. If N = 1, then QN,2 is the Hofstadter Q-sequence shifted by 1 term.

2. If N is even, then we have a quasilinear solution with period N . Each period

consists of N
2 repeated blocks of of length 2. In the description of these solutions

that follows, 0 ≤ ` < N
2 .
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• QN,2(Nk + 2`) = 2

• QN,2(Nk + 2`+ 1) = N (k + 1).

3. If N ≥ 25 and N ≡ 3 (mod 4), then QN,2 strongly dies after 5N + 11 terms.

4. If N ≥ 75 and N ≡ 5 (mod 12), then QN,2 strongly dies after 28N + 64 terms.

5. If N ≥ 51 and N ≡ 1, 9, 13, 21 (mod 24), then QN,2 persists forever and is even-

tually quasilinear with period 24N + 34. The pattern begins at index 53N + 107.

Proof. In the cases other than case 5 where the sequence does not strongly die, the

result is easy to prove by induction. In the cases where the sequence dies, the code in

http://github.com/nhf216/thesis/nonstdhof.txt can be used to generate closed

forms for all of the terms in the sequence. A zero occurs in the indicated position,

which causes the sequence to strongly die.

Case 5 is much more complicated. Exploring these sequences with nonstdhof.txt

does not terminate. But, eventually, provided N ≥ 51, an apparent “second-order”

pattern develops among the blocks explored (see p. 97 for a discussion of higher-order

patterns). The second-order pattern here is described by the following:

Let K0 = 72N+99, K1 = 73N+99, K2 = 74N+103, K3 = 75N+101, K4 = 76N+103,

and K5 = 77N + 103. Recursively, let Ki = Ki−6 + λ for i ≥ 6 . The sequence QN,2,

beginning at index K0, consists of the following structure for each i ≥ 0:

• A pattern QN,2(K6i+ 2k) = K6i+1−1, QN,2(K6i+ 2k+ 1) = 2 persisting through

index K6i+1 − 1.

• Five sporadic terms, followed by a pattern QN,2(K6i+1 + 2k) = 2N + 4,

QN,2(K6i+1 + 2k + 1) = K6i + 1 persisting through index K6i+2 − 1.

• Four sporadic terms, followed by a pattern QN,2(K6i+2 + 2k) = K6i+3 − 1,

QN,2(K6i+2 + 2k + 1) = 2 persisting through index K6i+3 − 1.

• Twenty-one sporadic terms, followed by a pattern QN,2(K6i+3 + 2k) = 4N + 4,

QN,2(K6i+3 + 2k + 1) = K6i + 1 persisting through index K6i+4 − 1.

http://github.com/nhf216/thesis/nonstdhof.txt
http://github.com/nhf216/thesis/nonstdhof.txt
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Figure 10.1: All 466 terms of Q91,2 (A283897)

• Forty sporadic terms, followed by a pattern QN,2(K6i+4 + 2k) = K6i+5 − 1,

QN,2(K6i+4 + 2k + 1) = 2 persisting through index K6i+5 − 1.

• Thirty-nine sporadic terms, followed by a pattern QN,2(K6i+5 + 2k) = 2,

QN,2(K6i+5 + 2k + 1) = K6(i+1) − 1 persisting through index K6(i+1) − 1.

The procedure ExploreAllN2 in http://github.com/nhf216/thesisN4N4_explore.

txt carries out the inductive proof of this structure. Given these patterns and the pre-

ceding terms, it can be seen that the quasilinear pattern extends all the way back to in-

dex 53N+107, as required. See files http://github.com/nhf216/thesisN2N2_mod24_

1.txt, http://github.com/nhf216/thesisN2N2_mod24_9.txt, http://github.com/

nhf216/thesisN2N2_mod24_13.txt, and

http://github.com/nhf216/thesisN2N2_mod24_21.txt for complete descriptions of

the sequences in all four possibilities in case 5.

See Figures 10.1, 10.2, and 10.3 for plots of Q91,2, Q89,2, and Q57,2 which are covered

by the last three cases of Theorem 10.1.

For the other odd values of N , most QN,2 sequences strongly die. If N = 3, then

http://github.com/nhf216/thesisN4N4_explore.txt
http://github.com/nhf216/thesisN4N4_explore.txt
http://github.com/nhf216/thesisN2N2_mod24_1.txt
http://github.com/nhf216/thesisN2N2_mod24_1.txt
http://github.com/nhf216/thesisN2N2_mod24_9.txt
http://github.com/nhf216/thesisN2N2_mod24_13.txt
http://github.com/nhf216/thesisN2N2_mod24_13.txt
http://github.com/nhf216/thesisN2N2_mod24_21.txt
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Figure 10.2: All 2556 terms of Q89,2 (A283896)
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Figure 10.4: First 5000 terms of Q3,2 (A283893)

the sequence looks chaotic (Figure 10.4). If N ∈ {5, 17, 41}, the sequence QN,2 lives

forever, and we can actually predict all of the terms. These results closely resemble

the analyses we had for B193 and B3442 in Subsection 9.2.2 in Chapter 9. The key

observation that we exploit is that, for any λ > K ≥ 0, an initial condition of the

form 〈a1, a2, a3, . . . , aK−1, aK , λ, 2〉 results in alternating λ’s with twos through index

λ. (This observation is analogous to Proposition 9.10, though it is much simpler.) We

call such a pattern a λ-alternation.

The N = 5 case is handled by the following proposition:

Proposition 10.2. Let K0 = 25, and recursively let Ki = 2Ki−1 + 1 for i ≥ 1. The

sequence Q5,2, beginning at index 26, consists almost entirely of (2Ki − 17)-alternations.

The ith alternation persists until index 2Ki − 17 = Ki+1 − 18, after which there are 18

sporadic terms that are parametrized by i.

Proof. For K ≥ 25, let Q5,2,K denote the sequence generated by the Q-recurrence with

initial condition

〈Q5,2(1), Q5,2(2), . . . , Q5,2(24), Q5,2(25), a26, a27, . . . , aK−1, aK , 2K − 17, 2〉 ,
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where a26 through aK are arbitrary integers. We claim the following about Q5,2,K :

1. A (2K − 17)-alternation persists from index K + 1 through index 2K − 17.

2. This sequence is an instance of Q5,2,2K+1. (By instance, we mean that some of

the aj ’s have been assigned specific values.)

Item 1 is clear. To prove item 2, we use the procedure KExplore5 in http://github.

com/nhf216/thesis/N4N4_explore.txt to generate terms and find and prove the next

pattern that Q5,2,K reaches. Provided K ≥ 22, this pattern is precisely a (4K − 15)-

alternation beginning at index 2K + 2. Since the form of the general sequence Q5,2,K

is completely determined by the first 25 and final two terms of the initial condition, it

is clear that Q5,2,K is an instance of Q5,2,2K+1, as required.

Since Q5,2 itself is Q5,2,K0 (and K0 ≥ 22), Proposition 10.2 follows.

The 18 sporadic terms between each alternation of Q5,2 are as follows:

• Q5,2(2Ki − 16) = 2Ki − 12

• Q5,2(2Ki − 15) = 2

• Q5,2(2Ki − 14) = 2Ki − 12

• Q5,2(2Ki − 13) = 2

• Q5,2(2Ki − 12) = 2Ki − 12

• Q5,2(2Ki − 11) = 7

• Q5,2(2Ki − 10) = 4

• Q5,2(2Ki − 9) = 2Ki − 10

• Q5,2(2Ki − 8) = 2Ki − 10

• Q5,2(2Ki − 7) = 10

• Q5,2(2Ki − 6) = 2Ki − 10

• Q5,2(2Ki − 5) = 7

• Q5,2(2Ki − 4) = 14

• Q5,2(2Ki − 3) = 6

• Q5,2(2Ki − 2) = 4Ki − 22

• Q5,2(2Ki − 1) = 10

• Q5,2(2Ki) = 4

• Q5,2(2Ki + 1) = 2Ki − 4

For a plot of Q5,2, see Figure 10.5.

The N = 17 case is handled by the following proposition:

http://github.com/nhf216/thesis/N4N4_explore.txt
http://github.com/nhf216/thesis/N4N4_explore.txt
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Figure 10.5: First 800 terms of Q5,2 (A278066)

Proposition 10.3. Let K0 = 694, and recursively let Ki = 2Ki−1 − 100 for i ≥ 1.

The sequence Q17,2, beginning at index 695, consists almost entirely of (2Ki − 202)-

alternations. The ith alternation persists until index 2Ki − 202 = Ki+1 − 102, after

which there are 102 sporadic terms that are parametrized by i.

Proof. For K ≥ 694, let Q17,2,K denote the sequence generated by the Q-recurrence

with initial condition

〈Q17,2(1), Q17,2(2), . . . , Q17,2(693), Q17,2(694), a695, a696, . . . , aK−1, aK , 2K − 202, 2〉 ,

where a695 through aK are arbitrary integers. We claim the following about Q17,2,K :

1. A (2K − 202)-alternation persists from index K + 1 through index 2K − 202.

2. This sequence is an instance of Q17,2,2K+1.

Item 1 is clear. To prove item 2, we use the procedure KExplore17 in http://

github.com/nhf216/thesis/N4N4_explore.txt to generate terms and find and prove

the next pattern that Q17,2,K reaches. Provided K ≥ 236, this pattern is precisely a

(4K − 402)-alternation beginning at index 2K − 100. Since the form of the general

http://github.com/nhf216/thesis/N4N4_explore.txt
http://github.com/nhf216/thesis/N4N4_explore.txt
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Figure 10.6: First 4000 terms of Q17,2 (A283894)

sequence Q17,2,K is completely determined by the first 694 and final two terms of the

initial condition, it is clear that Q17,2,K is an instance of Q17,2,2K−100, as required.

Since Q17,2 itself is Q17,2,K0 (and K0 ≥ 236), Proposition 10.3 follows.

For a listing of the 102 sporadic terms, see http://github.com/nhf216/thesis/

N2N2_17_2_Sporadic.txt. Interestingly, these terms contain within them some other

short alternations, and there are some alternations before index 694 that “almost”

follow the pattern. For a plot of Q17,2, see Figure 10.6.

The N = 41 case is somewhat more complicated. It is handled by the following

proposition:

Proposition 10.4. Let K0 = 2639 and λ0 = 4930. Recursively, for i ≥ 1, define Ki

and λi as follows:

• If λi−1 −Ki−1 ≡ 0 (mod 2), let Ki = λi−1 + 562 and λi = 2λi + 41.

• If λi−1 −Ki−1 ≡ 1 (mod 2), let Ki = λi−1 + 224 and λi = 2λi + 8.

The sequence Q41,2, beginning at index 2640, consists almost entirely of λi-alternations.

http://github.com/nhf216/thesis/N2N2_17_2_Sporadic.txt
http://github.com/nhf216/thesis/N2N2_17_2_Sporadic.txt
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The ith alternation persists until index λi, after which there are 562 or 224 sporadic

terms (depending on the aforementioned parities) that are parametrized by i.

Proof. For K ≥ 2639 and λ ≥ K + 2, let Q41,2,K,λ denote the sequence generated by

the Q-recurrence with initial condition

〈Q41,2(1), Q41,2(2), . . . , Q41,2(2638), Q41,2(2639), a2640, a2641, . . . , aK−1, aK , λ, 2〉 ,

where a2640 through aK are arbitrary integers. We claim the following about Q41,2,K,λ:

1. A λ-alternation persists from index K + 1 through index λ.

2. If λ −K is even, then this sequence is an instance of Q41,2,λ+562,2λ+41. If λ −K

is odd, then this sequence is an instance of Q41,2,λ+224,2λ+8.

Item 1 is clear. To prove item 2, we use the procedure KExplore41 in http://

github.com/nhf216/thesis/N4N4_explore.txt to generate terms and find and prove

the next pattern that Q41,2,K,λ reaches. Provided λ ≥ 3082, this pattern is precisely

the appropriate one of a (λ+ 8) or (λ+ 41)-alternation beginning at the appropriate

index of λ+562 or λ+224. (We actually only need λ ≥ 675 in the odd difference case.)

Since the form of the general sequence Q41,2,K,λ is completely determined by the first

2639 and final two terms of the initial condition, it is clear that Q41,2,K,λ is an instance

of Q41,2,λ+562,2λ+41 or Q41,2,λ+224,2λ+8, as required.

Since Q41,2 itself is Q41,2,K0,λ0 (and λ0 ≥ 3082), Proposition 10.4 follows.

For a listing of the 562 and of the 224 sporadic terms, see http://github.com/

nhf216/thesis/N2N2_41_2_Sporadic.txt. Interestingly, these terms contain within

them some other short alternations, and there are some alternations before index 2639

that “almost” follow the pattern. (Also, the λ and K both odd case never happens, as

the sequence cycles through the other three cases.) For a plot of Q41,2, see Figure 10.7.

To conclude this section, we shall consider what happens if we reverse the order of

the 2 and the N in the generic initial condition. This result is easier than the previous

one; all sequences are eventually quasilinear.

http://github.com/nhf216/thesis/N4N4_explore.txt
http://github.com/nhf216/thesis/N4N4_explore.txt
http://github.com/nhf216/thesis/N2N2_41_2_Sporadic.txt
http://github.com/nhf216/thesis/N2N2_41_2_Sporadic.txt
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Figure 10.7: First 50000 terms of Q41,2 (A283895)

Theorem 10.5. Let N be a natural number. Let Q2,N be the sequence resulting from

the Hofstadter Q-recurrence and the initial condition 〈2, N〉. We have the following

cases:

• If N = 1, then we have a quasilinear solution [31, A284429]:

– Q2,N (3k) = 3

– Q2,N (3k + 1) = 3k + 2

– Q2,N (3k + 2) = 1

• If N = 2, then we have a quasilinear solution [31, A275365]:

– Q2,N (2k) = 2

– Q2,N (2k + 1) = 2k + 2

• If N = 3, then we have a quasilinear solution [31, A141310]:

– Q2,N (2k) = 2k + 1

– Q2,N (2k + 1) = 2
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• If N ≥ 5 is odd, then we have an eventually quasilinear solution:

– Q2,N (2k) = max(N, 2k + 1)

– Q2,N (2k + 1) = 2

• If N ≥ 4 is even, then we have an eventually quasilinear solution of period N .

Each block of length N begins with an anomalous value and then alternates between

two different values. In the description of these solutions that follows, 0 ≤ ` < N
2 .

– Q2,N (1) = 2

– Q2,N (Nk) = Nk

– Q2,N (Nk + 1) = 4 if k ≥ 1

– Q2,N (Nk + 2`) = N (k + 1) if ` ≥ 1

– Q2,N (Nk + 2`+ 1) = 2 if ` ≥ 1.

Proof. These are all simple inductive proofs, so they are all left as exercises.

10.2 Fours and N ’s

The initial conditions 〈N, 4, N, 4〉 and 〈4, N, 4, N〉 yield more complicated behavior than

the initial conditions with twos. First, we have the following result for 〈N, 4, N, 4〉.

Theorem 10.6. Let N be a natural number. Let QN,4 be the sequence resulting from

the Hofstadter Q-recurrence and the initial condition 〈N, 4, N, 4〉. We have the following

cases:

1. If N ≥ 11 is odd, then QN,4 strongly dies after N + 13 terms.

2. If N ≥ 21, N ≡ 0 (mod 4), and N is not 4 times a triangular number, then QN,4

strongly dies after 4
⌊
N+1+

√
2N−7

2

⌋
+ 9 terms.

3. If N ≥ 242, N ≡ 2 (mod 8), then QN,4 strongly dies after 12N + a terms, where

a = 50 unless N ≡ 10 (mod 32), in which case a = 58.

4. If N ≥ 422, N ≡ 6 (mod 8), then QN,4 strongly dies after 14N + 34 terms.
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Proof. We prove the cases in sequence.

Case 1: SupposeN ≥ 11 is odd. We compute termsQN,4(N+1) throughQN,4(N+13):

• QN,4(N + 1) = N + 4

• QN,4(N + 2) = 4

• QN,4(N + 3) = 4

• QN,4(N + 4) = 2N

• QN,4(N + 5) = N + 4

• QN,4(N + 6) = 4

• QN,4(N + 7) = N + 4

• QN,4(N + 8) = 2N + 4

• QN,4(N + 9) = N

• QN,4(N + 10) = 4

• QN,4(N + 11) = 2N + 4

• QN,4(N + 12) = 2N + 4

• QN,4(N + 13) = 0

In computing these terms, we require N odd and N ≥ 11.

Case 2: Suppose N ≥ 21, N ≡ 0 (mod 4), and N is not 4 times a triangular number.

We can describe the entire sequence.

First for N + 1 ≤ n ≤ 2N , we have the following pattern

• QN,4(N + 4k) = 4k + 4

• QN,4(N + 4k + 1) = 2N

• QN,4(N + 4k + 2) = 4

• QN,4(N + 4k + 3) = N

It is easy to verify that this pattern develops immediately at index N + 1 and

to inductively show that it persists through index 2N . After index 2N , 4k + 4

begins to exceed N , which causes the pattern to cease.

For simplicity of notation, let D =
⌊
N+1+

√
2N−7

2

⌋
. Next, for 2N + 1 ≤ n ≤ 4D

we have

• QN,4(2N + 4k) = 2k2 + 6k +N + 4

• QN,4(2N + 4k + 1) = 3N

• QN,4(2N + 4k + 2) = 4
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• QN,4(2N + 4k + 3) = N

It is easy to verify that this pattern develops immediately at index 2N + 1 and

to check inductively that it persists for awhile. But, when does it end? The

only term that changes is the QN,4(2N + 4k) term. This term is referenced when

computing the two following terms. In the induction, we assume that 2N+4k+1−(
2k2 + 6k +N + 4

)
lies in the initial condition; that is, that it is at least 1 and at

most N . (We also assume the same thing about 2N+4k+2−
(
2k2 + 6k +N + 4

)
,

but this is less restrictive.) This value decreases with k, and eventually it will

stop being positive. Solving 2k2 + 6k+N + 4 = 2N + 4k gives us k = −1+
√

2N−7
2 .

So, for values of k at most this value, the pattern persists. Once k becomes larger

than this, the pattern will cease. The last term in the pattern will be the 0 mod

4 case for the next k value. So, the pattern lasts through term

2N + 4 + 4

⌊
−1 +

√
2N − 7

2

⌋
= 4D,

as required.

Now, observe that

QN,4(4D) = 2

(
D − N

2

)2

+ 6

(
D − N

2

)
+N + 4. (10.1)

We compute the next 9 terms:

• QN,4(4D + 1) = 2N

• QN,4(4D + 2) = 4

• QN,4(4D + 3) = 2N

• QN,4(4D + 4) = 2
(
D − N

2

)2
+ 6

(
D − N

2

)
+N + 8

• QN,4(4D + 5) = N

• QN,4(4D + 6) = 4

• QN,4(4D + 7) = 3N

• QN,4(4D + 8) = 2
(
D − N

2

)2
+ 6

(
D − N

2

)
+N + 8

• QN,4(4D + 9) = 0.
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Most of these calculations are fairly routine, but we nevertheless illustrate a couple

of them. First, we calculate the initial term.

QN,4(4D + 1) = QN,4(4D + 1−QN,4(4D)) +QN,4(4D + 1−QN,4(4D − 1))

= 0 +QN,4(4D + 1−N).

We have thatN+1 ≤ 4D+1−N ≤ 2N , so this equals 2N , as required. Calculation

of the next term is similar, though it depends on having QN,4(4D) ≥ 4D+2. The

only way this would not happen is if

QN,4(4D) = 4D + 1. (10.2)

Using Equation (10.1), we can solve (10.2) for D. Doing so indicates that we have

equality if and only if D equals

N − 1 +
√

2N − 5

2
. (10.3)

We know that D is an integer. But, since N ≡ 0 (mod 4), 2N − 5 ≡ 3 (mod 4).

So, 2N − 5 cannot be a perfect square, and, as a result, (10.3) is not an integer.

Hence, it is not equal to D. Therefore, QN,4(4D) ≥ 4D + 2, as required.

The computations through QN,4(4D+8) are similar to the two we have illustrated

(noting that the expression that equals QN,4(4D + 4) and QN,4(4D + 8) is equal

to QN,4(4D) + 4). We now attempt to compute QN,4(4D+ 9). We definitely have

that 3N ≥ 4D + 9. If we also have

2

(
D − N

2

)2

+ 6

(
D − N

2

)
+N + 8 ≥ 4D + 9, (10.4)

then we obtain QN,4(4D+ 9) = 0, and we are done (as the sequence strongly dies

at this point). We have equality in (10.4) when D equals

N − 1 +
√

2N + 3

2
. (10.5)

If D is greater than (10.5), then we obtain the strong death we desire.

Since N is not four times a triangular number, we can write N = 2A2 + 2A+ 4d

for some 1 ≤ d < A + 1. So, in this notation, 2A + 1 <
√

2N + 1 < 2A + 2, so

Expression (10.5) is between A2 + A − 1
2 + A + 1

2 = A2 + 2A and A2 + 2A + 1.

Since d ≥ 1, D = A2 + 2A+ 1, and QN,4 strongly dies.
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Case 3 or 4: These cases are proved by using the code in nonstdhof.txt to generate

all of the terms. This proof takes about a day of computation time, since verifying

individual cases is a fairly slow process. When trying to prove these cases, the code

ends up requiring N mod higher powers of 2, which means there are more cases to

check than cases that appear in the theorem. Also, some of the quasipolynomials

that appear within the sequence have high degree, high period, and many initial

sporadic terms. These take a long time to find. As a result, the code needed to

check 48 cases, corresponding to each integer between 0 and 128 that is congruent

to 2 mod 8 and each integer between 0 and 256 that is congruent to 6 mod

8. The outputs of all of these cases (describing every term of each of these

sequences) can be found in the directory http://github.com/nhf216/thesis/

N4N4. A formatted version of the 2 mod 128 case can be found in Appendix E.

The computer only proves case 3 for N ≥ 315 and case 4 for N ≥ 543. To obtain

the (tight) values of N ≥ 242 for case 3 and N ≥ 422 for case 4, it suffices to

check the finite number of additional cases, which is done easily.

Figure 10.8 is a plot of the entirety of Q400,4, which is described by case 2 of The-

orem 10.6. Figures 10.9 and 10.10 are plots of Q770,4, which is described by case 3 of

Theorem 10.6.

Conspicuously absent from Theorem 10.6 is a case where N is four times a triangular

number. For each such N we have checked individually, QN,4 strongly dies. But, these

values of N seem to lead to the longest-persisting QN,4 sequences. See Figures 10.11

and 10.12 for plots of Q312,4, which persists significantly longer than any QN,4 described

by Theorem 10.6 with N < 312.

Finally, we describe the sequence behaviors resulting from the initial condition

〈4, N, 4, N〉.

Theorem 10.7. Let N be a natural number. Let Q4,N be the sequence resulting from the

Hofstadter Q-recurrence and the initial condition 〈4, N, 4, N〉. We have the following

cases:

http://github.com/nhf216/thesis/nonstdhof.txt
http://github.com/nhf216/thesis/N4N4
http://github.com/nhf216/thesis/N4N4
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Figure 10.8: All 865 terms of sequence Q400,4 (A283899)
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Figure 10.9: All 9290 terms of sequence Q770,4 (A283900)
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Figure 10.10: All 9290 terms of sequence Q770,4 (A283900, log plot)
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Figure 10.11: All 6944 terms of sequence Q312,4 (A283898)
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Figure 10.12: All 6944 terms of sequence Q312,4 (A283898, log plot)

1. If N ≥ 26 and N ≡ 1 (mod 4), then Q4,N dies after 2N + 28 terms.

2. If N ≥ 33 and N ≡ 3 (mod 4), then Q4,N dies after 3N + 36 terms.

3. If N ≥ 19 and N ≡ 0 (mod 4) and N is not four times one more than a triangular

number, then Q4,N dies after 4
⌊
N+1+

√
2N−13

2

⌋
+ 6 terms.

Proof. All three of these cases are proved analogously to Theorem 10.6. The first two

cases have period-4 quasilinear components of length approximately N prior to their

deaths. The proof of the third case is similar to the proof of case 2 in Theorem 10.6.

Figure 10.13 is a plot of all 969 terms of Q4,311, which is described by case 2 of

Theorem 10.7.

Theorem 10.7 has two notable omissions. The case of N = 2A2 + 2A + 4 for

some A (i.e. N is four times one more than a triangular number) in Q4,N seems

to behave similarly to QN,4 when N is four times a triangular number. The other

omission is N ≡ 2 (mod 4). This case seems somewhat complicated, though perhaps less

complicated than the other omitted case. Attempts to automatically prove a version
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Figure 10.13: All 969 terms of sequence Q4,311 (A283901)

of the theorem here run into issues requiring additional congruence properties of N ,

which usually means something chaotic is happening. But, plots of many of these

sequences look similar. See Figures 10.14 and 10.15 for plots of Q4,702, which provides

a representative example of what these sequences typically look like.
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Figure 10.14: All 12671 terms of sequence Q4,702 (A283902)
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Figure 10.15: All 12671 terms of sequence Q4,702 (A283902, log plot)
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Chapter 11

Summary of Open Problems and Conjectures

There is an incredible diversity of open problems in the study of nested recurrences.

Many such questions have been referenced in previous chapters. This chapter summa-

rizes some of those while mentioning some additional open problems and extensions of

the work of this dissertation.

The primary and most classical open question about nested recurrences is whether

the Hofstadter Q-sequence weakly dies. The sequences analyzed in this dissertation

appear to behave quite differently from the Hofstadter Q-sequence. The latter appears

to behave largely chaotically with some hints of structure. The sequences we successfully

study, on the other hand, have either an interleaved or slow structure. But, it is

theoretically possible that, after a very long initial condition, the Hofstadter Q-sequence

eventually becomes interleaved or slow. We consider this an unlikely, but remote,

possibility.

We also mention in Chapter 2 that, throughout this dissertation, we only consider

explicit solutions to recurrences. It may also make sense to study implicit solutions. It

is unclear whether considering implicit solutions would lead to any additional results,

but nobody appears to have examined them before. In particular, such solutions could

potentially include infinitely many nonpositive terms.

Now, recall the main algorithm from Chapter 3. In that chapter, we specifically

demand a a basic recurrence as input to the algorithm. In 3.2.5, we discuss the im-

plications of extending the allowable inputs to include nonbasic linear recurrences. In

practice, this generally works, though the analysis of the algorithm is no longer entirely

valid. It also makes perfect sense to look for solutions to nonlinear nested recurrences

that consist of simpler interleaved sequences. Most of the steps of our algorithm still
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work when the recurrences is nonlinear. The main thing that must change significantly

in this setting is the algorithm for determining the orders of growth of the subsequences

(Section 3.1). Nonlinearity introduces some extra complications. For example, the re-

currence D(n) = D(n − D(n − 1))2 − 2D(n − D(n − 1)) + 2 has constant solutions

(constant 1 and constant 2), but it also has a solution
D(2k) = 22k−1

+ 1

D(2k + 1) = 2.

The distinction here comes from the fact that repeated squaring causes numbers to

rapidly grow, unless the initial number was 0 or 1. Such concerns do not arise when

dealing with only linear recurrences. Hence, it would be useful to have a version of the

algorithm that can handle nonlinear recurrences. The example here includes a doubly

exponential subsequence, which cannot possibly be a component of a positive-recurrent

sequence. So, we would have to modify precisely what we are looking for.

Recall that solutions to the Hofstadter Q-recurrence are invariant under shifting

(Proposition 2.7). This observation allows us to reduce our search space when look-

ing for interleaved solutions to the Q-recurrence. But, even after modding out by this

equivalence, we are often left with solutions that resemble each other. For example,

the two period-3 solution families (modulo shifting) to the Q-recurrence including two

constant subsequences and one linear subsequence seem like “reverses” of each other,

in a sense. (See OEIS sequences A264756 and A283878.) Similarly, there are a huge

number of solutions of even period that alternate between constant and standard linear

subsequences. This is not particularly unexpected, as such solution families will include

the sequences in the period-2 family. But these solutions currently take a lot of com-

putational power to analyze. Perhaps we can find more symmetries between solutions

to make this search faster.

Starting in Chapter 8, we begin to see nested-recurrent sequences with interleaved

patterns that last awhile but not forever. We have been discovering these by generating

the sequence from the initial condition and then observing the pattern. But, it should

be possible to search for temporary interleaved solutions like how we look for permanent
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ones in Chapter 3. Perhaps the algorithm from that chapter can somehow be adapted

to discover non-permanent solutions.

We now shift discussion away from the Chapter 3 algorithm. The majority of the

literature on nested recurrences discusses slow solutions. It would be wonderful to have

a method of automatically finding (with proof) slow solutions to nested recurrences.

Unfortunately, proofs of slowness are typically considerably more involved and ad hoc

than proofs of interleaved structure. The code in http://github.com/nhf216/thesis/

slowsearch.txt can find apparent slow solutions, and there appear to be many (see

http://github.com/nhf216/thesis/slowseqs.txt). An exploration of some of these

findings may prove fruitful.

In Chapter 7, we introduce the enigmatic R, S, and T sequences. We explain

how to embed them into solutions to the Hofstadter Q-recurrence along with constant

subsequences. Further, we give an initial speculation about generalizing the R, S, and

T sequences. Our discussion on this matter is quite preliminary; there is much more to

be studied in this area.

The rest of this thesis relates to parametrized initial conditions. The first and most

tantalizing of these problems is to characterize j(N) and Cj(N) in Theorem 9.3. The

tree in Figure 9.2 has some tantalizing patterns, yet it has defied attempts at a non-

recursive characterization and appears somewhat random. Perhaps further work with

5-adic numbers would be helpful in this analysis.

The end of Section 9.3 discusses the complicated eventual behaviors of the Gd,N

sequences. Perhaps it is possible to determine which d values lead to long quasilinear

pieces, and perhaps these sequences are less chaotic than they appear. Also, there is

an infinitude of other parametrized initial condition families to study. It seems almost

certain that exciting new behaviors will result from some unexplored families of initial

conditions. In order to sufficiently study some of these, it may be necessary to mod-

ify the code in http://github.com/nhf216/thesis/nonstdhof.txt to automatically

search for higher-order patterns. See the discussion after Theorem 10.1 on p. 149 for

more discussion on higher-order patterns.

Many of our solutions follow a pattern for awhile, only for the pattern to break.

http://github.com/nhf216/thesis/slowsearch.txt
http://github.com/nhf216/thesis/slowsearch.txt
http://github.com/nhf216/thesis/slowseqs.txt
http://github.com/nhf216/thesis/nonstdhof.txt
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But, sometimes such sequences return to a similar pattern a short time later. For ex-

ample, Theorem 9.3 gives us sequences consisting of arbitrarily many copies of patterns

described by Lemma 9.4. Also, in Subsection 9.2.2, we observe that B193 and B3442 con-

tain infinitely many Proposition 9.10 patterns, and, in Section 10.1, we observe similar

behavior in the sequences Q2,5, Q2,17, and Q2,41.

In general, proofs of behavior of this sort have the following ingredients:

• A parametrized description of a specific type of temporary solution. (See, for

example, Proposition 9.10.)

• An argument explaining how one generic instance of said pattern transitions into

another. (See, for example, the proof of Proposition 9.11.)

• A claim that the sequence in question contains a generic instance of said pattern.

(See, for example, the end of the proof of Proposition 9.11.)

Theoretically, it might be possibly to automatically identify solutions of this type and

to prove closed forms for them. The Maple procedures used to prove the aforementioned

results are a step in that direction, but each one is specifically tailored to one specific

problem. It would be worthwhile to search for more solutions like these and to develop

tools to easily handle them.

Finally, and somewhat more exotically, we can tweak the strong death conven-

tion. Throughout this dissertation, we have chosen to conform with Ruskey’s con-

vention [30] and make the values at nonpositive indices of our sequences zero. But,

technically, this choice is arbitrary. We could assign those indices whatever values

we desire. Other conventions here could lead to additional results. The code in

http://github.com/nhf216/thesis/nicehof.txt and http://github.com/nhf216/

thesis/nonstdhof.txt allows the user to consider these possibilities, and a preliminary

exploration indicates that this may be an untapped goldmine of additional theorems.

http://github.com/nhf216/thesis/nicehof.txt
http://github.com/nhf216/thesis/nonstdhof.txt
http://github.com/nhf216/thesis/nonstdhof.txt
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Appendix A

Some Infinite Families of Nice Solutions to the Hofstadter

Q-Recurrence

A.1 Period 2

There is 1 solution family to the Hofstadter Q-recurrence with period 2, modulo shifting.

Solution #1

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 2 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 2)

Equality Constraints

Qq(2− µ1) + µ0 = µ0

−µ0 + µ1 +Qq(3− µ1) = µ1

Inequality Constraints

1 ≤ µ0

Formulas

Qq(2k) = Qq(2− µ1) + µ0

Qq(2k + 1) = 2k − µ0 + µ1 +Qq(3− µ1)

Sample µ Values

µ0 = 2

µ1 = 0

Sample Qq Values

Qq(2) = 0

Qq(3) = 2

Sample IC Constraints

Qq(2) = 0

Qq(3) = 2

Qq(4) = 2

Sample Initial Condition

〈Qq(1), 0, 2, 2〉

A.2 Period 3

There are 4 solution families to the Hofstadter Q-recurrence with period 3, modulo

shifting.
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Solution #1

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 3 (Standard Linear)

λ2 = 3 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 3)

Equality Constraints

Qq(3− µ2) +Qq(3− µ1) = µ0

Qq(2− µ1)− µ0 + µ2 = µ2

−µ0 + µ1 +Qq(4− µ2) = µ1

Inequality Constraints

1 ≤ µ0

Formulas

Qq(3k) = Qq(3− µ2) +Qq(3− µ1)

Qq(3k + 1) = 3k − µ0 + µ1 +Qq(4− µ2)

Qq(3k + 2) = Qq(2− µ1) + 3k − µ0 + µ2

Sample µ Values

µ0 = 3

µ1 = 0

µ2 = −1

Sample Qq Values

Qq(2) = 3

Qq(3) = 0

Qq(4) = 3

Qq(5) = 3

Sample IC Constraints

Qq(2) = 3

Qq(3) = 0

Qq(4) = 3

Qq(5) = 3

Qq(7) = 6

Qq(8) = 5

Sample Initial Condition

〈Qq(1), 3, 0, 3, 3, Qq(6), 6, 5〉

Solution #2

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 =∞ (Exponential)

Congruence Constraints

µ0 ≡ 0 (mod 3)

µ1 ≡ 0 (mod 3)

Equality Constraints

None

Inequality Constraints

1 ≤ µ0
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1 ≤ µ1

Formulas

Qq(3k) = µ0

Qq(3k + 1) = µ1

Qq(3k + 2) = Qq(3k + 2 − µ1) + Qq(3k +

2− µ0)

Sample µ Values

µ0 = 3

µ1 = 3 Sample IC Constraints

Qq(1) = 3

Qq(3) = 3

−Qq(2) ≤ −4

Sample Initial Condition

〈3, Qq(2), 3〉

Solution #3

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 3 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 3)

µ1 ≡ 2 (mod 3)

Equality Constraints

Qq(3− µ2) + µ1 = µ0

µ1 +Qq(4− µ2) = µ1

Inequality Constraints

1 ≤ µ0

1 ≤ µ1

Formulas

Qq(3k) = Qq(3− µ2) + µ1

Qq(3k + 1) = µ1 +Qq(4− µ2)

Qq(3k + 2) = 3k + µ2

Sample µ Values

µ0 = 3

µ1 = 2

µ2 = 0

Sample Qq Values

Qq(3) = 1

Qq(4) = 0

Sample IC Constraints

Qq(3) = 1

Qq(4) = 0

Qq(5) = 3

Qq(6) = 3

Qq(7) = 2

Sample Initial Condition

〈Qq(1), Qq(2), 1, 0, 3, 3, 2〉
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Solution #4

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 3 (Standard Linear)

Congruence Constraints

µ0 ≡ 1 (mod 3)

µ1 ≡ 0 (mod 3)

Equality Constraints

Qq(3− µ2) + µ0 = µ0

µ0 +Qq(4− µ2) = µ1

Inequality Constraints

1 ≤ µ0

1 ≤ µ1

Formulas

Qq(3k) = Qq(3− µ2) + µ0

Qq(3k + 1) = µ0 +Qq(4− µ2)

Qq(3k + 2) = 3k + µ2

Sample µ Values

µ0 = 1

µ1 = 3

µ2 = 0

Sample Qq Values

Qq(3) = 0

Qq(4) = 2

Sample IC Constraints

Qq(3) = 0

Qq(4) = 2

Qq(5) = 3

Qq(6) = 1

Sample Initial Condition

〈Qq(1), Qq(2), 0, 2, 3, 1〉

A.3 Period 4

There are 5 solution families to the Hofstadter Q-recurrence with period 4, modulo

shifting.

Solution #1

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 4 (Standard Linear)

λ2 = 0 (Constant)

λ3 = 4 (Standard Linear)

Congruence Constraints

µ0 ≡ 2 (mod 4)
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µ2 ≡ 2 (mod 4)

Equality Constraints

Qq(2− µ1) + µ0 = µ2

Qq(4− µ3) + µ2 = µ0

−2− µ0 + µ3 +Qq(5− µ3) = µ1

2− µ2 + µ1 +Qq(3− µ1) = µ3

Inequality Constraints

1 ≤ µ0

1 ≤ µ2

Formulas

Qq(4k) = Qq(4− µ3) + µ2

Qq(4k+ 1) = 4k−2−µ0 +µ3 +Qq(5−µ3)

Qq(4k + 2) = Qq(2− µ1) + µ0

Qq(4k+ 3) = 4k+ 2−µ2 +µ1 +Qq(3−µ1)

Sample µ Values

µ0 = 2

µ1 = 0

µ2 = 2

µ3 = 0

Sample Qq Values

Qq(2) = 0

Qq(3) = 0

Qq(4) = 0

Qq(5) = 4

Sample IC Constraints

Qq(2) = 0

Qq(3) = 0

Qq(4) = 0

Qq(5) = 4

Qq(6) = 2

Sample Initial Condition

〈Qq(1), 0, 0, 0, 4, 2〉

Solution #2

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 4 (Standard Linear)

λ2 = 0 (Constant)

λ3 = 4 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 4)

µ2 ≡ 2 (mod 4)

Equality Constraints

Qq(2− µ1) + µ2 = µ2

Qq(4− µ3) + µ2 = µ0

−µ0 + µ1 +Qq(5− µ3) = µ1

2− µ2 + µ1 +Qq(3− µ1) = µ3

Inequality Constraints

1 ≤ µ0

1 ≤ µ2

Formulas

Qq(4k) = Qq(4− µ3) + µ2

Qq(4k + 1) = 4k − µ0 + µ1 +Qq(5− µ3)

Qq(4k + 2) = Qq(2− µ1) + µ2
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Qq(4k+ 3) = 4k+ 2−µ2 +µ1 +Qq(3−µ1)

Sample µ Values

µ0 = 4

µ1 = 0

µ2 = 2

µ3 = 0

Sample Qq Values

Qq(2) = 0

Qq(3) = 0

Qq(4) = 2

Qq(5) = 4

Sample IC Constraints

Qq(2) = 0

Qq(3) = 0

Qq(4) = 2

Qq(5) = 4

Qq(6) = 2

Sample Initial Condition

〈Qq(1), 0, 0, 2, 4, 2〉

Solution #3

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 4 (Standard Linear)

λ2 = 0 (Constant)

λ3 = 4 (Standard Linear)

Congruence Constraints

µ0 ≡ 2 (mod 4)

µ2 ≡ 0 (mod 4)

Equality Constraints

Qq(2− µ1) + µ0 = µ2

Qq(4− µ3) + µ0 = µ0

−µ2 + µ3 +Qq(3− µ1) = µ3

−2− µ0 + µ3 +Qq(5− µ3) = µ1

Inequality Constraints

1 ≤ µ0

1 ≤ µ2

Formulas

Qq(4k) = Qq(4− µ3) + µ0

Qq(4k+ 1) = 4k−2−µ0 +µ3 +Qq(5−µ3)

Qq(4k + 2) = Qq(2− µ1) + µ0

Qq(4k + 3) = 4k − µ2 + µ3 +Qq(3− µ1)

Sample µ Values

µ0 = 2

µ1 = 0

µ2 = 4

µ3 = 0

Sample Qq Values

Qq(2) = 2

Qq(3) = 4

Qq(4) = 0
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Qq(5) = 4

Sample IC Constraints

Qq(2) = 2

Qq(3) = 4

Qq(4) = 0

Qq(5) = 4

Qq(7) = 4

Qq(8) = 2

Sample Initial Condition

〈Qq(1), 2, 4, 0, 4, Qq(6), 4, 2〉

Solution #4

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 4 (Standard Linear)

λ3 = 4 (Standard Linear)

Congruence Constraints

µ0 ≡ 1 (mod 4)

µ1 ≡ 0 (mod 4)

Equality Constraints

Qq(4− µ3) +Qq(4− µ2) = µ0

µ0 +Qq(5− µ3) = µ1

Qq(3− µ2)− µ1 + µ3 = µ3

Inequality Constraints

1 ≤ µ0

1 ≤ µ1

Formulas

Qq(4k) = Qq(4− µ3) +Qq(4− µ2)

Qq(4k + 1) = µ0 +Qq(5− µ3)

Qq(4k + 2) = 4k + µ2

Qq(4k + 3) = Qq(3− µ2) + 4k − µ1 + µ3

Sample µ Values

µ0 = 1

µ1 = 4

µ2 = 0

µ3 = −1

Sample Qq Values

Qq(3) = 4

Qq(4) = 1

Qq(5) = 0

Qq(6) = 3

Sample IC Constraints

Qq(3) = 4

Qq(4) = 1

Qq(5) = 0

Qq(6) = 3

Qq(7) = 3

Qq(9) = 4

Qq(10) = 8

Sample Initial Condition

〈Qq(1), Qq(2), 4, 1, 0, 3, 3, Qq(8), 4, 8〉
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Solution #5

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 4 (Standard Linear)

λ2 = 0 (Constant)

λ3 = 4 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 4)

µ2 ≡ 0 (mod 4)

Equality Constraints

Qq(2− µ1) + µ2 = µ2

Qq(4− µ3) + µ0 = µ0

−µ0 + µ1 +Qq(5− µ3) = µ1

−µ2 + µ3 +Qq(3− µ1) = µ3

Inequality Constraints

1 ≤ µ0

1 ≤ µ2

Formulas

Qq(4k) = Qq(4− µ3) + µ0

Qq(4k + 1) = 4k − µ0 + µ1 +Qq(5− µ3)

Qq(4k + 2) = Qq(2− µ1) + µ2

Qq(4k + 3) = 4k − µ2 + µ3 +Qq(3− µ1)

Sample µ Values

µ0 = 4

µ1 = 0

µ2 = 4

µ3 = 0

Sample Qq Values

Qq(2) = 0

Qq(3) = 4

Qq(4) = 0

Qq(5) = 4

Sample IC Constraints

Qq(2) = 0

Qq(3) = 4

Qq(4) = 0

Qq(5) = 4

Qq(6) = 4

Qq(7) = 4

Qq(8) = 4

Sample Initial Condition

〈Qq(1), 0, 4, 0, 4, 4, 4, 4〉

A.4 Period 5

There are 7 solution families to the Hofstadter Q-recurrence with period 5, modulo

shifting.
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Solution #1

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 5 (Standard Linear)

λ2 = 0 (Constant)

λ3 = 5 (Standard Linear)

λ4 = 5 (Standard Linear)

Congruence Constraints

µ0 ≡ 2 (mod 5)

µ2 ≡ 0 (mod 5)

Equality Constraints

Qq(2− µ1) + µ0 = µ2

Qq(5− µ4) +Qq(5− µ3) = µ0

Qq(4− µ3)− µ2 + µ4 = µ4

−µ2 + µ3 +Qq(3− µ1) = µ3

−3− µ0 + µ4 +Qq(6− µ4) = µ1

Inequality Constraints

1 ≤ µ0

1 ≤ µ2

Formulas

Qq(5k) = Qq(5− µ4) +Qq(5− µ3)

Qq(5k+ 1) = 5k−3−µ0 +µ4 +Qq(6−µ4)

Qq(5k + 2) = Qq(2− µ1) + µ0

Qq(5k + 3) = 5k − µ2 + µ3 +Qq(3− µ1)

Qq(5k + 4) = Qq(4− µ3) + 5k − µ2 + µ4

Sample µ Values

µ0 = 2

µ1 = 0

µ2 = 5

µ3 = 1

µ4 = 0

Sample Qq Values

Qq(2) = 3

Qq(3) = 5

Qq(4) = 2

Qq(5) = 0

Qq(6) = 5

Sample IC Constraints

Qq(2) = 3

Qq(3) = 5

Qq(4) = 2

Qq(5) = 0

Qq(6) = 5

Qq(8) = 6

Qq(9) = 5

Sample Initial Condition

〈Qq(1), 3, 5, 2, 0, 5, Qq(7), 6, 5〉
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Solution #2

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 5 (Standard Linear)

λ2 = 0 (Constant)

λ3 = 5 (Standard Linear)

λ4 = 5 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 5)

µ2 ≡ 0 (mod 5)

Equality Constraints

Qq(2− µ1) + µ2 = µ2

Qq(5− µ4) +Qq(5− µ3) = µ0

Qq(4− µ3)− µ2 + µ4 = µ4

−µ0 + µ1 +Qq(6− µ4) = µ1

−µ2 + µ3 +Qq(3− µ1) = µ3

Inequality Constraints

1 ≤ µ0

1 ≤ µ2

Formulas

Qq(5k) = Qq(5− µ4) +Qq(5− µ3)

Qq(5k + 1) = 5k − µ0 + µ1 +Qq(6− µ4)

Qq(5k + 2) = Qq(2− µ1) + µ2

Qq(5k + 3) = 5k − µ2 + µ3 +Qq(3− µ1)

Qq(5k + 4) = Qq(4− µ3) + 5k − µ2 + µ4

Sample µ Values

µ0 = 5

µ1 = 0

µ2 = 5

µ3 = 0

µ4 = −1

Sample Qq Values

Qq(2) = 0

Qq(3) = 5

Qq(4) = 5

Qq(5) = 5

Qq(6) = 0

Qq(7) = 5

Sample IC Constraints

Qq(2) = 0

Qq(3) = 5

Qq(4) = 5

Qq(5) = 5

Qq(6) = 0

Qq(7) = 5

Qq(8) = 5

Qq(9) = 4

Qq(10) = 5

Qq(11) = 10

Sample Initial Condition

〈Qq(1), 0, 5, 5, 5, 0, 5, 5, 4, 5, 10〉

Solution #3
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Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 5 (Standard Linear)

λ3 = 0 (Constant)

λ4 =∞ (Steep Linear)

Congruence Constraints

µ0 ≡ 0 (mod 5)

µ1 ≡ 2 (mod 5)

µ3 ≡ 0 (mod 5)

Equality Constraints

Qq(3− µ2) + µ1 = µ3

Inequality Constraints

1 ≤ µ0

1 ≤ µ1

1 ≤ µ3

µ3 ≤ Qq(4− µ2)− 1

Formulas

Qq(5k) = µ0

Qq(5k + 1) = µ1

Qq(5k + 2) = 5k + µ2

Qq(5k + 3) = Qq(3− µ2) + µ1

Qq(5k+ 4) = Qq(5k+ 4−µ3) +Qq(4−µ2)

Sample µ Values

µ0 = 5

µ1 = 2

µ2 = 0

µ3 = 5

Sample Qq Values

Qq(3) = 3

Qq(4) = 6

Sample IC Constraints

Qq(1) = 2

Qq(2) = 0

Qq(3) = 3

Qq(4) = 6

Qq(5) = 5

Sample Initial Condition

〈2, 0, 3, 6, 5〉

Solution #4

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 5 (Standard Linear)

λ3 = 0 (Constant)

λ4 = 5 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 5)

µ1 ≡ 2 (mod 5)
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µ3 ≡ 2 (mod 5)

Equality Constraints

Qq(3− µ2) + µ1 = µ3

Qq(5− µ4) + µ3 = µ0

µ1 +Qq(6− µ4) = µ1

2− µ3 + µ2 +Qq(4− µ2) = µ4

Inequality Constraints

1 ≤ µ0

1 ≤ µ1

1 ≤ µ3

Formulas

Qq(5k) = Qq(5− µ4) + µ3

Qq(5k + 1) = µ1 +Qq(6− µ4)

Qq(5k + 2) = 5k + µ2

Qq(5k + 3) = Qq(3− µ2) + µ1

Qq(5k+ 4) = 5k+ 2−µ3 +µ2 +Qq(4−µ2)

Sample µ Values

µ0 = 5

µ1 = 2

µ2 = 0

µ3 = 2

µ4 = 0

Sample Qq Values

Qq(3) = 0

Qq(4) = 0

Qq(5) = 3

Qq(6) = 0

Sample IC Constraints

Qq(3) = 0

Qq(4) = 0

Qq(5) = 3

Qq(6) = 0

Qq(7) = 5

Qq(10) = 5

Qq(11) = 2

Sample Initial Condition

〈Qq(1), Qq(2), 0, 0, 3, 0, 5, Qq(8), Qq(9), 5, 2〉

Solution #5

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 5 (Standard Linear)

λ3 = 0 (Constant)

λ4 = 5 (Standard Linear)

Congruence Constraints

µ0 ≡ 1 (mod 5)

µ1 ≡ 0 (mod 5)

µ3 ≡ 2 (mod 5)

Equality Constraints

Qq(3− µ2) + µ3 = µ3
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Qq(5− µ4) + µ3 = µ0

µ0 +Qq(6− µ4) = µ1

2− µ3 + µ2 +Qq(4− µ2) = µ4

Inequality Constraints

1 ≤ µ0

1 ≤ µ1

1 ≤ µ3

Formulas

Qq(5k) = Qq(5− µ4) + µ3

Qq(5k + 1) = µ0 +Qq(6− µ4)

Qq(5k + 2) = 5k + µ2

Qq(5k + 3) = Qq(3− µ2) + µ3

Qq(5k+ 4) = 5k+ 2−µ3 +µ2 +Qq(4−µ2)

Sample µ Values

µ0 = 1

µ1 = 5

µ2 = 0

µ3 = 2

µ4 = 0

Sample Qq Values

Qq(3) = 0

Qq(4) = 0

Qq(5) = −1

Qq(6) = 4

Sample IC Constraints

Qq(3) = 0

Qq(4) = 0

Qq(5) = −1

Qq(6) = 4

Qq(7) = 5

Qq(8) = 2

Sample Initial Condition

〈Qq(1), Qq(2), 0, 0,−1, 4, 5, 2〉

Solution #6

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 5 (Standard Linear)

λ3 = 0 (Constant)

λ4 = 5 (Standard Linear)

Congruence Constraints

µ0 ≡ 1 (mod 5)

µ1 ≡ 0 (mod 5)

µ3 ≡ 0 (mod 5)

Equality Constraints

Qq(3− µ2) + µ3 = µ3

Qq(5− µ4) + µ0 = µ0

µ0 +Qq(6− µ4) = µ1
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−µ3 + µ4 +Qq(4− µ2) = µ4

Inequality Constraints

1 ≤ µ0

1 ≤ µ1

1 ≤ µ3

Formulas

Qq(5k) = Qq(5− µ4) + µ0

Qq(5k + 1) = µ0 +Qq(6− µ4)

Qq(5k + 2) = 5k + µ2

Qq(5k + 3) = Qq(3− µ2) + µ3

Qq(5k + 4) = 5k − µ3 + µ4 +Qq(4− µ2)

Sample µ Values

µ0 = 1

µ1 = 5

µ2 = 0

µ3 = 5

µ4 = 0

Sample Qq Values

Qq(3) = 0

Qq(4) = 5

Qq(5) = 0

Qq(6) = 4

Sample IC Constraints

Qq(3) = 0

Qq(4) = 5

Qq(5) = 0

Qq(6) = 4

Qq(7) = 5

Qq(8) = 5

Qq(9) = 5

Qq(10) = 1

Sample Initial Condition

〈Qq(1), Qq(2), 0, 5, 0, 4, 5, 5, 5, 1〉

Solution #7

Linear Coefficients

λ0 = 0 (Constant)

λ1 = 0 (Constant)

λ2 = 5 (Standard Linear)

λ3 = 0 (Constant)

λ4 = 5 (Standard Linear)

Congruence Constraints

µ0 ≡ 0 (mod 5)

µ1 ≡ 2 (mod 5)

µ3 ≡ 0 (mod 5)

Equality Constraints

Qq(3− µ2) + µ1 = µ3

Qq(5− µ4) + µ0 = µ0

µ1 +Qq(6− µ4) = µ1

−µ3 + µ4 +Qq(4− µ2) = µ4

Inequality Constraints

1 ≤ µ0

1 ≤ µ1
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1 ≤ µ3

Formulas

Qq(5k) = Qq(5− µ4) + µ0

Qq(5k + 1) = µ1 +Qq(6− µ4)

Qq(5k + 2) = 5k + µ2

Qq(5k + 3) = Qq(3− µ2) + µ1

Qq(5k + 4) = 5k − µ3 + µ4 +Qq(4− µ2)

Sample µ Values

µ0 = 5

µ1 = 2

µ2 = 0

µ3 = 5

µ4 = 0

Sample Qq Values

Qq(3) = 3

Qq(4) = 5

Qq(5) = 0

Qq(6) = 0

Sample IC Constraints

Qq(3) = 3

Qq(4) = 5

Qq(5) = 0

Qq(6) = 0

Qq(7) = 5

Qq(9) = 5

Qq(10) = 5

Qq(11) = 2

Sample Initial Condition

〈Qq(1), Qq(2), 3, 5, 0, 0, 5, Qq(8), 5, 5, 2〉
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Appendix B

Calculation of 28 Symbolic Terms of QN

Assuming N ≥ 14, these are the first 28 terms of QN following the initial condition.

QN(N + 1) = QN (N + 1−QN (N)) +QN (N + 1−QN (N − 1))

= QN (N + 1− (N)) +QN (N + 1− (N − 1))

= QN (1) +QN (2) = 1 + 2 = 3

QN(N + 2) = QN (N + 2−QN (N + 1)) +QN (N + 2−QN (N))

= QN (N + 2− 3) +QN (N + 2−N)

= QN (N − 1) +QN (2) = N − 1 + 2 = N + 1

QN(N + 3) = QN (N + 3−QN (N + 2)) +QN (N + 3−QN (N + 1))

= QN (N + 3− (N + 1)) +QN (N + 3− 3)

= QN (2) +QN (N) = 2 +N = N + 2

QN(N + 4) = QN (N + 4−QN (N + 3)) +QN (N + 4−QN (N + 2))

= QN (N + 4− (N + 2)) +QN (N + 4− (N + 1))

= QN (2) +QN (3) = 2 + 3 = 5

QN(N + 5) = QN (N + 5−QN (N + 4)) +QN (N + 5−QN (N + 3))

= QN (N + 5− 5) +QN (N + 5− (N + 2))

= QN (N) +QN (3) = N + 3 = N + 3
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QN(N + 6) = QN (N + 6−QN (N + 5)) +QN (N + 6−QN (N + 4))

= QN (N + 6− (N + 3)) +QN (N + 6− 5)

= QN (3) +QN (N + 1) = 3 + 3 = 6

QN(N + 7) = QN (N + 7−QN (N + 6)) +QN (N + 7−QN (N + 5))

= QN (N + 7− 6) +QN (N + 7− (N + 3))

= QN (N + 1) +QN (4) = 3 + 4 = 7

QN(N + 8) = QN (N + 8−QN (N + 7)) +QN (N + 8−QN (N + 6))

= QN (N + 8− 7) +QN (N + 8− 6)

= QN (N + 1) +QN (N + 2) = 3 +N + 1 = N + 4

QN(N + 9) = QN (N + 9−QN (N + 8)) +QN (N + 9−QN (N + 7))

= QN (N + 9− (N + 4)) +QN (N + 9− 7)

= QN (5) +QN (N + 2) = 5 +N + 1 = N + 6

QN(N + 10) = QN (N + 10−QN (N + 9)) +QN (N + 10−QN (N + 8))

= QN (N + 10− (N + 6)) +QN (N + 10− (N + 4))

= QN (4) +QN (6) = 4 + 6 = 10

QN(N + 11) = QN (N + 11−QN (N + 10)) +QN (N + 11−QN (N + 9))

= QN (N + 11− 10) +QN (N + 11− (N + 6))

= QN (N + 1) +QN (5) = 3 + 5 = 8

QN(N + 12) = QN (N + 12−QN (N + 11)) +QN (N + 12−QN (N + 10))

= QN (N + 12− 8) +QN (N + 12− 10)

= QN (N + 4) +QN (N + 2) = 5 +N + 1 = N + 6
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QN(N + 13) = QN (N + 13−QN (N + 12)) +QN (N + 13−QN (N + 11))

= QN (N + 13− (N + 6)) +QN (N + 13− 8)

= QN (7) +QN (N + 5) = 7 +N + 3 = N + 10

QN(N + 14) = QN (N + 14−QN (N + 13)) +QN (N + 14−QN (N + 12))

= QN (N + 14− (N + 10)) +QN (N + 14− (N + 6))

= QN (4) +QN (8) = 4 + 8 = 12

QN(N + 15) = QN (N + 15−QN (N + 14)) +QN (N + 15−QN (N + 13))

= QN (N + 15− 12) +QN (N + 15− (N + 10))

= QN (N + 3) +QN (5) = N + 2 + 5 = N + 7

QN(N + 16) = QN (N + 16−QN (N + 15)) +QN (N + 16−QN (N + 14))

= QN (N + 16− (N + 7)) +QN (N + 16− 12)

= QN (9) +QN (N + 4) = 9 + 5 = 14

QN(N + 17) = QN (N + 17−QN (N + 16)) +QN (N + 17−QN (N + 15))

= QN (N + 17− 14) +QN (N + 17− (N + 7))

= QN (N + 3) +QN (10) = N + 2 + 10 = N + 12

QN(N + 18) = QN (N + 18−QN (N + 17)) +QN (N + 18−QN (N + 16))

= QN (N + 18− (N + 12)) +QN (N + 18− 14)

= QN (6) +QN (N + 4) = 6 + 5 = 11

QN(N + 19) = QN (N + 19−QN (N + 18)) +QN (N + 19−QN (N + 17))

= QN (N + 19− 11) +QN (N + 19− (N + 12))

= QN (N + 8) +QN (7) = N + 4 + 7 = N + 11
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QN(N + 20) = QN (N + 20−QN (N + 19)) +QN (N + 20−QN (N + 18))

= QN (N + 20− (N + 11)) +QN (N + 20− 11)

= QN (9) +QN (N + 9) = 9 +N + 6 = N + 15

QN(N + 21) = QN (N + 21−QN (N + 20)) +QN (N + 21−QN (N + 19))

= QN (N + 21− (N + 15)) +QN (N + 21− (N + 11))

= QN (6) +QN (10) = 6 + 10 = 16

QN(N + 22) = QN (N + 22−QN (N + 21)) +QN (N + 22−QN (N + 20))

= QN (N + 22− 16) +QN (N + 22− (N + 15))

= QN (N + 6) +QN (7) = 6 + 7 = 13

QN(N + 23) = QN (N + 23−QN (N + 22)) +QN (N + 23−QN (N + 21))

= QN (N + 23− 13) +QN (N + 23− 16)

= QN (N + 10) +QN (N + 7) = 10 + 7 = 17

QN(N + 24) = QN (N + 24−QN (N + 23)) +QN (N + 24−QN (N + 22))

= QN (N + 24− 17) +QN (N + 24− 13)

= QN (N + 7) +QN (N + 11) = 7 + 8 = 15

QN(N + 25) = QN (N + 25−QN (N + 24)) +QN (N + 25−QN (N + 23))

= QN (N + 25− 15) +QN (N + 25− 17)

= QN (N + 10) +QN (N + 8) = 10 +N + 4 = N + 14

QN(N + 26) = QN (N + 26−QN (N + 25)) +QN (N + 26−QN (N + 24))

= QN (N + 26− (N + 14)) +QN (N + 26− 15)

= QN (12) +QN (N + 11) = 12 + 8 = 20
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QN(N + 27) = QN (N + 27−QN (N + 26)) +QN (N + 27−QN (N + 25))

= QN (N + 27− 20) +QN (N + 27− (N + 14))

= QN (N + 7) +QN (13) = 7 + 13 = 20

QN(N + 28) = QN (N + 28−QN (N + 27)) +QN (N + 28−QN (N + 26))

= QN (N + 28− 20) +QN (N + 28− 20)

= QN (N + 8) +QN (N + 8) = N + 4 +N + 4 = 2N + 8.
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Appendix C

Plots of Anomalistic Living Solutions to the Q-recurrence

This appendix contains plots of the sequences Q3(= Q2), Q4, Q5, Q6, Q7, Q9, Q10, and

Q13 from Subsection 9.1.1 in Chapter 9.
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Figure C.1: The first 2000 terms of Q3 (A005185 shifted)
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Figure C.2: The first 2000 terms of Q4 (A278056)
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Figure C.3: The first 2000 terms of Q5 (A278057)
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Figure C.4: The first 2000 terms of Q6 (A278058)
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Figure C.5: The first 2000 terms of Q7 (A278059)
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Figure C.6: The first 2000 terms of Q9 (A278061)

0

200

400

600

800

1000

1200

500 1000 1500 2000

Figure C.7: The first 2000 terms of Q10 (A278062)
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Figure C.8: The first 2000 terms of Q13 (A278065)
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Appendix D

The Final 158 Terms of the Cj = 0 Case

These are the final 158 terms in QN (n) when Cj = 0 and N ≥ 118.

• QN (Aj + 3) = 6

• QN (Aj + 4) = 7

• QN (Aj + 5) = 8

• QN (Aj + 6) = 8

• QN (Aj + 7) = 10

• QN (Aj+8) = Aj

(
Aj−Aj−1−2

5

)
+Bj+

3

• QN (Aj + 9) = 5

• QN (Aj + 10) = 8

• QN (Aj + 11) = 14

• QN (Aj + 12) = 10

• QN (Aj + 13) = 11

• QN (Aj + 14) = 13

• QN (Aj + 15) = Aj + 7

• QN (Aj + 16) = 15

• QN (Aj + 17) = Aj + 10

• QN (Aj + 18) = 14

• QN (Aj + 19) = 17

• QN (Aj + 20) = 14

• QN (Aj + 21) = 17

• QN (Aj + 22) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 11

• QN (Aj + 23) = 8

• QN (Aj + 24) = 15

• QN (Aj + 25) = Aj + 18

• QN (Aj + 26) = 22

• QN (Aj + 27) = 17

• QN (Aj + 28) = 22

• QN (Aj + 29) = 20

• QN (Aj + 30) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 11

• QN (Aj + 31) = 14
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• QN (Aj + 32) = 14

• QN (Aj + 33) = 34

• QN (Aj + 34) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 14

• QN (Aj + 35) = 5

• QN (Aj + 36) = 14

• QN (Aj + 37) = 22

• QN (Aj + 38) = 30

• QN (Aj + 39) = Aj + 15

• QN (Aj + 40) = 33

• QN (Aj + 41) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 29

• QN (Aj + 42) = 5

• QN (Aj + 43) = 30

• QN (Aj + 44) = Aj + 28

• QN (Aj + 45) = Aj + 24

• QN (Aj + 46) = 40

• QN (Aj + 47) = 33

• QN (Aj + 48) = Aj

(
Aj−Aj−1−2

5

)
+

Aj +Bj + 10

• QN (Aj + 49) = 15

• QN (Aj + 50) = 5

• QN (Aj + 51) = 54

• QN (Aj + 52) = 36

• QN (Aj + 53) = Aj + 15

• QN (Aj + 54) = 53

• QN (Aj + 55) = Aj + 40

• QN (Aj + 56) = 22

• QN (Aj + 57) = 22

• QN (Aj + 58) = 28

• QN (Aj + 59) = 36

• QN (Aj + 60) = 29

• QN (Aj + 61) = Aj + 32

• QN (Aj + 62) = 64

• QN (Aj + 63) = 36

• QN (Aj + 64) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 22

• QN (Aj + 65) = 20

• QN (Aj + 66) = 40

• QN (Aj + 67) = 50

• QN (Aj + 68) = 36

• QN (Aj + 69) = 51

• QN (Aj + 70) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 31

• QN (Aj + 71) = 14

• QN (Aj + 72) = 28
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• QN (Aj + 73) = Aj + 60

• QN (Aj + 74) = 54

• QN (Aj + 75) = 32

• QN (Aj + 76) = Aj

(
Aj−Aj−1−2

5

)
+

Aj +Bj + 39

• QN (Aj + 77) = Aj + 24

• QN (Aj + 78) = 54

• QN (Aj + 79) = Aj + 73

• QN (Aj + 80) = 29

• QN (Aj + 81) = 44

• QN (Aj + 82) = Aj + 45

• QN (Aj + 83) = Aj + 53

• QN (Aj + 84) = 70

• QN (Aj + 85) = Aj + 39

• QN (Aj + 86) = 62

• QN (Aj + 87) = Aj + 66

• QN (Aj + 88) = 44

• QN (Aj + 89) = Aj + 47

• QN (Aj + 90) = 83

• QN (Aj + 91) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 47

• QN (Aj + 92) = 5

• QN (Aj + 93) = 44

• QN (Aj + 94) = Aj + 52

• QN (Aj + 95) = 97

• QN (Aj + 96) = 49

• QN (Aj + 97) = 2Aj

(
Aj−Aj−1−2

5

)
+

Aj + 2Bj + 10

• QN (Aj + 98) = 15

• QN (Aj + 99) = 70

• QN (Aj + 100) = Aj

(
Aj−Aj−1−2

5

)
+

Aj +Bj + 50

• QN (Aj + 101) = 14

• QN (Aj + 102) = 44

• QN (Aj + 103) = Aj + 83

• QN (Aj + 104) = 50

• QN (Aj + 105) = Aj + 62

• QN (Aj + 106) = 66

• QN (Aj + 107) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 74

• QN (Aj + 108) = 5

• QN (Aj + 109) = 50

• QN (Aj + 110) = Aj + 91

• QN (Aj + 111) = Aj + 52

• QN (Aj + 112) = 81
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• QN (Aj + 113) = 75

• QN (Aj + 114) = Aj + 49

• QN (Aj + 115) = 99

• QN (Aj + 116) = Aj + 77

• QN (Aj + 117) = 54

• QN (Aj + 118) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 63

• QN (Aj + 119) = 20

• QN (Aj + 120) = Aj

(
Aj−Aj−1−2

5

)
+

Aj +Bj + 50

• QN (Aj + 121) = 14

• QN (Aj + 122) = 5

• QN (Aj + 123) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 113

• QN (Aj + 124) = 20

• QN (Aj + 125) = Aj + 62

• QN (Aj + 126) = 130

• QN (Aj + 127) = Aj + 65

• QN (Aj + 128) = 66

• QN (Aj + 129) = 100

• QN (Aj + 130) = 2Aj

(
Aj−Aj−1−2

5

)
+

2Bj + 33

• QN (Aj + 131) = 14

• QN (Aj + 132) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 63

• QN (Aj + 133) = 20

• QN (Aj + 134) = Aj + 49

• QN (Aj + 135) = 185

• QN (Aj + 136) = 92

• QN (Aj + 137) = 2Aj + 24

• QN (Aj + 138) = 40

• QN (Aj + 139) = 70

• QN (Aj + 140) = 2Aj

(
Aj−Aj−1−2

5

)
+

Aj + 2Bj + 81

• QN (Aj + 141) = 14

• QN (Aj + 142) = 66

• QN (Aj + 143) = Aj + 124

• QN (Aj + 144) = 74

• QN (Aj + 145) = 35

• QN (Aj + 146) = Aj + 80

• QN (Aj + 147) = 148

• QN (Aj + 148) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 68

• QN (Aj + 149) = 5

• QN (Aj + 150) = 35
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• QN (Aj + 151) = 2Aj + 157

• QN (Aj + 152) = 54

• QN (Aj + 153) = 70

• QN (Aj + 154) = Aj

(
Aj−Aj−1−2

5

)
+

Aj +Bj + 120

• QN (Aj + 155) = Aj + 39

• QN (Aj + 156) = 117

• QN (Aj + 157) = 151

• QN (Aj + 158) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 39

• QN (Aj + 159) = Aj

(
Aj−Aj−1−2

5

)
+

Bj + 3

• QN (Aj + 160) = 0
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Appendix E

A Complete Description of Q4,N when N ≡ 2 (mod 128)

For indices from 1 to N :

• Q4,N (2k) = 4

• Q4,N (2k + 1) = N

For indices from N + 1 to 2N :

• Q4,N (N + 4k) = 4k + 41

• Q4,N (N + 4k + 1) = 2N

• Q4,N (N + 4k + 2) = 4

• Q4,N (N + 4k + 3) = N

Some sporadic values:

• Q4,N (2N + 1) = 2N

• Q4,N (2N + 2) = N + 61

• Q4,N (2N + 3) = 2N

• Q4,N (2N + 4) = 8

For indices from 2N + 5 to 3N :

• Q4,N (2N + 4k) = 4

• Q4,N (2N + 4k + 1) = 2N

• Q4,N (2N + 4k + 2) = 4k +N + 21

• Q4,N (2N + 4k + 3) = 3N

Some sporadic values:

• Q4,N (3N + 1) = 4N

• Q4,N (3N + 2) = 4

• Q4,N (3N + 3) = 2N

• Q4,N (3N + 4) = 2N + 81

• Q4,N (3N + 5) = 3N

• Q4,N (3N + 6) = 8

• Q4,N (3N + 7) = 3N

• Q4,N (3N + 8) = 2N + 41

• Q4,N (3N + 9) = 3N

• Q4,N (3N + 10) = 8

• Q4,N (3N + 11) = 3N

• Q4,N (3N + 12) = 2N + 121

• Q4,N (3N + 13) = 3N

For indices from 3N + 14 to 4N :

• Q4,N (3N + 8k) = 2N + 41
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• Q4,N (3N + 8k + 1) = 2N

• Q4,N (3N + 8k + 2) = 8

• Q4,N (3N + 8k + 3) = Nk + 2N

• Q4,N (3N + 8k + 4) = 2N + 121

• Q4,N (3N + 8k + 5) = 2N

• Q4,N (3N + 8k + 6) = 8

• Q4,N (3N + 8k + 7) = Nk + 3N

Some sporadic values:

• Q4,N (4N + 1) = 1
8N

2 + 11
4 N

• Q4,N (4N + 2) = 2N + 121

• Q4,N (4N + 3) = 2N

• Q4,N (4N + 4) = 12

• Q4,N (4N + 5) = 1
8N

2 + 11
4 N

• Q4,N (4N + 6) = 2N + 121

• Q4,N (4N + 7) = 2N

• Q4,N (4N + 8) = 8

• Q4,N (4N + 9) = 1
8N

2 + 19
4 N

• Q4,N (4N + 10) = 2N + 121

• Q4,N (4N + 11) = 2N

• Q4,N (4N + 12) = 8

• Q4,N (4N + 13) = 1
8N

2 + 19
4 N

• Q4,N (4N + 14) = 2N + 121

• Q4,N (4N + 15) = 2N

• Q4,N (4N + 16) = 12

• Q4,N (4N + 17) = 1
8N

2 + 19
4 N

For indices from 4N + 18 to 5N + 5:

• Q4,N (4N + 4k) = 4k + 81

• Q4,N (4N + 4k + 1) = 1
8N

2 + 11
4 N

• Q4,N (4N + 4k + 2) = 2N + 121

• Q4,N (4N + 4k + 3) = 3N

Some sporadic values:

• Q4,N (5N + 6) = N + 101

• Q4,N (5N + 7) = 1
8N

2 + 19
4 N

• Q4,N (5N + 8) = 2N + 41

• Q4,N (5N + 9) = 3N

• Q4,N (5N + 10) = N + 181

• Q4,N (5N + 11) = 1
8N

2 + 15
4 N

• Q4,N (5N + 12) = 2N + 121

• Q4,N (5N + 13) = 4N

• Q4,N (5N + 14) = 8

• Q4,N (5N + 15) = 1
8N

2 + 23
4 N

• Q4,N (5N + 16) = 2N + 41

• Q4,N (5N + 17) = 3N

• Q4,N (5N + 18) = N + 261

• Q4,N (5N + 19) = 1
8N

2 + 15
4 N
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• Q4,N (5N + 20) = 2N + 121

• Q4,N (5N + 21) = 3N

• Q4,N (5N + 22) = N + 301

• Q4,N (5N + 23) = 1
8N

2 + 15
4 N

• Q4,N (5N + 24) = 2N + 121

• Q4,N (5N + 25) = 3N

• Q4,N (5N + 26) = N + 341

For indices from 5N + 27 to 6N :

• Q4,N (5N + 16k) = 2N + 41

• Q4,N (5N + 16k + 1) = 2N

• Q4,N (5N + 16k + 2) = 16

• Q4,N (5N + 16k+ 3) = Nk2 + 3Nk+

1
8N

2 − 1
4N

• Q4,N (5N + 16k + 4) = 2N + 121

• Q4,N (5N + 16k + 5) = 2N

• Q4,N (5N + 16k + 6) = 16

• Q4,N (5N + 16k+ 7) = Nk2 + 4Nk+

1
8N

2 − 5
4N

• Q4,N (5N + 16k + 8) = 2N + 121

• Q4,N (5N + 16k + 9) = 2N

• Q4,N (5N + 16k + 10) = 16

• Q4,N (5N+16k+11) = Nk2 +4Nk+

1
8N

2 − 5
4N

• Q4,N (5N + 16k + 12) = 2N + 121

• Q4,N (5N + 16k + 13) = 2N

• Q4,N (5N + 16k + 14) = 16

• Q4,N (5N+16k+15) = Nk2 +5Nk+

1
8N

2 + 23
4 N

Some sporadic values:

• Q4,N (6N+1) = 1
256N

3+ 19
64N

2+ 25
64N

• Q4,N (6N + 2) = 2N + 121

• Q4,N (6N + 3) = 2N

• Q4,N (6N + 4) = 20

• Q4,N (6N+5) = 1
256N

3+ 19
64N

2+ 25
64N

• Q4,N (6N + 6) = 2N + 121

• Q4,N (6N + 7) = 2N

• Q4,N (6N + 8) = 16

• Q4,N (6N+9) = 1
256N

3+ 23
64N

2+ 17
64N

• Q4,N (6N + 10) = 2N + 121

• Q4,N (6N + 11) = 2N

• Q4,N (6N + 12) = 16

• Q4,N (6N + 13) = 1
256N

3 + 27
64N

2 +

393
64 N

• Q4,N (6N + 14) = 2N + 41

• Q4,N (6N + 15) = 2N

• Q4,N (6N + 16) = 20
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• Q4,N (6N + 17) = 1
256N

3 + 27
64N

2 +

393
64 N

• Q4,N (6N + 18) = 2N + 41

• Q4,N (6N + 19) = 2N

• Q4,N (6N + 20) = 40

• Q4,N (6N + 21) = 1
256N

3 + 19
64N

2 +

153
64 N

• Q4,N (6N + 22) = 2N + 41

• Q4,N (6N + 23) = 3N

• Q4,N (6N + 24) = 2N + 321

• Q4,N (6N + 25) = 1
8N

2 + 11
4 N

• Q4,N (6N + 26) = 2N + 121

• Q4,N (6N + 27) = 2N

• Q4,N (6N + 28) = 48

• Q4,N (6N + 29) = 1
256N

3 + 19
64N

2 +

153
64 N

• Q4,N (6N + 30) = 2N + 41

• Q4,N (6N + 31) = 3N

• Q4,N (6N + 32) = 2N + 401

• Q4,N (6N + 33) = 1
8N

2 + 11
4 N

For indices from 6N + 34 to 7N + 5:

• Q4,N (6N + 8k) = 8k + 2N

• Q4,N (6N + 8k + 1) = 1
8N

2 + 19
4 N

• Q4,N (6N + 8k + 2) = 2N + 121

• Q4,N (6N + 8k + 3) = 3N

• Q4,N (6N + 8k + 4) = 8k + 2N + 121

• Q4,N (6N + 8k + 5) = 1
8N

2 + 11
4 N

• Q4,N (6N + 8k + 6) = 2N + 121

• Q4,N (6N + 8k + 7) = 3N

Some sporadic values:

• Q4,N (7N + 6) = 3N + 141

• Q4,N (7N + 7) = 1
8N

2 + 11
4 N

• Q4,N (7N + 8) = 2N + 121

• Q4,N (7N + 9) = 3N

• Q4,N (7N + 10) = 3N + 181

• Q4,N (7N + 11) = 1
8N

2 + 11
4 N

• Q4,N (7N + 12) = 2N + 121

• Q4,N (7N + 13) = 3N

• Q4,N (7N + 14) = 3N + 221

• Q4,N (7N + 15) = 1
8N

2 + 11
4 N

• Q4,N (7N + 16) = 2N + 121

• Q4,N (7N + 17) = 3N

• Q4,N (7N + 18) = 3N + 221

• Q4,N (7N + 19) = 1
8N

2 + 19
4 N

• Q4,N (7N + 20) = 2N + 41
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• Q4,N (7N + 21) = 3N

• Q4,N (7N + 22) = 3N + 381

• Q4,N (7N + 23) = 1
8N

2 + 11
4 N

• Q4,N (7N + 24) = 2N + 121

• Q4,N (7N + 25) = 4N

• Q4,N (7N + 26) = 16

• Q4,N (7N + 27) = 1
8N

2 + 31
4 N

• Q4,N (7N + 28) = 2N + 121

• Q4,N (7N + 29) = 3N

• Q4,N (7N + 30) = 3N + 381

• Q4,N (7N + 31) = 1
8N

2 + 15
4 N

• Q4,N (7N + 32) = 2N + 121

• Q4,N (7N + 33) = 3N

• Q4,N (7N + 34) = 3N + 421

• Q4,N (7N + 35) = 1
8N

2 + 15
4 N

• Q4,N (7N + 36) = 2N + 121

• Q4,N (7N + 37) = 3N

• Q4,N (7N + 38) = 3N + 461

For indices from 7N + 39 to 8N :

• Q4,N (7N + 32k) = 2N + 121

• Q4,N (7N + 32k + 1) = 2N

• Q4,N (7N + 32k + 2) = 32

• Q4,N (7N+32k+3) = 4
3Nk

3+5Nk2+

1
8N

2k + 41
12Nk − 6N

• Q4,N (7N + 32k + 4) = 2N + 121

• Q4,N (7N + 32k + 5) = 2N

• Q4,N (7N + 32k + 6) = 32

• Q4,N (7N+32k+7) = 4
3Nk

3+6Nk2+

1
8N

2k + 41
12Nk − 7N

• Q4,N (7N + 32k + 8) = 2N + 121

• Q4,N (7N + 32k + 9) = 2N

• Q4,N (7N + 32k + 10) = 32

• Q4,N (7N + 32k + 11) = 4
3Nk

3 +

6Nk2 + 1
8N

2k+ 41
12Nk+ 1

8N
2 + 11

4 N

• Q4,N (7N + 32k + 12) = 2N + 121

• Q4,N (7N + 32k + 13) = 2N

• Q4,N (7N + 32k + 14) = 32

• Q4,N (7N + 32k + 15) = 4
3Nk

3 +

7Nk2 + 1
8N

2k+ 137
12 Nk+ 1

8N
2 + 11

4 N

• Q4,N (7N + 32k + 16) = 2N + 121

• Q4,N (7N + 32k + 17) = 2N

• Q4,N (7N + 32k + 18) = 32

• Q4,N (7N + 32k + 19) = 4
3Nk

3 +

7Nk2 + 1
8N

2k+ 113
12 Nk+ 1

8N
2 + 19

4 N

• Q4,N (7N + 32k + 20) = 2N + 41

• Q4,N (7N + 32k + 21) = 2N
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• Q4,N (7N + 32k + 22) = 32

• Q4,N (7N + 32k + 23) = 4
3Nk

3 +

8Nk2 + 1
8N

2k+ 125
12 Nk+ 1

8N
2 + 11

4 N

• Q4,N (7N + 32k + 24) = 2N + 121

• Q4,N (7N + 32k + 25) = 2N

• Q4,N (7N + 32k + 26) = 32

• Q4,N (7N + 32k + 27) = 4
3Nk

3 +

8Nk2 + 1
8N

2k+ 125
12 Nk+ 1

8N
2 + 31

4 N

• Q4,N (7N + 32k + 28) = 2N + 121

• Q4,N (7N + 32k + 29) = 2N

• Q4,N (7N + 32k + 30) = 32

• Q4,N (7N + 32k + 31) = 4
3Nk

3 +

9Nk2 + 1
8N

2k+ 233
12 Nk+ 1

8N
2 + 15

4 N

Some sporadic values:

• Q4,N (8N + 1) = 1
24576N

4 + 35
4096N

3 +

491
6144N

2 − 5319
1024N

• Q4,N (8N + 2) = 2N + 121

• Q4,N (8N + 3) = 2N

• Q4,N (8N + 4) = 36

• Q4,N (8N + 5) = 1
24576N

4 + 35
4096N

3 +

491
6144N

2 − 5319
1024N

• Q4,N (8N + 6) = 2N + 121

• Q4,N (8N + 7) = 2N

• Q4,N (8N + 8) = 32

• Q4,N (8N + 9) = 1
24576N

4 + 39
4096N

3 +

1235
6144N

2 + 4669
1024N

• Q4,N (8N + 10) = 2N + 121

• Q4,N (8N + 11) = 2N

• Q4,N (8N + 12) = 32

• Q4,N (8N+13) = 1
24576N

4+ 43
4096N

3+

2747
6144N

2 + 3137
1024N

• Q4,N (8N + 14) = 2N + 121

• Q4,N (8N + 15) = 2N

• Q4,N (8N + 16) = 40

• Q4,N (8N+17) = 1
24576N

4+ 39
4096N

3+

1619
6144N

2 + 10685
1024 N

• Q4,N (8N + 18) = 2N + 121

• Q4,N (8N + 19) = 2N

• Q4,N (8N + 20) = 56

• Q4,N (8N+21) = 1
24576N

4+ 35
4096N

3+

875
6144N

2 − 7495
1024N

• Q4,N (8N + 22) = 2N + 121

• Q4,N (8N + 23) = 2N

• Q4,N (8N + 24) = 2N + 481

• Q4,N (8N + 25) = 1
256N

3 + 15
64N

2 −
159
64 N
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• Q4,N (8N + 26) = 2N + 121

• Q4,N (8N + 27) = 2N

• Q4,N (8N + 28) = 68

• Q4,N (8N+29) = 1
24576N

4+ 31
4096N

3−
61

6144N
2 + 11253

1024 N

• Q4,N (8N + 30) = 2N + 121

• Q4,N (8N + 31) = 2N

• Q4,N (8N + 32) = 2N + 801

• Q4,N (8N + 33) = 1
256N

3 + 3
64N

2 +

185
64 N

• Q4,N (8N + 34) = 2N + 121

• Q4,N (8N + 35) = 3N

• Q4,N (8N + 36) = 4N + 441

• Q4,N (8N + 37) = 1
8N

2 + 11
4 N

• Q4,N (8N + 38) = 2N + 121

• Q4,N (8N + 39) = 2N

• Q4,N (8N + 40) = 2N + 881

• Q4,N (8N + 41) = 1
256N

3 + 3
64N

2 +

313
64 N

• Q4,N (8N + 42) = 2N + 121

• Q4,N (8N + 43) = 3N

• Q4,N (8N + 44) = 4N + 521

• Q4,N (8N + 45) = 1
8N

2 + 11
4 N

For indices from 8N+46 to 9N+21:

• Q4,N (8N + 16k) = 16k + 4N

• Q4,N (8N + 16k + 1) = 1
8N

2 + 19
4 N

• Q4,N (8N + 16k + 2) = 2N + 121

• Q4,N (8N + 16k + 3) = 3N

• Q4,N (8N + 16k+ 4) = 16k+ 4N + 41

• Q4,N (8N + 16k + 5) = 1
8N

2 + 19
4 N

• Q4,N (8N + 16k + 6) = 2N + 121

• Q4,N (8N + 16k + 7) = 3N

• Q4,N (8N+16k+8) = 16k+4N+161

• Q4,N (8N + 16k + 9) = 1
8N

2 + 11
4 N

• Q4,N (8N + 16k + 10) = 2N + 121

• Q4,N (8N + 16k + 11) = 3N

• Q4,N (8N+16k+12) = 16k+4N+121

• Q4,N (8N + 16k + 13) = 1
8N

2 + 19
4 N

• Q4,N (8N + 16k + 14) = 2N + 121

• Q4,N (8N + 16k + 15) = 3N

Some sporadic values:

• Q4,N (9N + 22) = 5N + 221

• Q4,N (9N + 23) = 1
8N

2 + 23
4 N

• Q4,N (9N + 24) = 2N + 121

• Q4,N (9N + 25) = 3N
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• Q4,N (9N + 26) = 5N + 341

• Q4,N (9N + 27) = 1
8N

2 + 11
4 N

• Q4,N (9N + 28) = 2N + 121

• Q4,N (9N + 29) = 3N

• Q4,N (9N + 30) = 5N + 261

• Q4,N (9N + 31) = 1
8N

2 + 23
4 N

• Q4,N (9N + 32) = 2N + 121

• Q4,N (9N + 33) = 3N

• Q4,N (9N + 34) = 5N + 501

• Q4,N (9N + 35) = 1
8N

2 + 11
4 N

• Q4,N (9N + 36) = 2N + 121

• Q4,N (9N + 37) = 4N

• Q4,N (9N + 38) = 32

• Q4,N (9N + 39) = 1
4N

2 + 27
2 N

• Q4,N (9N + 40) = 2N + 121

• Q4,N (9N + 41) = 3N

• Q4,N (9N + 42) = 5N + 501

• Q4,N (9N + 43) = 1
8N

2 + 15
4 N

• Q4,N (9N + 44) = 2N + 121

• Q4,N (9N + 45) = 3N

• Q4,N (9N + 46) = 5N + 541

• Q4,N (9N + 47) = 1
8N

2 + 15
4 N

• Q4,N (9N + 48) = 2N + 121

• Q4,N (9N + 49) = 3N

• Q4,N (9N + 50) = 5N + 581

For indices from 9N + 51 to 10N :

• Q4,N (9N + 64k) = 2N + 121

• Q4,N (9N + 64k + 1) = 2N

• Q4,N (9N + 64k + 2) = 64

• Q4,N (9N + 64k + 3) = 8
3Nk

4 +

12Nk3 + 1
8N

2k2 + 193
12 Nk

2 + 1
8N

2k+

3
4Nk + 1

8N
2 + 19

4 N

• Q4,N (9N + 64k + 4) = 2N + 121

• Q4,N (9N + 64k + 5) = 2N

• Q4,N (9N + 64k + 6) = 64

• Q4,N (9N + 64k + 7) = 8
3Nk

4 +

40
3 Nk

3 + 1
8N

2k2 + 217
12 Nk

2 + 1
8N

2k+

5
12Nk + 1

8N
2 + 11

4 N

• Q4,N (9N + 64k + 8) = 2N + 121

• Q4,N (9N + 64k + 9) = 2N

• Q4,N (9N + 64k + 10) = 64

• Q4,N (9N + 64k + 11) = 8
3Nk

4 +

40
3 Nk

3 + 1
8N

2k2 + 217
12 Nk

2 + 1
4N

2k+

61
6 Nk + 1

8N
2 + 19

4 N

• Q4,N (9N + 64k + 12) = 2N + 121

• Q4,N (9N + 64k + 13) = 2N
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• Q4,N (9N + 64k + 14) = 64

• Q4,N (9N + 64k + 15) = 8
3Nk

4 +

44
3 Nk

3 + 1
8N

2k2 + 337
12 Nk

2 + 1
4N

2k+

113
6 Nk + 1

8N
2 + 19

4 N

• Q4,N (9N + 64k + 16) = 2N + 121

• Q4,N (9N + 64k + 17) = 2N

• Q4,N (9N + 64k + 18) = 64

• Q4,N (9N + 64k + 19) = 8
3Nk

4 +

44
3 Nk

3 + 1
8N

2k2 + 313
12 Nk

2 + 1
4N

2k+

113
6 Nk + 1

8N
2 + 19

4 N

• Q4,N (9N + 64k + 20) = 2N + 121

• Q4,N (9N + 64k + 21) = 2N

• Q4,N (9N + 64k + 22) = 64

• Q4,N (9N + 64k + 23) = 8
3Nk

4 +

16Nk3 + 1
8N

2k2 + 349
12 Nk

2 + 1
4N

2k+

37
2 Nk + 1

8N
2 + 23

4 N

• Q4,N (9N + 64k + 24) = 2N + 121

• Q4,N (9N + 64k + 25) = 2N

• Q4,N (9N + 64k + 26) = 64

• Q4,N (9N + 64k + 27) = 8
3Nk

4 +

16Nk3 + 1
8N

2k2 + 349
12 Nk

2 + 1
4N

2k+

47
2 Nk + 1

8N
2 + 11

4 N

• Q4,N (9N + 64k + 28) = 2N + 121

• Q4,N (9N + 64k + 29) = 2N

• Q4,N (9N + 64k + 30) = 64

• Q4,N (9N + 64k + 31) = 8
3Nk

4 +

52
3 Nk

3 + 1
8N

2k2 + 481
12 Nk

2 + 1
4N

2k+

175
6 Nk + 1

8N
2 + 23

4 N

• Q4,N (9N + 64k + 32) = 2N + 121

• Q4,N (9N + 64k + 33) = 2N

• Q4,N (9N + 64k + 34) = 64

• Q4,N (9N + 64k + 35) = 8
3Nk

4 +

52
3 Nk

3 + 1
8N

2k2 + 457
12 Nk

2 + 1
4N

2k+

163
6 Nk + 1

8N
2 + 11

4 N

• Q4,N (9N + 64k + 36) = 2N + 121

• Q4,N (9N + 64k + 37) = 2N

• Q4,N (9N + 64k + 38) = 64

• Q4,N (9N + 64k + 39) = 8
3Nk

4 +

56
3 Nk

3 + 1
8N

2k2 + 505
12 Nk

2 + 1
4N

2k+

179
6 Nk + 1

4N
2 + 27

2 N

• Q4,N (9N + 64k + 40) = 2N + 121

• Q4,N (9N + 64k + 41) = 2N

• Q4,N (9N + 64k + 42) = 64

• Q4,N (9N + 64k + 43) = 8
3Nk

4 +

56
3 Nk

3 + 1
8N

2k2 + 505
12 Nk

2 + 3
8N

2k+

475
12 Nk + 1

8N
2 + 15

4 N

• Q4,N (9N + 64k + 44) = 2N + 121

• Q4,N (9N + 64k + 45) = 2N

• Q4,N (9N + 64k + 46) = 64
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• Q4,N (9N + 64k + 47) = 8
3Nk

4 +

20Nk3 + 1
8N

2k2 + 649
12 Nk

2 + 3
8N

2k+

237
4 Nk + 1

8N
2 + 15

4 N

• Q4,N (9N + 64k + 48) = 2N + 121

• Q4,N (9N + 64k + 49) = 2N

• Q4,N (9N + 64k + 50) = 64

• Q4,N (9N + 64k + 51) = 8
3Nk

4 +

20Nk3 + 1
8N

2k2 + 625
12 Nk

2 + 3
8N

2k+

229
4 Nk + 1

8N
2 + 15

4 N

• Q4,N (9N + 64k + 52) = 2N + 121

• Q4,N (9N + 64k + 53) = 2N

• Q4,N (9N + 64k + 54) = 64

• Q4,N (9N + 64k + 55) = 8
3Nk

4 +

64
3 Nk

3 + 1
8N

2k2 + 685
12 Nk

2 + 3
8N

2k+

731
12 Nk + 3

8N
2 + 101

4 N

• Q4,N (9N + 64k + 56) = 2N + 121

• Q4,N (9N + 64k + 57) = 2N

• Q4,N (9N + 64k + 58) = 64

• Q4,N (9N + 64k + 59) = 8
3Nk

4 +

64
3 Nk

3 + 1
8N

2k2 + 685
12 Nk

2 + 3
8N

2k+

791
12 Nk + 3

8N
2 + 129

4 N

• Q4,N (9N + 64k + 60) = 2N + 121

• Q4,N (9N + 64k + 61) = 2N

• Q4,N (9N + 64k + 62) = 64

• Q4,N (9N + 64k + 63) = 8
3Nk

4 +

68
3 Nk

3 + 1
8N

2k2 + 841
12 Nk

2 + 3
8N

2k+

1003
12 Nk + 3

8N
2 + 153

4 N

Some sporadic values:

• Q4,N (10N + 1) = 1
6291456N

5 +

59
786432N

4 + 4315
786432N

3 + 23155
196608N

2 +

752603
131072N

• Q4,N (10N + 2) = 2N + 121

• Q4,N (10N + 3) = 2N

• Q4,N (10N + 4) = 68

• Q4,N (10N + 5) = 1
6291456N

5 +

59
786432N

4 + 4315
786432N

3 + 23155
196608N

2 +

752603
131072N

• Q4,N (10N + 6) = 2N + 121

• Q4,N (10N + 7) = 2N

• Q4,N (10N + 8) = 64

• Q4,N (10N + 9) = 1
6291456N

5 +

21
262144N

4 + 6211
786432N

3 + 16981
65536N

2 +

845355
131072N

• Q4,N (10N + 10) = 2N + 121

• Q4,N (10N + 11) = 2N

• Q4,N (10N + 12) = 64

• Q4,N (10N + 13) = 1
6291456N

5 +

67
786432N

4 + 8107
786432N

3 + 75659
196608N

2 +

680059
131072N
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• Q4,N (10N + 14) = 2N + 121

• Q4,N (10N + 15) = 2N

• Q4,N (10N + 16) = 76

• Q4,N (10N + 17) = 1
6291456N

5 +

21
262144N

4 + 4675
786432N

3 + 19541
65536N

2 +

2671147
131072 N

• Q4,N (10N + 18) = 2N + 121

• Q4,N (10N + 19) = 2N

• Q4,N (10N + 20) = 88

• Q4,N (10N + 21) = 1
6291456N

5 +

59
786432N

4 + 4699
786432N

3 + 22771
196608N

2 +

752859
131072N

• Q4,N (10N + 22) = 2N + 121

• Q4,N (10N + 23) = 2N

• Q4,N (10N + 24) = 2N + 801

• Q4,N (10N + 25) = 1
24576N

4 +

23
4096N

3 − 205
6144N

2 + 7213
1024N

• Q4,N (10N + 26) = 2N + 121

• Q4,N (10N + 27) = 2N

• Q4,N (10N + 28) = 108

• Q4,N (10N + 29) = 1
6291456N

5 +

17
262144N

4 + 3595
786432N

3 − 4663
65536N

2 −
1163461
131072 N

• Q4,N (10N + 30) = 2N + 121

• Q4,N (10N + 31) = 2N

• Q4,N (10N + 32) = 2N + 1361

• Q4,N (10N + 33) = 1
24576N

4 −
1

4096N
3 + 131

6144N
2 + 11221

1024 N

• Q4,N (10N + 34) = 2N + 121

• Q4,N (10N + 35) = 2N

• Q4,N (10N + 36) = 6N + 921

• Q4,N (10N + 37) = 1
4N

2 − 5
2N

• Q4,N (10N + 38) = 2N + 121

• Q4,N (10N + 39) = 2N

• Q4,N (10N + 40) = 2N + 1561

• Q4,N (10N + 41) = 1
24576N

4 −
5

4096N
3 + 1883

6144N
2 − 12911

1024 N

• Q4,N (10N + 42) = 2N + 121

• Q4,N (10N + 43) = 2N

• Q4,N (10N + 44) = 6N + 1321

• Q4,N (10N + 45) = 1
4N

2 − 13
2 N

• Q4,N (10N + 46) = 2N + 121

• Q4,N (10N + 47) = 3N

• Q4,N (10N + 48) = 6N + 561

• Q4,N (10N + 49) = 1
8N

2 + 11
4 N

• Q4,N (10N + 50) = 2N + 121

• Q4,N (10N + 51) = 2N
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• Q4,N (10N + 52) = 6N + 1401

• Q4,N (10N + 53) = 1
4N

2 − 9
2N

• Q4,N (10N + 54) = 2N + 121

• Q4,N (10N + 55) = 3N

• Q4,N (10N + 56) = 6N + 641

• Q4,N (10N + 57) = 1
8N

2 + 11
4 N

For indices from 10N +58 to 11N +

17:

• Q4,N (10N + 32k) = 32k + 6N

• Q4,N (10N + 32k + 1) = 1
8N

2 + 19
4 N

• Q4,N (10N + 32k + 2) = 2N + 121

• Q4,N (10N + 32k + 3) = 3N

• Q4,N (10N+32k+4) = 32k+6N+121

• Q4,N (10N + 32k + 5) = 1
8N

2 + 11
4 N

• Q4,N (10N + 32k + 6) = 2N + 121

• Q4,N (10N + 32k + 7) = 3N

• Q4,N (10N+32k+8) = 32k+6N+81

• Q4,N (10N + 32k + 9) = 1
8N

2 + 19
4 N

• Q4,N (10N + 32k + 10) = 2N + 121

• Q4,N (10N + 32k + 11) = 3N

• Q4,N (10N + 32k+ 12) = 32k+ 6N +

121

• Q4,N (10N + 32k+ 13) = 1
8N

2 + 19
4 N

• Q4,N (10N + 32k + 14) = 2N + 121

• Q4,N (10N + 32k + 15) = 3N

• Q4,N (10N + 32k+ 16) = 32k+ 6N +

161

• Q4,N (10N + 32k+ 17) = 1
8N

2 + 19
4 N

• Q4,N (10N + 32k + 18) = 2N + 121

• Q4,N (10N + 32k + 19) = 3N

• Q4,N (10N + 32k+ 20) = 32k+ 6N +

201

• Q4,N (10N + 32k+ 21) = 1
8N

2 + 19
4 N

• Q4,N (10N + 32k + 22) = 2N + 121

• Q4,N (10N + 32k + 23) = 3N

• Q4,N (10N + 32k+ 24) = 32k+ 6N +

241

• Q4,N (10N + 32k+ 25) = 1
8N

2 + 19
4 N

• Q4,N (10N + 32k + 26) = 2N + 121

• Q4,N (10N + 32k + 27) = 3N

• Q4,N (10N + 32k+ 28) = 32k+ 6N +

281

• Q4,N (10N + 32k+ 29) = 1
8N

2 + 19
4 N

• Q4,N (10N + 32k + 30) = 2N + 121

• Q4,N (10N + 32k + 31) = 3N

Some sporadic values:
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• Q4,N (11N + 18) = 7N + 261

• Q4,N (11N + 19) = 1
8N

2 + 11
4 N

• Q4,N (11N + 20) = 2N + 121

• Q4,N (11N + 21) = 3N

• Q4,N (11N + 22) = 7N + 221

• Q4,N (11N + 23) = 1
8N

2 + 19
4 N

• Q4,N (11N + 24) = 2N + 121

• Q4,N (11N + 25) = 3N

• Q4,N (11N + 26) = 7N + 261

• Q4,N (11N + 27) = 1
8N

2 + 19
4 N

• Q4,N (11N + 28) = 2N + 121

• Q4,N (11N + 29) = 3N

• Q4,N (11N + 30) = 7N + 301

• Q4,N (11N + 31) = 1
8N

2 + 19
4 N

• Q4,N (11N + 32) = 2N + 121

• Q4,N (11N + 33) = 3N

• Q4,N (11N + 34) = 7N + 341

• Q4,N (11N + 35) = 1
8N

2 + 23
4 N

• Q4,N (11N + 36) = 2N + 121

• Q4,N (11N + 37) = 3N

• Q4,N (11N + 38) = 7N + 461

• Q4,N (11N + 39) = 1
8N

2 + 11
4 N

• Q4,N (11N + 40) = 2N + 121

• Q4,N (11N + 41) = 3N

• Q4,N (11N + 42) = 7N + 381

• Q4,N (11N + 43) = 1
8N

2 + 23
4 N

• Q4,N (11N + 44) = 2N + 121

• Q4,N (11N + 45) = 3N

• Q4,N (11N + 46) = 7N + 621

• Q4,N (11N + 47) = 1
8N

2 + 11
4 N

• Q4,N (11N + 48) = 2N + 121

• Q4,N (11N + 49) = 4N

• Q4,N (11N + 50) = 64

• Q4,N (11N + 51) = 3
8N

2 + 109
4 N

• Q4,N (11N + 52) = 2N + 121

• Q4,N (11N + 53) = 3N

• Q4,N (11N + 54) = 7N + 621

• Q4,N (11N + 55) = 1
8N

2 + 15
4 N

• Q4,N (11N + 56) = 2N + 121

• Q4,N (11N + 57) = 3N

• Q4,N (11N + 58) = 7N + 661

• Q4,N (11N + 59) = 1
8N

2 + 15
4 N

• Q4,N (11N + 60) = 2N + 121

• Q4,N (11N + 61) = 3N

• Q4,N (11N + 62) = 7N + 701
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For indices from 11N + 63 to 12N :

• Q4,N (11N + 128k) = 2N + 121

• Q4,N (11N + 128k + 1) = 2N

• Q4,N (11N + 128k + 2) = 128

• Q4,N (11N + 128k + 3) = 128
15 Nk

5 +

136
3 Nk4+ 1

6N
2k3+ 251

3 Nk3+ 3
8N

2k2+

683
12 Nk

2 + 1
3N

2k+ 74
5 Nk+ 1

8N
2 + 11

4 N

• Q4,N (11N + 128k + 4) = 2N + 121

• Q4,N (11N + 128k + 5) = 2N

• Q4,N (11N + 128k + 6) = 128

• Q4,N (11N + 128k + 7) = 128
15 Nk

5 +

48Nk4 + 1
6N

2k3 + 275
3 Nk3 + 3

8N
2k2 +

253
4 Nk2 + 1

3N
2k+ 69

5 Nk+ 1
8N

2 + 19
4 N

• Q4,N (11N + 128k + 8) = 2N + 121

• Q4,N (11N + 128k + 9) = 2N

• Q4,N (11N + 128k + 10) = 128

• Q4,N (11N + 128k + 11) = 128
15 Nk

5 +

48Nk4 + 1
6N

2k3 + 275
3 Nk3 + 1

2N
2k2 +

73Nk2+ 11
24N

2k+ 511
20 Nk+ 1

8N
2+ 19

4 N

• Q4,N (11N + 128k + 12) = 2N + 121

• Q4,N (11N + 128k + 13) = 2N

• Q4,N (11N + 128k + 14) = 128

• Q4,N (11N + 128k + 15) = 128
15 Nk

5 +

152
3 Nk4+ 1

6N
2k3+ 331

3 Nk3+ 1
2N

2k2+

313
3 Nk2 + 11

24N
2k + 2453

60 Nk + 1
8N

2 +

19
4 N

• Q4,N (11N + 128k + 16) = 2N + 121

• Q4,N (11N + 128k + 17) = 2N

• Q4,N (11N + 128k + 18) = 128

• Q4,N (11N + 128k + 19) = 128
15 Nk

5 +

152
3 Nk4+ 1

6N
2k3+ 323

3 Nk3+ 1
2N

2k2+

301
3 Nk2 + 11

24N
2k + 791

20 Nk + 1
8N

2 +

11
4 N

• Q4,N (11N + 128k + 20) = 2N + 121

• Q4,N (11N + 128k + 21) = 2N

• Q4,N (11N + 128k + 22) = 128

• Q4,N (11N + 128k + 23) = 128
15 Nk

5 +

160
3 Nk4+ 1

6N
2k3+117Nk3+ 1

2N
2k2+

326
3 Nk2 + 11

24N
2k + 2533

60 Nk + 1
8N

2 +

19
4 N

• Q4,N (11N + 128k + 24) = 2N + 121

• Q4,N (11N + 128k + 25) = 2N

• Q4,N (11N + 128k + 26) = 128

• Q4,N (11N + 128k + 27) = 128
15 Nk

5 +

160
3 Nk4+ 1

6N
2k3+117Nk3+ 1

2N
2k2+

341
3 Nk2 + 11

24N
2k + 2653

60 Nk + 1
8N

2 +

19
4 N
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• Q4,N (11N + 128k + 28) = 2N + 121

• Q4,N (11N + 128k + 29) = 2N

• Q4,N (11N + 128k + 30) = 128

• Q4,N (11N + 128k + 31) = 128
15 Nk

5 +

56Nk4 + 1
6N

2k3 +137Nk3 + 1
2N

2k2 +

144Nk2 + 11
24N

2k+ 3613
60 Nk+ 1

8N
2 +

19
4 N

• Q4,N (11N + 128k + 32) = 2N + 121

• Q4,N (11N + 128k + 33) = 2N

• Q4,N (11N + 128k + 34) = 128

• Q4,N (11N + 128k + 35) = 128
15 Nk

5 +

56Nk4 + 1
6N

2k3 + 403
3 Nk3 + 1

2N
2k2 +

138Nk2 + 11
24N

2k+ 3233
60 Nk+ 1

8N
2 +

23
4 N

• Q4,N (11N + 128k + 36) = 2N + 121

• Q4,N (11N + 128k + 37) = 2N

• Q4,N (11N + 128k + 38) = 128

• Q4,N (11N + 128k + 39) = 128
15 Nk

5 +

176
3 Nk4+ 1

6N
2k3+145Nk3+ 1

2N
2k2+

454
3 Nk2 + 7

12N
2k + 2099

30 Nk + 1
8N

2 +

11
4 N

• Q4,N (11N + 128k + 40) = 2N + 121

• Q4,N (11N + 128k + 41) = 2N

• Q4,N (11N + 128k + 42) = 128

• Q4,N (11N + 128k + 43) = 128
15 Nk

5 +

176
3 Nk4+ 1

6N
2k3+145Nk3+ 5

8N
2k2+

1933
12 Nk2 + 7

12N
2k+ 2099

30 Nk+ 1
8N

2 +

23
4 N

• Q4,N (11N + 128k + 44) = 2N + 121

• Q4,N (11N + 128k + 45) = 2N

• Q4,N (11N + 128k + 46) = 128

• Q4,N (11N + 128k + 47) = 128
15 Nk

5 +

184
3 Nk4+ 1

6N
2k3+ 499

3 Nk3+ 5
8N

2k2+

2489
12 Nk2 + 7

12N
2k+ 2929

30 Nk+ 1
8N

2 +

11
4 N

• Q4,N (11N + 128k + 48) = 2N + 121

• Q4,N (11N + 128k + 49) = 2N

• Q4,N (11N + 128k + 50) = 128

• Q4,N (11N + 128k + 51) = 128
15 Nk

5 +

184
3 Nk4+ 1

6N
2k3+ 491

3 Nk3+ 5
8N

2k2+

2417
12 Nk2 + 7

12N
2k + 943

10 Nk + 3
8N

2 +

109
4 N

• Q4,N (11N + 128k + 52) = 2N + 121

• Q4,N (11N + 128k + 53) = 2N

• Q4,N (11N + 128k + 54) = 128

• Q4,N (11N + 128k + 55) = 128
15 Nk

5 +

64Nk4 + 1
6N

2k3 + 527
3 Nk3 + 5

8N
2k2 +

871
4 Nk2+ 5

6N
2k+ 614

5 Nk+ 1
8N

2+ 15
4 N

• Q4,N (11N + 128k + 56) = 2N + 121
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• Q4,N (11N + 128k + 57) = 2N

• Q4,N (11N + 128k + 58) = 128

• Q4,N (11N + 128k + 59) = 128
15 Nk

5 +

64Nk4 + 1
6N

2k3 + 527
3 Nk3 + 5

8N
2k2 +

891
4 Nk2+ 5

6N
2k+ 674

5 Nk+ 1
8N

2+ 15
4 N

• Q4,N (11N + 128k + 60) = 2N + 121

• Q4,N (11N + 128k + 61) = 2N

• Q4,N (11N + 128k + 62) = 128

• Q4,N (11N + 128k + 63) = 128
15 Nk

5 +

200
3 Nk4+ 1

6N
2k3+ 595

3 Nk3+ 5
8N

2k2+

3229
12 Nk2 + 5

6N
2k + 2507

15 Nk + 1
8N

2 +

15
4 N

• Q4,N (11N + 128k + 64) = 2N + 121

• Q4,N (11N + 128k + 65) = 2N

• Q4,N (11N + 128k + 66) = 128

• Q4,N (11N + 128k + 67) = 128
15 Nk

5 +

200
3 Nk4+ 1

6N
2k3+ 587

3 Nk3+ 5
8N

2k2+

3133
12 Nk2 + 5

6N
2k + 799

5 Nk + 1
2N

2 +

39N

• Q4,N (11N + 128k + 68) = 2N + 121

• Q4,N (11N + 128k + 69) = 2N

• Q4,N (11N + 128k + 70) = 128

• Q4,N (11N + 128k + 71) = 128
15 Nk

5 +

208
3 Nk4+ 1

6N
2k3+209Nk3+ 5

8N
2k2+

3401
12 Nk2 + 5

6N
2k + 2587

15 Nk + 1
2N

2 +

42N

• Q4,N (11N + 128k + 72) = 2N + 121

• Q4,N (11N + 128k + 73) = 2N

• Q4,N (11N + 128k + 74) = 128

• Q4,N (11N + 128k + 75) = 128
15 Nk

5 +

208
3 Nk4+ 1

6N
2k3+209Nk3+ 3

4N
2k2+

1759
6 Nk2 + 13

12N
2k+ 5819

30 Nk+ 5
8N

2 +

215
4 N

• Q4,N (11N + 128k + 76) = 2N + 121

• Q4,N (11N + 128k + 77) = 2N

• Q4,N (11N + 128k + 78) = 128

• Q4,N (11N + 128k + 79) = 128
15 Nk

5 +

72Nk4 + 1
6N

2k3 +233Nk3 + 3
4N

2k2 +

713
2 Nk2 + 13

12N
2k + 7679

30 Nk + 5
8N

2 +

295
4 N

• Q4,N (11N + 128k + 80) = 2N + 121

• Q4,N (11N + 128k + 81) = 2N

• Q4,N (11N + 128k + 82) = 128

• Q4,N (11N + 128k + 83) = 128
15 Nk

5 +

72Nk4 + 1
6N

2k3 + 691
3 Nk3 + 3

4N
2k2 +

697
2 Nk2 + 13

12N
2k + 7459

30 Nk + 5
8N

2 +

287
4 N

• Q4,N (11N + 128k + 84) = 2N + 121

• Q4,N (11N + 128k + 85) = 2N
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• Q4,N (11N + 128k + 86) = 128

• Q4,N (11N + 128k + 87) = 128
15 Nk

5 +

224
3 Nk4+ 1

6N
2k3+245Nk3+ 3

4N
2k2+

2249
6 Nk2 + 13

12N
2k+ 8039

30 Nk+ 5
8N

2 +

307
4 N

• Q4,N (11N + 128k + 88) = 2N + 121

• Q4,N (11N + 128k + 89) = 2N

• Q4,N (11N + 128k + 90) = 128

• Q4,N (11N + 128k + 91) = 128
15 Nk

5 +

224
3 Nk4+ 1

6N
2k3+245Nk3+ 3

4N
2k2+

2279
6 Nk2 + 13

12N
2k+ 8249

30 Nk+ 5
8N

2 +

315
4 N

• Q4,N (11N + 128k + 92) = 2N + 121

• Q4,N (11N + 128k + 93) = 2N

• Q4,N (11N + 128k + 94) = 128

• Q4,N (11N + 128k + 95) = 128
15 Nk

5 +

232
3 Nk4+ 1

6N
2k3+ 811

3 Nk3+ 3
4N

2k2+

2665
6 Nk2 + 13

12N
2k+ 10129

30 Nk+ 5
8N

2 +

399
4 N

• Q4,N (11N + 128k + 96) = 2N + 121

• Q4,N (11N + 128k + 97) = 2N

• Q4,N (11N + 128k + 98) = 128

• Q4,N (11N + 128k + 99) = 128
15 Nk

5 +

232
3 Nk4+ 1

6N
2k3+ 803

3 Nk3+ 3
4N

2k2+

2605
6 Nk2 + 13

12N
2k+ 3233

10 Nk+ 5
8N

2 +

363
4 N

• Q4,N (11N + 128k+ 100) = 2N + 121

• Q4,N (11N + 128k + 101) = 2N

• Q4,N (11N + 128k + 102) = 128

• Q4,N (11N+128k+103) = 128
15 Nk

5 +

80Nk4 + 1
6N

2k3 + 851
3 Nk3 + 3

4N
2k2 +

935
2 Nk2 + 29

24N
2k + 7241

20 Nk + 3
4N

2 +

223
2 N

• Q4,N (11N + 128k+ 104) = 2N + 121

• Q4,N (11N + 128k + 105) = 2N

• Q4,N (11N + 128k + 106) = 128

• Q4,N (11N+128k+107) = 128
15 Nk

5 +

80Nk4 + 1
6N

2k3 + 851
3 Nk3 + 7

8N
2k2 +

1909
4 Nk2 + 4

3N
2k + 1859

5 Nk + 3
4N

2 +

223
2 N

• Q4,N (11N + 128k+ 108) = 2N + 121

• Q4,N (11N + 128k + 109) = 2N

• Q4,N (11N + 128k + 110) = 128

• Q4,N (11N+128k+111) = 128
15 Nk

5 +

248
3 Nk4+ 1

6N
2k3+ 931

3 Nk3+ 7
8N

2k2+

6715
12 Nk2 + 4

3N
2k + 6947

15 Nk + 3
4N

2 +

289
2 N

• Q4,N (11N + 128k+ 112) = 2N + 121

• Q4,N (11N + 128k + 113) = 2N

• Q4,N (11N + 128k + 114) = 128
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• Q4,N (11N+128k+115) = 128
15 Nk

5 +

248
3 Nk4+ 1

6N
2k3+ 923

3 Nk3+ 7
8N

2k2+

6595
12 Nk2 + 4

3N
2k + 2259

5 Nk + 3
4N

2 +

281
2 N

• Q4,N (11N + 128k+ 116) = 2N + 121

• Q4,N (11N + 128k + 117) = 2N

• Q4,N (11N + 128k + 118) = 128

• Q4,N (11N+128k+119) = 128
15 Nk

5 +

256
3 Nk4+ 1

6N
2k3+325Nk3+ 7

8N
2k2+

7055
12 Nk2 + 19

12N
2k+ 15209

30 Nk+N2 +

172N

• Q4,N (11N + 128k+ 120) = 2N + 121

• Q4,N (11N + 128k + 121) = 2N

• Q4,N (11N + 128k + 122) = 128

• Q4,N (11N+128k+123) = 128
15 Nk

5 +

256
3 Nk4+ 1

6N
2k3+325Nk3+ 7

8N
2k2+

7115
12 Nk2 + 19

12N
2k+ 15719

30 Nk+N2 +

184N

• Q4,N (11N + 128k+ 124) = 2N + 121

• Q4,N (11N + 128k + 125) = 2N

• Q4,N (11N + 128k + 126) = 128

• Q4,N (11N+128k+127) = 128
15 Nk

5 +

88Nk4 + 1
6N

2k3 +353Nk3 + 7
8N

2k2 +

2709
4 Nk2 + 19

12N
2k+ 18629

30 Nk+N2 +

222N

Some sporadic values:

• Q4,N (12N + 1) = 1
4026531840N

6 +

33
134217728N

5 + 6137
100663296N

4 +

96505
16777216N

3 + 18629863
83886080N

2 + 29631325
8388608 N

• Q4,N (12N + 2) = 2N + 121

• Q4,N (12N + 3) = 2N

• Q4,N (12N + 4) = 132

• Q4,N (12N + 5) = 1
4026531840N

6 +

33
134217728N

5 + 6137
100663296N

4 +

96505
16777216N

3 + 18629863
83886080N

2 + 29631325
8388608 N

• Q4,N (12N + 6) = 2N + 121

• Q4,N (12N + 7) = 2N

• Q4,N (12N + 8) = 128

• Q4,N (12N + 9) = 1
4026531840N

6 +

103
402653184N

5 + 2427
33554432N

4 +

385399
50331648N

3 + 75564389
251658240N

2 + 53420809
8388608 N

• Q4,N (12N + 10) = 2N + 121

• Q4,N (12N + 11) = 2N

• Q4,N (12N + 12) = 128

• Q4,N (12N + 13) = 1
4026531840N

6 +

107
402653184N

5 + 2723
33554432N

4 +

478979
50331648N

3 + 103812629
251658240N

2 + 43086005
8388608 N

• Q4,N (12N + 14) = 2N + 121

• Q4,N (12N + 15) = 2N

• Q4,N (12N + 16) = 144
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• Q4,N (12N + 17) = 1
4026531840N

6 +

33
134217728N

5 + 6649
100663296N

4 +

104185
16777216N

3+101288629
251658240N

2+152418141
8388608 N

• Q4,N (12N + 18) = 2N + 121

• Q4,N (12N + 19) = 2N

• Q4,N (12N + 20) = 152

• Q4,N (12N + 21) = 1
4026531840N

6 +

33
134217728N

5 + 6265
100663296N

4 +

100473
16777216N

3 + 58269109
251658240N

2 + 46241885
8388608 N

• Q4,N (12N + 22) = 2N + 121

• Q4,N (12N + 23) = 2N

• Q4,N (12N + 24) = 2N + 1441

• Q4,N (12N + 25) = 1
6291456N

5 +

31
786432N

4 + 1795
786432N

3 + 57503
196608N

2 −
77909
131072N

• Q4,N (12N + 26) = 2N + 121

• Q4,N (12N + 27) = 2N

• Q4,N (12N + 28) = 184

• Q4,N (12N + 29) = 1
4026531840N

6 +

29
134217728N

5 + 4241
100663296N

4 +

108653
16777216N

3 + 5954103
83886080N

2− 118851495
8388608 N

• Q4,N (12N + 30) = 2N + 121

• Q4,N (12N + 31) = 2N

• Q4,N (12N + 32) = 2N + 2241

• Q4,N (12N + 33) = 1
6291456N

5 −
5

786432N
4 + 2395

786432N
3 − 13645

196608N
2 +

6832347
131072 N

• Q4,N (12N + 34) = 2N + 121

• Q4,N (12N + 35) = 2N

• Q4,N (12N + 36) = 8N + 1721

• Q4,N (12N + 37) = 3
8N

2 − 71
4 N

• Q4,N (12N + 38) = 2N + 121

• Q4,N (12N + 39) = 2N

• Q4,N (12N + 40) = 2N + 2641

• Q4,N (12N + 41) = 1
6291456N

5 −
7

262144N
4 + 6715

786432N
3 − 41471

65536N
2 +

8943259
131072 N

• Q4,N (12N + 42) = 2N + 121

• Q4,N (12N + 43) = 2N

• Q4,N (12N + 44) = 8N + 2681

• Q4,N (12N + 45) = 3
8N

2 − 131
4 N

• Q4,N (12N + 46) = 2N + 121

• Q4,N (12N + 47) = 2N

• Q4,N (12N + 48) = 12N + 1481

• Q4,N (12N + 49) = 1
8N

2 + 11
4 N

• Q4,N (12N + 50) = 0
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Appendix F

List of OEIS Sequences Referenced

This dissertation mentions the following sequences in the OEIS [31]:

A000032 (p. 5)

A000045 (p. 5)

A004001 (p. 12)

A005185 (pp. 6, 193)

A046699 (p. 11)

A052928 (p. 57)

A057198 (p. 74)

A063882 (p. 14)

A087777 (p. 14)

A141310 (p. 158)

A188670 (p. 10)

A244477 (p. 9)

A264756 (pp. 56, 170)

A264757 (p. 57)

A264758 (p. 65)

A268368 (p. 53)

A269328 (p. 56)

A272610 (p. 86)

A272611 (p. 83)

A272612 (p. 83)

A272613 (p. 83)

A274055 (p. 112)

A274058 (p. 121)

A275153 (p. 55)

A275361 (p. 55)

A275362 (p. 55)

A275363 (p. 57)

A275365 (pp. 56, 158)

A278055 (p. 74)

A278056 (p. 194)

A278057 (p. 194)

A278058 (p. 195)

A278059 (p. 195)

A278060 (p. 100)

A278061 (p. 196)

A278062 (p. 196)

A278063 (p. 100)

A278064 (p. 100)

A278065 (p. 197)

A278066 (p. 155)

A278068 (p. 152)

A283878 (pp. 56, 170)

http://oeis.org/A000032
http://oeis.org/A000045
http://oeis.org/A004001
http://oeis.org/A005185
http://oeis.org/A046699
http://oeis.org/A052928
http://oeis.org/A057198
http://oeis.org/A063882
http://oeis.org/A087777
http://oeis.org/A141310
http://oeis.org/A188670
http://oeis.org/A244477
http://oeis.org/A264756
http://oeis.org/A264757
http://oeis.org/A264758
http://oeis.org/A268368
http://oeis.org/A269328
http://oeis.org/A272610
http://oeis.org/A272611
http://oeis.org/A272612
http://oeis.org/A272613
http://oeis.org/A274055
http://oeis.org/A274058
http://oeis.org/A275153
http://oeis.org/A275361
http://oeis.org/A275362
http://oeis.org/A275363
http://oeis.org/A275365
http://oeis.org/A278055
http://oeis.org/A278056
http://oeis.org/A278057
http://oeis.org/A278058
http://oeis.org/A278059
http://oeis.org/A278060
http://oeis.org/A278061
http://oeis.org/A278062
http://oeis.org/A278063
http://oeis.org/A278064
http://oeis.org/A278065
http://oeis.org/A278066
http://oeis.org/A278068
http://oeis.org/A283878
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A283879 (p. 57)

A283880 (p. 57)

A283881 (p. 57)

A283882 (p. 118)

A283883 (p. 118)

A283884 (pp. 124, 127)

A283885 (p. 124)

A283886 (pp. 127, 130)

A283887 (p. 127)

A283888 (p. 127)

A283889 (p. 143)

A283890 (p. 143)

A283891 (p. 144)

A283892 (p. 144)

A283893 (p. 153)

A283894 (p. 156)

A283895 (p. 158)

A283896 (p. 152)

A283897 (p. 151)

A283897 (p. 151)

A283898 (p. 165)

A283899 (p. 164)

A283900 (p. 164)

A283901 (p. 167)

A283902 (p. 168)

A283903 (p. 92)

A283904 (p. 58)

A284053 (p. 91)

A284054 (p. 90)

A284429 (pp. 56, 158)

http://oeis.org/A283879
http://oeis.org/A283880
http://oeis.org/A283881
http://oeis.org/A283882
http://oeis.org/A283883
http://oeis.org/A283884
http://oeis.org/A283885
http://oeis.org/A283886
http://oeis.org/A283887
http://oeis.org/A283888
http://oeis.org/A283889
http://oeis.org/A283890
http://oeis.org/A283891
http://oeis.org/A283892
http://oeis.org/A283893
http://oeis.org/A283894
http://oeis.org/A283895
http://oeis.org/A283896
http://oeis.org/A283897
http://oeis.org/A283897
http://oeis.org/A283898
http://oeis.org/A283899
http://oeis.org/A283900
http://oeis.org/A283901
http://oeis.org/A283902
http://oeis.org/A283903
http://oeis.org/A283904
http://oeis.org/A284053
http://oeis.org/A284054
http://oeis.org/A284429
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Appendix G

List of Supplemental Computer Content

This appendix alphabetically lists all of the Maple programs and other external text

files that are referenced in this thesis.

File Type Page(s)

Hof1thruN.txt Output 115

hof small periods.txt Output 57

N2N2 17 2 Sporadic.txt Output 156

N2N2 41 2 Sporadic.txt Output 157

N2N2 mod24 1.txt Output 151

N2N2 mod24 9.txt Output 151

N2N2 mod24 13.txt Output 151

N2N2 mod24 21.txt Output 151

N4N4 Directory 163

N4N4 explore.txt Maple 151, 154, 155 157

nicehof.txt Maple 19, 172

nonstdhof.txt Maple 96, 120, 150, 150, 163, 171, 172

ProveTriHof1thruN.txt Maple 126, 127, 130, 131, 134

RSTsearch.txt Maple 88

slowsearch.txt Maple 145, 171

slowseqs.txt Output 145, 171

TriHof193Sporadic.txt Output 126

TriHof3442Sporadic.txt Output 127

TriHof19395final.txt Output 130

TriHof19395Lfinal.txt Output 130

http://github.com/nhf216/thesis/Hof1thruN.txt
http://github.com/nhf216/thesishof_small_periods.txt
http://github.com/nhf216/thesisN2N2_17_2_Sporadic.txt
http://github.com/nhf216/thesisN2N2_41_2_Sporadic.txt
http://github.com/nhf216/thesisN2N2_mod24_1.txt
http://github.com/nhf216/thesisN2N2_mod24_9.txt
http://github.com/nhf216/thesisN2N2_mod24_13.txt
http://github.com/nhf216/thesisN2N2_mod24_21.txt
http://github.com/nhf216/thesis/N4N4
http://github.com/nhf216/thesisN4N4_explore.txt
http://github.com/nhf216/thesis/nicehof.txt
http://github.com/nhf216/thesis/nonstdhof.txt
http://github.com/nhf216/thesis/ProveTriHof1thruN.txt
http://github.com/nhf216/thesis/RSTsearch.txt
http://github.com/nhf216/thesis/slowsearch.txt
http://github.com/nhf216/thesis/slowseqs.txt
http://github.com/nhf216/thesis/TriHof193Sporadic.txt
http://github.com/nhf216/thesis/TriHof3442Sporadic.txt
http://github.com/nhf216/thesis/TriHof19395final.txt
http://github.com/nhf216/thesis/TriHof19395Lfinal.txt
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File Type Page(s)

TriHof20830final.txt Output 134

TriHof20830Lfinal.txt Output 134

TriHof20830Lmid.txt Output 134

TriHof20830mid.txt Output 134

TriHof27298final.txt Output 131

TriHof27298Lfinal.txt Output 131

TriHof1thruN.txt Output 122

trihofform.txt Output 120

http://github.com/nhf216/thesis/TriHof20830final.txt
http://github.com/nhf216/thesis/TriHof20830Lfinal.txt
http://github.com/nhf216/thesis/TriHof20830Lmid.txt
http://github.com/nhf216/thesis/TriHof20830mid.txt
http://github.com/nhf216/thesis/TriHof27298final.txt
http://github.com/nhf216/thesis/TriHof27298Lfinal.txt
http://github.com/nhf216/thesis/TriHof1thruN.txt
http://github.com/nhf216/thesis/trihofform.txt


226

Bibliography

[1] J.P. Allouche and J. Shallit, A variant of Hofstadter’s sequence and finite automata, arXiv preprint

arXiv:1103.1133 (2011).

[2] David H Bailey, Jonathan Borwein, Neil Calkin, Roland Girgensohn, Russell Luke, and Victor

Moll, Experimental mathematics in action, Vol. 174, AK Peters, Natick, MA, 2007.

[3] B. Balamohan, A. Kuznetsov, and Stephen Tanny, On the behavior of a variant of Hofstadter’s

Q-sequence, J. Integer Seq. 10 (2007), 29.
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