
AN EXPERIMENTAL WALK IN PATTERNS,
PARTITIONS AND WORDS

By

MINGJIA YANG

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Doron Zeilberger

And approved by

New Brunswick, New Jersey

May, 2018

ABSTRACT OF THE DISSERTATION

An Experimental Walk in Patterns, Partitions and Words

By MINGJIA YANG

Dissertation Director: Doron Zeilberger

Experimental mathematics, broadly speaking, is the philosophy that computers are a

valuable tool that should be used extensively in mathematical research. This thesis

explores topics related to partitions, patterns and words, incoporating the spirit of

experimental math. There are four main projects in this thesis, and we will take a walk

from the least experimental to the most experimental.

In the first project, we extend Shar and Zeilberger’s work [SZ] on generating func-

tions enumerating 123-avoiding words (with r-occurrences of each letter) to words (with

r-occurrences of each letter) having exactly one 123 pattern. After a system of equa-

tions has been established (by human means), we use computer to find the defining

algebraic equation for generating functions for words with r occurrences of each letter

and with exactly one 123 pattern, and derive relevant recurrences.

Next, we move on to explore consecutive pattern avoidance, in particular, words that

avoid the increasing consecutive pattern 12 · · · r for any r ≥ 2. We use computer to

conjecture the corresponding generating function and then tweak the Goulden-Jackson

cluster method to prove the result by human means. We also treat the more general

case of counting words with a specified number of the pattern of interest.

After these, we dive into the world of partitions. More precisely, we introduce

the combinatorial object which we call “relaxed partitions”. A relaxed partition of a

ii

positive integer n is a finite sequence of positive integers λ1, λ2, ..., λk (λi − λi+1 ≥ r)

whose sum is equal to n, where r is allowed to be negative (note that if we only allow r

to be non-negative, then we get traditional partitions). We use computer to conjecture

and prove the formula for the number of r-partitions (r < 0) with fixed first part and

number of parts. We also use computer to explore corresponding generating functions.

Last but not least, we go back to traditional partitions and design an efficient

algorithm to count restricted partitions. We start out with a more basic algorithm and

then generalize it to account for more complicated partitions, like in the Kanade-Russell

conjectures/theorems. We then make use of Frank Garvan’s q-series Maple package and

Amarel cluster computing to search for new partition identities. Many new identities

have been discovered and (at least) one of them generalizes to an infinitely family.

iii

Acknowledgements

All the acknowledgments.

iv

Dedication

To...

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

1. Introduction . 1

1.1. Words that contain the pattern 123 exactly once 2

1.2. Increasing consecutive patterns in words 3

1.3. Relaxed partitions . 3

1.4. Systematic counting of restricted partitions and searching for new parti-

tion identities . 4

2. Words that contain the pattern 123 exactly once 6

2.1. Introduction . 6

2.2. Enumeration of words that contain the pattern 123 exactly once 8

2.3. Generating functions . 12

2.4. Using Maple packages . 16

3. Increasing consecutive patterns in words 18

3.1. Introduction . 18

3.2. Method, experimentation, and results 20

3.3. Proofs by tweaking the Goulden-Jackson cluster method 28

4. Relaxed partitions . 33

4.1. Introduction . 33

4.2. The recurrence relation for F (M,N, r, q) 35

4.3. Using Maple to discover (and prove!) patterns for F (M,N, r, 1) 35

vi

4.4. Can we find a pattern for F (M,N, r, q)? 38

4.5. Future work and connection to other combinatorial objects 41

5. Systematic counting of restricted partitions and searching for new

partition identities . 43

5.1. Introduction . 43

5.2. Adapting the Goulden-Jackson cluster method 47

5.3. A more straight-forward approach . 50

5.4. Generalization . 53

5.5. Searching for new partition identities . 57

5.6. Future work . 63

References . 65

vii

1

Chapter 1

Introduction

Francis Su said in his book Mathematics for Human Flourishing: Mathematics is the

science of patterns and the art of engaging the meaning of patterns.

To me, experimental mathematics, is an art of using computers in the discovery

and study of patterns. With the ever-increasing power of modern computers and the

flexibility to program in a desired mathematical software (in our case, Maple), the way

we do mathematical research is changing. To see an interesting philosophical discussion

of experimental mathematics, please read the first chapter of Experimental Mathematics

in Action.

This thesis, in particular Chapter 3-5, highlights the usefulness of computers in

discovering patterns. While a large chunk of Chapter 2 is done by human analysis,

computer is indispensable in helping us solve a systems of equations and find defining

algebraic equations, as well as deriving recurrences. This chapter is least experimen-

tal in the sense that computer is mainly used in “solving” things, not “discovering”

things. Also, we use existing Maple packages to a large extent. In Chapter 3, we use

an existing Maple package implementing the Goulden-Jackson cluster method, along

with a new package written by us to discover patterns and then prove them by human

means. In Chapter 4, the spirit of “experiment” becomes even more apparent. First

of all, the combinatorial object itself is an experiment–we introduce what we call “re-

laxed partitions”, something that can be seen as a traditional integer partitions with

some conditions relaxed. We program in Maple using an easy recurrence relation, and

conjecture (and prove!) using the program for q = 1 case. For the q case, we also

program and experiment in Maple to find patterns. Intriguing patterns have appeared

in our experiments, although an explicit form is yet to be discovered. Chapter 5 is

2

probably the most experimental in the sense that after devising an efficient algorithm

for enumeration of restricted partitions, all the searching for new partition identities

are done by computer, actually, by a cluster of computers! Without Amarel cluster

computing available at Rutgers, the searching process would have gone on for years

instead of days.

Below I will summarize the material in the four chapters and how we use experi-

mental math on this journey.

1.1 Words that contain the pattern 123 exactly once

Recall that a word w = w1...wk is an ordered list of letters on some alphabet. To say

a word contains a pattern (a certain permutation of {1, ...,m}) σ is to say there exist

1 ≤ i1 < i2 < ... < im ≤ k such that the subword wi1 ...wim is order isomorphic to σ

(for example, 246 is order isomorphic to 123). A word avoids the pattern σ if it does

not contain it.

Enumeration problems related to words avoiding patterns as well as permutations

that contain the pattern 123 exactly once have been studied in great detail. However,

the problem of enumerating words that contain the pattern 123 exactly once is new and

is the focus of this chapter. Previously, Doron Zeilberger provided a shortened version

of Alexander Burstein’s combinatorial proof of John Noonan’s theorem that the number

of permutations with exactly one 321 pattern is equal to 3
n

(
2n
n+3

)
. Surprisingly, a similar

method can be directly adapted to words. We use this method to find a formula

enumerating the words with exactly one 123 pattern.

Further inspired by Nathaniel Shar and Zeilberger’s paper on generating functions

enumerating 123-avoiding words with r occurrences of each letter, we are able to set up a

system of equations and use an existing algorithm on Maple to find the defining algebraic

equation for generating functions for words with r occurrences of each letter and with

exactly one 123 pattern, for r = 2 and 3. We then use the SCHUTZENBERGER

Maple package written by Doron Zeilberger to derive recurrences for those algebraic

equations.

3

1.2 Increasing consecutive patterns in words

Next, we go from classical patterns to consecutive patterns. Recall a word π = π1 · · ·πn

avoids a consecutive pattern σ = σ1 · · ·σk if none of the n− k+ 1 length-k consecutive

subwords, πiπi+1 · · ·πi+k−1 of π, reduces to σ.

In particular, we use an existing Maple package implementing the Goulden-Jackson

cluster method, along with a newly written package to explore how to enumerate words

in 1m1 · · ·nmn that avoid the increasing consecutive pattern 12 · · · r for any r ≥ 2. With

not a huge amount of effort, patterns emerge and a closed form is discovered. We then

tweak the Goulden-Jackson cluster method to prove the result by hand.

By simple manipulation of the result and symmetry, we get an O(ns+1) algorithm

to enumerate words in 1s · · ·ns, avoiding the consecutive pattern 1 · · · r, for any s, and

any r.

we also treat the more general case of counting words with a specified number of

the pattern of interest (the avoiding case corresponding to zero appearances). Although

the proof idea of the avoidance case extend to the general case, and we are able to come

up with an explicit form for the general case by hand, we use computer to confirm our

result.

1.3 Relaxed partitions

One of the cornerstones of enumerative combinatorics (and number theory!) are integer

partitions. Recall that a partition of a non-negative integer n is a list of integers

(λ1, . . . , λk) such that λ1 ≥ · · · ≥ λk ≥ 1 and λ1 + · · · + λk = n. In this chapter, we

relax the condition λi − λi+1 ≥ 0 to λi − λi+1 ≥ r where r can be negative. We also

call these r-partitions. For example, (2, 3, 1, 1) is a (−1)-partition of 7.

With the help with OEIS, we are able to find the generating function for the number

of (−1)-partitions of the integer n. We present a short bijective proof of this and

generalize the result to general r-partitions where r is negative.

We then study “restricted” r-partitions with the first part and the number of parts

fixed. This is the part where the fun of computer experimentation begins.

4

Let ar(M,N, n) be the number of r-partitions of n with the first part equal to M

and exactly N parts. Let F (M,N, r, q) be the generating function for ar(M,N, n).

Using a simple recurrence relation F (M,N, r, q) satisfies, we program in Maple (using

dynamical programming) to generate a specific F (M,N, r, q) with input M , N , r and

q. Then we set q = 1 to explore the total number of r-partitions with the first part

equal to M and exactly N parts.

Basically, we fix N and range M , and use our program to conjecture a polynomial

in M for a fixed N , and then generalize. This will probably take notoriously long to do

by hand, if possible–first we need to find the number sequence, which can easily result

in error, then we need to guess the polynomial from a sequence of numbers, which is

not at all easy to do by hand.

However, using Maple, a clean and nice pattern quickly emerges and before long,

a “meta-pattern” emerges and we have a conjecture. We also prove the result using

Maple by verifying that the conjectured formula satisfies the recurrence relation.

For the general q case, we have not yet found an explicit formula for F (M,N, r, q).

However, by Maple experimentation, an intriguing relationship between the coefficients

of a linear transformation of the Gaussian polynomials and F (M,N, r, q) comes to light.

By further experimentation and the help of OEIS, we also discover connection be-

tween F (M,N,−1, 1) with Catalan numbers and Young Tableau.

1.4 Systematic counting of restricted partitions and searching for new

partition identities

As mentioned before, this chapter is the most “experimental”, in the sense that com-

puter is not just used as a valuable tool for conducting mathematical research, but is

an indispensable copilot. First, we give a definition for “difference condition”.

Definition 1.1. A difference condition is a list a = [a1, . . . , ar] of length r ≥ 1 of

non-negative integers. A partition λ = (λ1, . . . , λk) contains the difference condition

a = [a1, . . . , ar] if there exists 1 ≤ i ≤ k − r such that

λi − λi+1 = a1 , λi+1 − λi+2 = a2 , . . . λi+r−1 − λi+r = ar .

5

A partition avoids the difference condition if it does not contain the difference

condition. A partition avoids the set of difference conditions A, if it avoids every

difference condition in A. For example, partitions whose adjacent parts differ by at

least 2 is equivalent to partitions that avoid {[0], [1]}.

Our first goal of this chapter is to devise an efficient algorithm, that inputs an

arbitrary set of difference conditions, P , and an arbitrary positive integer N , and

outputs the first N terms of the sequence enumerating partitions of n avoiding the set

of difference conditions P .

We use two approaches to attack this problem. One approach is to adapt the

celebrated Goulden-Jackson ([8], [?]) method to this new context. The Goulden-Jackson

method traditionally only deals with words. We extend this method to partitions. This

approach (described in Section 5.2) is of considerable theoretical interest, but turns out

to be less efficient than a more straightforward approach (described in Section 5.3),

where the basic idea is to cut off the largest part in the partition and get a system of

recurrences and use dynamical programming. This algorithm can be made quadratic

in time and memory.

Next, in Section 5.4, we generalize this algorithm in order to deal with partitions

with restrictions depending also on congruence conditions, for example, in Schur’s cele-

brated 1926 theorem (see [An], p. 116), or the more complicated restrictions featuring

in Shashank Kanade and Matthew C. Russell’s intriguing conjectures ([KS], see also

[S], pp. 149-152).

Finally, with this algorithm and help of Frank Garvan’s q-series Maple package, we

search over various parameter restrictions, using Amarel cluster computing https:

//oarc.rutgers.edu/amarel/. We have already found many seemingly new Rogers-

Ramanujan type identities, and has generalized one of them to an infinite family. This is

an ongoing research project, and while it is a long shot, we hope that the new identities

that we discover will help us in uncovering the elusive big picture of where and why a

certain type of partition identities exist.

https://oarc.rutgers.edu/amarel/
https://oarc.rutgers.edu/amarel/

6

Chapter 2

Words that contain the pattern 123 exactly once

We start with classical patterns. This chapter is adapted from the article:

2.1 Introduction

Recall that word w = w1...wk is an ordered list of letters on some alphabet. To say

a word contains a pattern (a certain permutation of {1, ...,m}) σ is to say there exist

1 ≤ i1 < i2 < ... < im ≤ k such that the subword wi1 ...wim is order isomorphic to σ

(for example, 246 is order isomorphic to 123). A word avoids the pattern σ if it does

not contain it.

For a lucid history on the study of forbidden patterns, readers are welcome to refer

to the introduction of Shar and Zeilberger’s paper [SZ].

We say that a word w in the alphabet {a1, a2, ..., an} (a1 < a2 < ... < an) is

associated with the list [l1, ..., ln] if w has li many ai’s in it, for i from 1 to n. For example,

231113233 is a word associated with the list [3, 2, 4], and 223344 is a word associated

with the list [2, 2, 2]. When not specified, our default alphabet will be {1, ..., n} for

some n ≥ 1.

In the second section, we will generalize Zeilberger’s bijective proof [Z1] (a short-

ened version of Alexander Burstein’s elegant combinatorial proof [Bu]) that the number

of permutations of {1, ..., n} that contain the pattern 321 exactly once equals 3
n

(
2n
n+3

)
and apply it to words. Although no closed form formula was found, we have a sum-

mation whose summands are expressions involving enumeration of 123-avoiding words

(for details, see Theorem 1).

In the third section, we will study, using ideas from the second section, how to ex-

tend Shar and Zeilberger’s work [SZ] on generating functions enumerating 123-avoiding

7

words (with r occurrences of each letter) to words (with r occurrences of each letter)

having exactly one pattern 123. More precisely, for every positive integer r, Shar and

Zeilberger found an algorithm for finding the defining algebraic equation for the ordi-

nary generating function enumerating 123-avoiding words of length rn where each of

the n letters of {1, 2, ..., n} occurs exactly r times.

We will present an algorithm for finding an analogue of that, that is, a defining

algebraic equation for the ordinary generating function enumerating words of length

rn where each of the n letters of {1, 2, ..., n} occurs exactly r times, now with exactly

one pattern 123. We used the same (as in Shar and Zeilberger’s paper [SZ]) memory-

intensive, and exponential time, Buchberger’s algorithm for finding Gröbner bases, and

our computer (running Maple) found the defining algebraic equation for r = 2:

x4 (x+ 4)2 F 4 + 2x3 (x+ 4) (11x+ 23)F 3 − 4x
(
3x4 − 10x3 − 97x2 − 146x+ 1

)
F 2

+
(
−168x4 − 840x3 − 744x2 + 336x− 24

)
F + 144x3 (x+ 2) = 0.

This took about a second. The minimal algebraic equation for r = 3 has 12 as the

highest power for F and the computation took about 20 seconds. Interested readers

can find it on the website accompanying this chapter: http://sites.math.rutgers.

edu/~my237/One123. The case when r = 4 already took too long to compute (more

than a month).

Now, let ar(n) be the number of words of length rn where each of the n letters of

{1, 2, ..., n} occurs exactly r times, with exactly one pattern 123. In the last section,

we will use the Maple package SCHUTZENBERGER to derive recurrence relations

for our sequences. Having obtained the defining algebraic equations of the generating

functions for ar(n) in the cases r = 2 and r = 3, Manuel Kauers kindly helped us

in finding the asymptotics for our sequences a2(n) and a3(n) (thanks to Kauers, the

constants in front are fully rigorous and were computed via a step by step procedure;

for details, please refer to [KP]):

a2(n) =
3(13−

√
21)

49
· 1√

π
· 12n · n−3/2 · (1 +O(n−1)),

http://sites.math.rutgers.edu/~my237/One123
http://sites.math.rutgers.edu/~my237/One123

8

a3(n) =
−7 + 6

√
7

56
· 1√

π
· 32n · n−3/2 · (1 +O(n−1)).

We noticed how similar these are to the asymptotics of the sequences enumerating

123-avoiding words with r occcurences of each letter, given on page 8 of [SZ], and we

have a similar conjecture as on page 3 of [SZ] (the Shar-Zeilberger conjecture was proved

by Guillaume Chapuy [C]) that ar(n) was asymptotically Cr · ((r+1)2r)n ·n−3/2, where

Cr is a constant depending on r (possibly 1√
π

times a fraction of expressions involving

square roots).

2.2 Enumeration of words that contain the pattern 123 exactly once

2.2.1 Zeilberger’s shortened version of Bursteain’s proof on permuta-

tions containing 321 exactly once

In a paper published in 2011 [Bu], Burstein gave an elegant combinatorial proof of John

Noonan’s theorem [N] that the number of permutations of {1, ..., n} that contain the

pattern 321 exactly once equals 3
n

(
2n
n+3

)
. Zeilberger [Z1] was able to shorten Burstein’s

proof by using a bijection between a permutation with exactly one pattern 321, denoted

as π1cπ2bπ3aπ4 (a < b < c), with the pair (π1bπ2a, cπ3bπ4) where π1bπ2a is a 321-

avoiding permutation of {1, ..., b} and cπ3bπ4 is a 321-avoiding permutation of {b, ..., n}.

Readers are encouraged to read Zeilberger’s proof as a motivation and warm-up. Below

we will see how we can use the same logic and apply it to words.

2.2.2 Extension to words

Theorem 2.1. Let A(l1, ..., ln) be the number of 123-avoiding words associated with the

list [l1, ..., ln]. And let B(l1, ..., ln) be the number of words associated with list [l1, ..., ln]

that contain the pattern 123 exactly once. Then we have

B(l1, ..., ln) =
n−1∑
b=2

lb−1∑
j=0

(A(l1, ..., lb−1, j + 1)−A(l1, ..., lb−1, j))

·(A(lb−j, lb+1, ..., ln)−A(lb−j−1, lb+1, ..., ln)).

9

Before we start the proof, let us first define what a good pair of words is. Fix any

2 ≤ b ≤ n− 1 and a list [l1, ..., ln]. For any 0 ≤ j ≤ lb − 1 , the pair of words (σ1, σ2) is

good if σ1 is a 123-avoiding word in {1, ..., b} associated with the list [l1, ..., lb−1, j + 1]

that does not start with b and σ2 is a 123-avoiding word in {b, ..., n} associated with the

list [lb − j, lb+1, ..., ln] that does not end with b. For example, if [l1, ..., ln] = [2, 2, 2, 2],

and b = 2, then (112, 422433) is a good pair. We will also say σi (i = 1, 2) is good if

it belongs to a good pair (σ1, σ2) (Note the definitions for σ1 and σ2 to be good are

different, but things will be made clear in context).

Proof. Any word w associated with the list [l1, l2, ..., ln] with exactly one pattern 123

can be written as π1aπ2bπ3cπ4 (a < b < c), where abc is the unique 123 pattern. All

entries to the left of b, except a, must be greater than or equal to b, and all the entries

to the right of b, except for c, must be smaller than or equal to b. Also, π2 and π3 must

not contain any b’s, otherwise there will be another 123 pattern. Observe that aπ3bπ4

is a word in {1, 2, ..., b} avoiding pattern 123 and does not start with b and π1bπ2c is

a word in {b, b + 1, ..., n} avoiding pattern 123 and does not end with b. Therefore

(aπ3bπ4, π1bπ2c) is a good pair.

We now verify that there is indeed a bijection from the set of words having exactly

one pattern 123 to the set of good pairs (σ1, σ2) (for 2 ≤ b ≤ n− 1 and 0 ≤ j ≤ lb− 1).

Fix b and j (2 ≤ b ≤ n−1, 0 ≤ j ≤ lb−1). Given a word π1aπ2bπ3cπ4 (that has ex-

actly one 123 pattern: abc), we can easily map it to a unique good pair (aπ3bπ4, π1bπ2c)

by first finding out what a, c are. This is easy since we have only one 123 pattern. Con-

versely, given a good pair (σ1, σ2) , we take the first letter of σ1 as “a” and the leftmost

occurrence of b as “b” and get π3 and π4 (σ1 = aπ3bπ4). Similarly, we take the last letter

of σ2 as “c” and the rightmost occurrence of b as “b” and get π1 and π2 (σ2 = π1bπ2c).

Putting everything together we get a unique π1aπ2bπ3cπ4.

Now, for any b and j, the number of good σ1 is A(l1, ..., lb−1, j+1)−A(l1, ..., lb−1, j)

and the number of good σ2 is A(lb − j, lb+1, ..., ln)−A(lb − j − 1, lb+1, ..., ln). Therefore

the number of words π1aπ2bπ3cπ4 with exactly one pattern 123 is: (A(l1, ..., lb−1, j +

1) − A(l1, ..., lb−1, j)) · (A(lb − j, lb+1, ..., ln) − A(lb − j − 1, lb+1, ..., ln)). Summing over

10

all b and j, we get the desired result.

Corollary 2.2. B(l1, ..., ln) = B(ln, ..., l1).

Proof. By Theorem 1, we have

B(l1, ..., ln) =
n−1∑
b=2

lb−1∑
j=0

(A(l1, ..., lb−1, j + 1)−A(l1, ..., lb−1, j))

·(A(lb−j, lb+1, ..., ln)−A(lb−j−1, lb+1, ..., ln)) (1)

and

B(ln, ..., l1) =

n−1∑
b=2

ln−b+1−1∑
j=0

(A(ln, ..., ln−b+2, j + 1)−A(ln, ..., ln−b+2, j))

·(A(ln−b+1−j, ln−b, ..., l1)−A(ln−b+1−j−1, ln−b, ..., l1)). (2)

When b = k (2 ≤ k ≤ n− 1), the inner sum of (1) becomes

lk−1∑
j=0

(A(l1, ..., lk−1, j + 1)−A(l1, ..., lk−1, j))

·(A(lk−j, lk+1, ..., ln)−A(lk−j−1, lk+1, ..., ln)) (3)

while when b = n−k+ 1 (2 ≤ k ≤ n−1, notice this is the “symmetric counterpart”

of b = k), the inner sum of (2) becomes

lk−1∑
j=0

(A(ln, ..., lk+1, j + 1)−A(ln, ..., lk+1, j))

·(A(lk−j, lk−1, ..., l1)−A(lk−j−1, lk−1, ..., l1)). (4)

We only need to show (3) = (4) in order to show (1) = (2). Now notice that when

j = t (0 ≤ t ≤ lk − 1), the summand of (3) is

(A(l1, ..., lk−1, t+1)−A(l1, ..., lk−1, t))·(A(lk−t, lk+1, ..., ln)−A(lk−t−1, lk+1, ..., ln)) (5)

and when j = lk − 1 − t (the “symmetric counterpart” of j = t), the summand of

(4) is

(A(ln, ..., lk+1, lk−t)−A(ln, ..., lk+1, lk−t−1))·(A(t+1, lk−1, ..., l1)−A(t, lk−1, ..., l1)). (6)

11

After a small rearrangement, we can see (5) = (6) because of an important result

that A(l1, ..., ln) is symmetric in its arguments (this is not true in general for B(l1, ..., ln);

for details of this result, see [SZ], page 4). Therefore as j ranges from 0 to lk − 1, we

have (3) = (4). And as b ranges from 0 to n− 1, we have (1) = (2).

Corollary 2.3. Fix a list L := [l1, ..., ln]. The number of words associated with L

that contain exactly one pattern 123 (i.e., B(l1, ..., ln)) is equal to the number of words

associated with L that contain exactly one pattern 321.

Proof. Let S1 be the set of words associated with [l1, ..., ln] that contain exactly one

pattern 123 and S2 be the set of words associated with [ln, ..., l1] that contain exactly

one pattern 321. Take any w1 ∈ S1, we can map it to a word w2 associated with

[ln, ..., l1] by mapping letter i to letter n− i+ 1 (for all i from 1 to n). For example, the

word 121322 is mapped to 323122. Observe that w2 must contain exactly one pattern

321, which occurs at the same location in w2 as the location of the 123 pattern in w1.

Therefore w2 ∈ S2. Clearly this is a bijection from S1 to S2. So |S1| = |S2|. This along

with 2.2 gives 2.3.

Remark 1. One may wonder if the number of words associated with [l1, ..., ln] that

contain exactly one pattern 123 is equal to the number of words associated with [l1, ..., ln]

that contain exactly one pattern 132. This is not the case (if this were the case, we would

have an analogue of the result that the 123-avoiding words associated with [l1, ..., ln] are

equinumerous with the 132-avoiding words associated with [l1, ..., ln], see [Z2]). For

example, the number of permutations of {1, 2, ..., n} (n ≥ 1) that contain exactly one

pattern 123 is 3
n

(
2n
n+3

)
[Z1] while the number of permutations of {1, 2, ..., n} (n ≥ 1) that

contain exactly one pattern 132 is
(
2n−3
n−3

)
[Bó].

12

2.3 Generating functions

2.3.1 Some crucial background and generating functions for words

avoiding pattern 123

In the beautiful paper by Shar and Zeilberger [SZ], methods for finding the algebraic

equation for the ordinary generating function enumerating 123-avoiding words of length

rn, where each of the n letters of {1, 2, ..., n} occurs exactly r times were given. First

we present some important definitions and results of that paper here.

For 0 ≤ i ≤ j ≤ r − 1 and n ≥ 0, let W
(i,j)
r (n) be the set of 123-avoiding words of

length rn+ i+ j, in the alphabet {1, 2, ..n, n+ 1, n+ 2}, with i occurrences of the letter

1, j occurrences of the n+ 2, and exactly r occurrences of the other n letters. And let

W
(i,j)
r be the union of W

(i,j)
r (n) over all n ≥ 0. Let g

(i,j)
r (x) be the weight enumerator

for W
(i,j)
r , with respect to the weight w → xlength(w). (Note that the W

(i,j)
r ’s have the

same weight enumerator if any two letters have i and j occurrences respectively, and

the remaining letters each occurs exactly r times. For a detailed explanation, see [SZ],

page 3-4.)

Shar and Zeilberger were able to find a system of
(
r+1
2

)
equations for g

(i,j)
r (x) (0 ≤

i ≤ j ≤ r − 1), with the convention that if s > k then g
(s,k)
r = g

(k,s)
r :

g(i,j)r (x) = δi,0δj,0 + x

r−1∑
t=0

g(i,t)r (x)g((r−t) mod r, (j−1) mod r)
r (x) +

i−1∑
m=0

xm+1g(i−m,j−1)r (x)

where

δi,j =

1 if i = j

0 if i 6= j .

For example, in the case when r = 2, we would get the following system of equa-

tions:

g
(0,0)
2 (x) = 1 + xg

(0,0)
2 (x)g

(0,1)
2 (x) + xg

(0,1)
2 (x)g

(1,1)
2 (x)

g
(0,1)
2 (x) = xg

(0,0)
2 (x)2 + xg

(0,1)
2 (x)2

g
(1,1)
2 (x) = xg

(0,0)
2 (x)g

(0,1)
2 (x) + xg

(0,1)
2 (x)(1 + g

(1,1)
2 (x))

13

Solving this system of equations in the three unknowns g
(0,0)
2 (x), g

(0,1)
2 (x), g

(1,1)
2 (x),

we get the weight enumerators for W
(0,0)
2 , W

(0,1)
2 and W

(1,1)
2 .

Once we have the weight enumerators, we can easily get the corresponding gener-

ating functions by doing a little operation. For example, because we have an explicit

expression for g
(0,0)
2 (x) (g

(0,0)
2 (x) = 1 + x2 + 6x4 + 43x6 + 352x8 + 3114x10 + ...), the

corresponding generating function is f
(0,0)
2 (x) = 1+x+6x2+43x3+352x4+3114x5+ ...

(that is, f
(0,0)
2 (x) = g

(0,0)
2 (x1/2)).

2.3.2 Extension to generating functions for words with exactly r oc-

currences of each letter, and with exactly one pattern 123

Definition 2.4. Let Vr(n) be the set of words in the alphabet {1, ..., n} with exactly r

occurrences of each letter, and with exactly one pattern 123. Let Vr be
⋃∞
n=0 Vr(n).

Let hr(x) be the weight enumerator for Vr (as always, with weight w → xlength(w))

and let fr(x) be the corresponding generating function.

First warm-up: r = 1

Claim: h1(x) = (g
(0,0)
1 (x)− xg(0,0)1 (x)− 1)2/x.

Proof. Recall that g
(0,0)
1 (x) (= 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + ...) is the weight

enumerator for 123-avoiding permutations on {1, ..., n, ...}. We prove this claim by

showing that the coefficient of xn (n ≥ 0) on the right hand side is exactly the number

of good pairs (aπ3bπ4, π1bπ2c) (2 ≤ b ≤ n − 1), which equals to B(1, 1, ..., 1) (with n

1’s) (by Zeilberger’s proof [Z1]).

For any fixed b (2 ≤ b ≤ n−1), a good aπ3bπ4 would be a 123-avoiding permutation

on {1, ..., b} that does not start with b. Similarly, a good π1bπ2c would be a 123-avoiding

permutation on {b, ..., n} that does not end with b.

Note that the coefficient of xb in g
(0,0)
1 (x) − xg

(0,0)
1 (x) − 1 is exactly the number

of good aπ3bπ4. (The x in front of g
(0,0)
1 (x) corresponds to having b in front of a

permutation, and the −1 corresponds to an empty permutation. We don’t want either

of these.)

14

Similarly, the coefficient of xn−b+1 in g
(0,0)
1 (x)−xg(0,0)1 (x)−1 is the number of good

π1bπ2c. Multiplying the two, we have that the coefficient of xn+1 (= xb · xn−b+1) in

(g
(0,0)
1 (x)− xg(0,0)1 (x)− 1)2

is the number of good pairs (aπ3bπ4, π1bπ2c) (b ranges from 2 to n− 1). Dividing by x,

we get the coefficient of xn in

(g
(0,0)
1 (x)− xg(0,0)1 (x)− 1)2/x

is the number of good pairs (aπ3bπ4, π1bπ2c).

Second warm-up: r = 2

Claim: h2(x) = 2 · (g(0,0)2 (x)− xg(0,1)2 (x)− 1)(g
(0,1)
2 (x)− xg(0,0)2 (x))/x.

Proof. Recall that g
(0,0)
2 (x) (= 1 + x2 + 6x4 + 43x6 + ...) is the weight enumerator for

123-avoiding words on {1, 1, ..., n, n, ...} (or equivalently, 123-avoiding words associated

with [2, 2, ...]) and g
(0,1)
2 (x) (= x+ 3x3 + 19x5 + 145x7...) is the weight enumerator for

123-avoiding words on {1, 2, 2, 3, 3, ..., n, n, ...}. As in the first warm-up, we prove this

claim by showing that the coefficient of x2n (n ≥ 0) on the right hand side is exactly

the number of good pairs (aπ3bπ4, π1bπ2c) (2 ≤ b ≤ n−1), which equals to B(2, 2, ..., 2)

(with n 2’s)(by the proof of Theorem 1).

For any b (2leqb ≤ n− 1), we have the following two cases: either π4 contains one b

and π1 contains no b or the other way around.

Case 1: π4 contains one b and π1 contains no b.

Then a good aπ3bπ4 would be a 123-avoiding word on {1, 1, ..., b, b} that does not

start with b. Similarly, a good π1bπ2c would be a 123-avoiding word on {b, b + 1, b +

1, ..., n, n} that does not end with b.

Note that the coefficient of x2b in g
(0,0)
2 (x)− xg(0,1)2 (x)− 1 is exactly the number of

good aπ3bπ4. (The x in front of g
(0,1)
2 (x) corresponds to having b in front of a word,

and the −1 corresponds to an empty word. We don’t want either of these.)

15

Similarly, the coefficient of x2(n−b)+1 in g
(0,1)
2 (x)− xg(0,0)2 (x) is the number of good

π1bπ2c.

Multiplying the two, and let b range from 2 to n− 1, we have that the coefficient of

x2n+1 (= x2b · x2(n−b)+1) in

(g
(0,0)
2 (x)− xg(0,1)2 (x)− 1)(g

(0,1)
2 (x)− xg(0,0)2 (x))

is the number of good pairs (aπ3bπ4, π1bπ2c) if the additional b is in π4. Dividing by x,

we get the coefficient of x2n in

(g
(0,0)
2 (x)− xg(0,1)2 (x)− 1)(g

(0,1)
2 (x)− xg(0,0)2 (x))/x

is the number of good pairs (aπ3bπ4, π1bπ2c) if the additional b is in π4.

Case 2: π1 contains one b and π4 contains no b.

Then a good aπ3bπ4 would be a 123-avoiding word on {1, 1, ..., b − 1, b − 1, b} that

does not start with b. A good π1bπ2c would be a 123-avoiding word on {b, b, ..., n, n}

that does not end with b.

Now, the coefficient of x2b−1 in g
(0,1)
2 (x)− xg(0,0)2 (x) is exactly the number of good

aπ3bπ4. Similarly, the coefficient of x2(n−b)+2 in g
(0,0)
2 (x)− xg(0,1)2 (x)− 1 is the number

of good π1bπ2c.

Multiplying the two, we have that the coefficient of x2n+1 (= x2b−1 · x2(n−b)+2) in

(g
(0,1)
2 (x)− xg(0,0)2 (x))(g

(0,0)
2 (x)− xg(0,1)2 (x)− 1)

is the number of good pairs (aπ3bπ4, π1bπ2c) (b ranges from 2 to n−1) if the additional

b is in π1. Dividing by x, we get the coefficient of x2n in

(g
(0,1)
2 (x)− xg(0,0)2 (x))(g

(0,0)
2 (x)− xg(0,1)2 (x)− 1)/x

is the number of good pairs (aπ3bπ4, π1bπ2c) if the additional b is in π1.

Therefore the coefficient of x2n in 2·(g(0,0)2 (x)−xg(0,1)2 (x)−1)(g
(0,1)
2 (x)−xg(0,0)2 (x))/x

is the number of good pairs (aπ3bπ4, π1bπ2c), which is equal to B(2, 2, ..., 2) (with n 2’s).

Note that the coefficient of x2n+1 in 2 ·(g(0,0)2 (x)−xg(0,1)2 (x)−1)(g
(0,1)
2 (x)−xg(0,0)2 (x))/x

is 0 because g
(0,1)
2 (x) has only odd powers of x and g

(0,0)
2 (x) has only even powers of

16

x. So we have shown the weight enumerator for V2 is as claimed to be. To get the

generating function f2(x) for V2 we simply let f2(x) = h2(x
1/2).

Readers are welcome to compare h2(x) with the earlier formula in the case when

li = 2(1 ≤ i ≤ n):

n−1∑
b=2

1∑
j=0

(A(j + 1, 2, 2, ..., 2)︸ ︷︷ ︸
b− 1 many 2’s

−A(j, 2, 2, ..., 2)︸ ︷︷ ︸
b− 1 many 2’s

) · (A(2− j, 2, 2, ..., 2)︸ ︷︷ ︸
n− b many 2’s

−A(1− j, 2, 2, ..., 2)︸ ︷︷ ︸
n− b many 2’s

).

The general case

Theorem 2.5.

hr(x) =
1

x

r∑
i=1

(g(0, i mod r)
r −xg(0, i−1)r −δ(i mod r, 0))(g

(0, (r+1−i) mod r)
r −xg(0, r−i)r −δ((r+1−i) mod r, 0)).

The general case is derived using the exact same logic as for the warm-up cases.

Instead of having two cases as in the second warm-up, here we have r cases. Interested

readers are welcome to verify the formula for r = 3 by themselves, and the general case

should be apparent after this verification. As before, to get the generating function for

Vr we simply let fr(x) = hr(x
1/r).

2.4 Using Maple packages

As noted in Shar and Zeilberger’s paper ([SZ], page 7), now that we know fr(x) has

the property of being algebraic, the sequence ar(n) satisfies some homogeneous linear

recurrence equation with polynomial coefficients.

Using the algtorec procedure in the SCHUTZENBERGER package written by

Doron Zeilberger, available from:

http://www.math.rutgers.edu/~zeilberg/tokhniot/SCHUTZENBERGER.txt

we are able to find (rigorously) recurrences (in operator notation) for our sequences

when r = 1 and r = 2 (r = 3 took too long to compute):

For r = 1 we get: (2n (2n+ 1) − (n+ 4) (n− 2)N)a1(n) = 0 (which agrees with

the already known formula a1(n) = 3
n

(
2n
n+3

)
).

http://www.math.rutgers.edu/~zeilberg/tokhniot/SCHUTZENBERGER.txt

17

In the case when r = 2, algtorec returned a operator of degree 8, but it can be

reduced to a minimal operator of degree 4 (thanks to Manuel Kauers for pointing it

out), that is:

(36(1+n)(2+n)(1+2n)(3+2n)(18154800+23101940n+10635771n2+2093616n3+147833n4)

+12(2+n)(3+2n)(1283329440+3700267618n+4200957553n2+2408049238n3+735936616n4

+113774584n5 + 6948151n6)N + (282564806400 + 1066356868608n+ 1704365727480n2

+1511140337906n3+814587362081n4+273775889012n5+56080140110n6+6405068474n7

+312371129n8)N2−2(4+n)(11939685120+40890299130n+56943840213n2+41794221496n3

+17488032270n4+4183030930n5+531527997n6+27792604n7)N3+8(1+n)(4+n)(5+n)(11

+2n)(3742848 + 7519914n+ 5241921n2 + 1502284n3 + 147833n4)N4)a2(n) = 0

Here are some initial terms of f2(n) (i.e., the generating function for a2(n)): f2(n) =

12x3+174x4+2064x5+23082x6+252966x7+2755332x8+30001026x9+327381492x10+

· · · .

(We can easily get many more terms.)

Everything in this chapter is implemented (with explanation) in the Maple packages

Words123New and PW123 and available from: http://sites.math.rutgers.edu/

~my237/One123, which also includes some sample input and output files.

http://sites.math.rutgers.edu/~my237/One123
http://sites.math.rutgers.edu/~my237/One123

18

Chapter 3

Increasing consecutive patterns in words

In this chapter, we move from classical patterns to consecutive patterns. This chapter

is adapted from the article:

3.1 Introduction

Simion and Wilf initiated the study of enumerating classical pattern-avoidance. This

is a very dynamic area with its own annual conference.

Recall that a permutation π = π1 · · ·πn avoids a pattern σ = σ1 · · ·σk if none of the(
n
k

)
length-k subsequences of π, reduces to σ.

Burstein [2], in a 1998 PhD thesis, under the direction of Wilf, pioneered the enu-

meration of words avoiding a set of patterns. This field is also fairly active today, with

notable contributions by, inter alia, Mansour [3] and Pudwell [12].

The enumeration of permutations avoiding a given (classical) pattern, or a set of

patterns, is notoriously difficult, and it is widely believed to be intractable for most

patterns, hence it would be nice to have other notions for which the enumeration is more

feasible. Such an analog was given, in 2003, by Elizalde and Noy, in a seminal paper

[5], that introduced the study of the enumeration of permutations avoiding consecutive

patterns. A permutation π = π1 · · ·πn avoids a consecutive pattern σ = σ1 · · ·σk if

none of the n− k + 1 length-k consecutive subwords, πiπi+1 · · ·πi+k−1 of π, reduces to

σ.

Algorithmic approaches to the enumeration of permutations avoiding sets of con-

secutive patterns were given by Nakamura, Baxter, and Zeilberger [10, 1]. Our present

approach may be viewed as an extension, from permutations to words, of Nakamura’s

paper, who was also inspired by the Goulden-Jackson cluster method, but in a sense,

19

is more straightforward, and closer in spirit to the original Goulden-Jackson cluster

method ([8], that is beautifully exposited (and extended!) in [11]).

In this chapter we will consider consecutive patterns of the form 1 · · · r, i.e. in-

creasing consecutive patterns, and show how to count words in 1m1 · · ·nmn avoiding the

pattern 1 · · · r (Theorem 3.1, that is due to Ira Gessel [6]). Throughout this chapter we

will only consider consecutive patterns, so the word “consecutive” may be omitted. In

particular, we will look at how to efficiently count words in 1s · · ·ns avoiding the pattern

1 · · · r. All the sequences for s = 1 and 3 ≤ r ≤ 9 are in the On-Line Encyclopedia of

Integer Sequences, with many terms. Also, quite a few of theses sequences for s > 1

are already there, but with very few terms. Our implied algorithms are O(ns+1) and

hence yield many more terms, and, of course, new sequences.

In the last part of the paper, we will provide a new proof of Theorem 3.1 by tweaking

the Goulden-Jackson cluster method. Using this proof, along with a little more effort,

we will generalize Theorem 3.1 to counting words with a specified number of the pattern

12 · · · r (Theorem 3.3), instead of just avoiding, that is, having zero occurrence of the

pattern of interest.

We close this introduction by mentioning the pioneering work of Mendes and Rem-

mel [9], in combining the two keywords “consecutive patterns” and “words”. We were

greatly inspired by their article, but our focus is algorithmic.

Maple Packages: This chapter is accompanied by three Maple packages available

from the webpage:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html .

These are

• ICPW.txt: For fast enumeration of sequences enumerating words avoiding increas-

ing consecutive patterns.

• ICPWt.txt: For fast computation of sequences of weight-enumerators for words

according to the number of increasing consecutive patterns (t = 0 reduces to the former

case).

• GJpats.txt: For conjecturing generating functions (that still have to be proved

20

by humans).

This page also has links to numerous input and output files. The input files can be

modified to generate more data, if desired.

3.2 Method, experimentation, and results

3.2.1 The Goulden-Jackson cluster method

Recall that the original Goulden-Jackson method [8, 11] inputs a finite alphabet, A,

that may be taken to be {1, . . . , n}, and a finite set of “bad words”, B.

It outputs a certain rational function, let us call it F (x1, . . . , xn), that is the

multi-variable generating function, in x1, . . . , xn, for the discrete n-variable function

f(m1, . . . ,mn) ,

that counts the words in 1m1 · · ·nmn (there are altogether (m1+· · ·+mn)!/(m1! · · ·mn!)

of them) that never contain as consecutive subwords (aka factors in linguistics) any

member of B. In other words:

F (x1, . . . , xn) =
∑

(m1,...,mn)∈Nn

f(m1, . . . ,mn)xm1
1 · · ·x

mn
n .

This is nicely implemented in the Maple package DavidIan.txt, that accompanies [11],

and is freely available from

http://sites.math.rutgers.edu/~zeilberg/tokhniot/DavidIan.txt .

For example, let n = 4, so the alphabet is {1, 2, 3, 4}, and let the set of “bad words”

to avoid be {1234, 1432}. Starting a Maple session and typing

read ‘DavidIan.txt’: lprint(subs(t=0,GJgf(1,2,3,4,[1,2,3,4],[1,4,3,2],x,t)));

immediately returns

1/(1-x[1]-x[2]-x[3]-x[4]+ 2*x[1]*x[2]*x[3]*x[4]) ,

that in Human language reads

1

1− x1 − x2 − x3 − x4 + 2x1x2x3x4
.

21

3.2.2 Enuerating words avoiding consecutive patterns: let the com-

puter do the guessing

Now we are interested in words in an arbitrarily large alphabet {1, . . . , n} avoiding

a set of consecutive patterns, but each pattern, e.g., 123, entails an arbitrarily large

set of forbidden consecutive subwords. For example, in this case, the set of forbidden

consecutive subwords is

{i1 i2 i3 | 1 ≤ i1 < i2 < i3 ≤ n} .

We can ask DavidIan.txt to find the generating function for each specific n, and then

hope to conjecture a general formula in terms of x1, . . . , xn, for general (i.e., symbolic)

n.

This is accomplished by the Maple package GJpats.txt, available from the web-

page of this chapter. It uses the original DavidIan.txt to produce the corresponding

generating functions for increasing values for n, and then attempts to conjecture a

meta-pattern. For example for words avoiding the consecutive pattern 123 (alias the

word 123), for n = 3,

GFpats({[1, 2, 3]}, x, 3, 0); (the 0 stands for having zero occurrences of (i.e., avoid-

ing) the pattern of interest) yields

1/(1− x1 − x2 − x3 + x1x2x3) .

This is simple enough. Moving right along,

GFpats({[1, 2, 3]}, x, 4, 0); yields

1/(1− x1 − x2 − x3 − x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 − x1x2x3x4) ,

while GFpats({[1, 2, 3]}, x, 5, 0); yields

1/(1−x1−x2−x3−x4−x5 +x1x2x3 +x1x2x4 +x1x2x5 +x1x3x4 +x1x3x5 +x1x4x5+

x2x3x4+x2x3x5+x2x4x5+x3x4x5−x1x2x3x4−x1x2x3x5−x1x2x4x5−x1x3x4x5−x2x3x4x5) .

These look like symmetric functions. Procedure SPtoM(P,x,n,m) expresses a poly-

nomial, P, in the indexed variables x[1], . . . , x[n] in terms of the monomial symmetric

polynomials mλ. Applying this procedure we have

22

SPtoM(denom(GFpats({[1, 2, 3]}, x, 5, 0)), x, 5,m); yields

-m[1, 1, 1, 1] + m[1, 1, 1] - m[1] + m[] .

SPtoM(denom(GFpats({[1, 2, 3]}, x, 6, 0)), x, 6,m); yields

m[1,1,1,1,1,1]-m[1,1,1,1]+m[1,1,1]-m[1]+m[] .

SPtoM(denom(GFpats({[1, 2, 3]}, x, 7, 0)), x, 7,m); yields

-m[1,1,1,1,1,1,1]+m[1,1,1,1,1,1]-m[1,1,1,1]+m[1,1,1]-m[1]+m[] .

You do not have to be a Ramanujan to conjecture the following result.

Fact: The generating function for words in {1, 2, . . . , n} avoiding the consecutive

pattern 123, let us call it F3(x1, . . . , xn) is

F3(x1, . . . , xn) =
1

1− e1 + e3 − e4 + e6 − e7 + e9 − e10 + · · ·
,

where ei stands for the elementary symmetric function of degree i in x1, . . . , xn, i.e.,

the coefficient of zi in (1 + x1 z) · · · (1 + xn z). (Note that ei = m1i .)

Doing the analogous guessing for the consecutive patterns 1234 and 12345, a meta-

pattern emerges, and we were safe in formulating the following theorem that we discov-

ered using the present experimental mathematics approach. After the first version of

this chapter was posted, we found out, thanks to Justin Troyka, that this theorem is

due to Ira Gessel [6, p. 51].

Theorem 3.1. (Gessel [6]) For n ≥ 1, r ≥ 2, the generating function for words in

{1, 2, . . . , n} avoiding the consecutive pattern 12 · · · r, let us call it Fr(x1, . . . , xn) is

Fr(x1, . . . , xn) =
1

1− e1 + er − er+1 + e2r − e2r+1 + e3r − e3r+1 + · · ·
.

Of course, if Gessel did not prove it before us, these would have been “only” guesses,

but once known, humans can prove them. We did it by tweaking the cluster method

to apply to an arbitrarily large alphabet, i.e. where even the size of the alphabet, n, is

symbolic. Our proof of Gessel’s theorem will be given at the end of this chapter.

3.2.3 Efficient computations

Theorem 3.1 immediately implies the following partial recurrence equation for the actual

coefficients.

23

Fundamental Recurrence: Let fr(m) be the number of words in the alphabet

{1, . . . , n} with m1 1’s, m2 2’s, . . . , mn n’s (where we abbreviate m = (m1, . . . ,mn))

that avoid the consecutive pattern 1 · · · r. Also let Vi be the set of 0 − 1 vectors of

length n with i ones, then

fr(m) =
∑
v∈V1

fr(m− v) −
∑
v∈Vr

fr(m− v)

+
∑

v∈Vr+1

fr(m− v) −
∑
v∈V2r

fr(m− v)

+
∑

v∈V2r+1

fr(m− v) −
∑
v∈V3r

fr(m− v)

+
∑

v∈V3r+1

fr(m− v) −
∑
v∈V4r

fr(m− v) + · · · .

(Readers can check this derivation by multiplying each side of the equation in The-

orem 3.1 by the denominator of the right hand side and then using the fact that

Fr(x1, . . . , xn) =
∑

(m1,...,mn)∈Nn fr(m1, . . . ,mn)xm1
1 · · ·xmn

n .)

Suppose that we want to compute f3(1
100), i.e., the number of permutations of

length 100 that avoid the consecutive pattern 123. If we use the above recurrence

literally, we would need about 2100 computations, but there is a shortcut!

It follows from the symmetry of the generating function Fr(x1, . . . , xn), that fr(m1, . . . ,mn)

is symmetric, hence the above Fundamental Recurrence immediately implies the follow-

ing recurrence, that enables a very fast computation of the sequences, let us call them

ar(n), for the number of permutations of length n that avoid the consecutive pattern

1 · · · r.

3.2.3.1 Fast recurrence for enumerating permutations avoiding the consec-

utive pattern 1 · · · r

ar(n) = nar(n−1)−
(
n

r

)
ar(n−r)+

(
n

r + 1

)
ar(n−r−1)−

(
n

2r

)
ar(n−2r)+

(
n

2r + 1

)
ar(n−2r−1)

−
(
n

3r

)
ar(n− 3r) +

(
n

3r + 1

)
ar(n− 3r − 1) − · · · .

This recurrence goes back to F. N. David and D. Barton [4, p. 157], whose proof used

a probabilistic language and an inclusion-exclusion argument that may be viewed as a

24

precursor of the cluster method, applied to the special case of increasing patterns. Note

that it takes O(n2) steps to compute ar(n) using the recurrence above.

Equivalently, we have the following exponential generating function:

∞∑
n=0

ar(n)
xn

n!
=

1

1− x+ xr

r! −
xr+1

(r+1)! + x2r

(2r)! −
x2r+1

(2r+1)! + x3r

(3r)! −
x3r+1

(3r+1)! + · · ·
.

While this ‘explicit’ (exponential) generating function is ‘nice’, it is more efficient to

use the fast recurrence. And indeed, the OEIS has these sequences for 3 ≤ r ≤ 9,

with many terms. These are (in order): A001212, A117158, A177523, A177533,

A177553, A230051, A230231.

3.2.3.2 Efficient computations of permutations of words with two occur-

rences of each letter

Let br(n) be the number of words with 2 occurrences of each of 1, 2, . . . , n avoiding the

pattern 1 · · · r. Quite a few of them are currently (April 17, 2018) in the OEIS, but

with relatively few terms

• b3(n): A177555 (15 terms)

• b4(n): A177558 (15 terms)

• b5(n): A177564 (14 terms)

• b6(n): A177574 (14 terms)

• b7(n): A177594 (14 terms)

br(n) for r > 7 are not yet (April 17, 2018) in the OEIS.

We can compute br(n) in cubic time as follows. If you plug-in fr(2
n) into the

Fundamental Recurrence, you are forced to consider the more general quantities of the

form fr(2
α1β). Defining

Br(α, β) = fr(2
α1β) ,

and using symmetry, we get the following recurrence for Br(α, β).

Br(α, β) = αBr(α− 1, β + 1) + βBr(α, β − 1)

−
∑

i1+i2=r

(
α

i1

)(
β

i2

)
Br(α− i1, β − i2 + i1) +

∑
i1+i2=r+1

(
α

i1

)(
β

i2

)
Br(α− i1, β − i2 + i1)

https://oeis.org/A001212
https://oeis.org/A117158
https://oeis.org/A177523
https://oeis.org/A177533
https://oeis.org/A177553
https://oeis.org/A230051
https://oeis.org/A230231
https://oeis.org/A177555
https://oeis.org/A177558
https://oeis.org/A177564
https://oeis.org/A177574
https://oeis.org/A177594

25

−
∑

i1+i2=2r

(
α

i1

)(
β

i2

)
Br(α−i1, β−i2+i1)+

∑
i1+i2=2r+1

(
α

i1

)(
β

i2

)
Br(α−i1, β−i2+i1)− · · · .

In particular br(n) = Br(n, 0). Using this recurrence we (easily!) obtained 80 terms of

each of the sequences br(n) for 3 ≤ r ≤ 9, and could get many more. See the output

file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

3.2.3.3 Efficient computations of permutations of words with three occur-

rences of each letter

Let cr(n) be the number of words with 3 occurrences of each of 1, 2, . . . , n avoiding the

pattern 1 · · · r. Quite a few of them are currently (April 17, 2018) in the OEIS, but

with relatively few terms

• c3(n): A177596 (Only 10 terms)

• c4(n): A177599 (Only 10 terms)

• c5(n): A177605 (Only 10 terms)

• c6(n): A177615 (Only 9 terms)

• c7(n): A177635 (Only 9 terms)

cr(n) for r > 7 are not yet in the OEIS.

We can compute cr(n) in quartic time as follows. If you plug-in fr(3
n) into the

Fundamental Recurrence, you are forced to consider the more general quantities of the

form fr(3
α2β1γ). Defining

Cr(α, β, γ) = fr(3
α2β1γ) ,

and using symmetry, we get the following recurrence for Cr(α, β, γ).

Cr(α, β, γ) = αCr(α− 1, β + 1, γ) + βCr(α, β − 1, γ + 1) + γCr(α, β, γ − 1)

−
∑

i1+i2+i3=r

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2)

+
∑

i1+i2+i3=r+1

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2)

−
∑

i1+i2+i3=2r

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2)

https://oeis.org/A177596
https://oeis.org/A177599
https://oeis.org/A177605
https://oeis.org/A177615
https://oeis.org/A177635

26

+
∑

i1+i2+i3=2r+1

(
α

i1

)(
β

i2

)(
γ

i3

)
Cr(α− i1, β − i2 + i1, γ − i3 + i2) − · · ·

In particular, cr(n) = Cr(n, 0, 0). Using this recurrence we (easily!) obtained 40 terms

of each of the sequences cr(n) for 3 ≤ r ≤ 9, and could get many more. See the output

file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

3.2.3.4 Efficient computations of permutations of words with four occur-

rences of each letter

Let dr(n) be the number of words with 4 occurrences of each of 1, 2, . . . , n avoiding the

pattern 1 · · · r. Quite a few of them are currently (April 17, 2018) in the OEIS, but

with relatively few terms.

• d3(n): A177637 (8 terms)

• d4(n): A177640 (8 terms)

• d5(n): A177646 (8 terms)

• d6(n): A177656 (8 terms)

• d7(n): A177676 (8 terms)

dr(n) for r > 7 are not yet in the OEIS.

We can compute dr(n) in quintic time as follows. If you plug-in fr(4
n) into the

Fundamental Recurrence, you are forced to consider the more general quantities of the

form fr(4
α3β2γ1δ). Defining

Dr(α, β, γ, δ) = fr(4
α3β2γ1δ) ,

and using symmetry, we get the following recurrence for Dr(α, β, γ, δ).

Dr(α, β, γ, δ) = αDr(α−1, β+1, γ, δ)+βDr(α, β−1, γ+1, δ)+γDr(α, β, γ−1, δ+1)+δDr(α, β, γ, δ−1)

−
∑

i1+i2+i3+i4=r

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

+
∑

i1+i2+i3+i4=r+1

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

−
∑

i1+i2+i3+i4=2r

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

https://oeis.org/A177637
https://oeis.org/A177640
https://oeis.org/A177646
https://oeis.org/A177656
https://oeis.org/A177676

27

+
∑

i1+i2+i3+i4=2r+1

(
α

i1

)(
β

i2

)(
γ

i3

)(
δ

i4

)
Dr(α− i1, β− i2 + i1, γ− i3 + i2, δ− i4 + i3) − · · ·

In particular dr(n) = Dr(n, 0, 0, 0). Using this recurrence we (easily!) obtained 20

terms of each of the sequences cd(n) for 3 ≤ r ≤ 9, and could get many more. See the

output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

Comment: Ira Gessel kindly informed us that an alternative approach to extracting

coefficients from the generating function in Theorem 3.1 is to use the elegant method

described in section 3 of his paper on symmetric functions and P-recursiveness [7].

3.2.4 Keeping track of the number of occurrences

Above we showed how to enumerate words avoiding the consecutive pattern 1 · · · r,

in other words, the number of words, with a specified number of each letters, with

zero such patterns. With a little more effort we can answer the more general question

about the number of such words with exactly j consecutive patterns 1 · · · r for any j,

not just j = 0. Let W (m) = W (m1, . . . ,mn) be the set of words in the alphabet

1, . . . , n with m1 1’s, . . . , mn n’s (note that the number of elements of W (m) is

(m1 + · · ·+mn)!/(m1! · · ·mn!)).

We are interested in the polynomials in t

gr(m; t) =
∑

w∈W (m)

tα(w) ,

where α(w) is the number of occurrences of the consecutive pattern 1 · · · r in the word

w. (For example α(831456178) = 3 if r = 3. Note that α(w) = 0 if w avoids the

pattern.)

[Also note that gr(m; 0) = fr(m) and gr(m; 1) = (m1 + · · ·+mn)!/(m1! · · ·mn!).]

Using GJpats.txt we were able to conjecture the following theorem, whose proof will

be presented later.

We first need to define certain families of polynomial sequences.

Definition 3.2. For any integer k ≥ 1 and r ≥ 2, P
(r)
k (t) is defined as follows.

28

If k < r, then it is 0. If k = r then it is t− 1, and if k > r then

P
(r)
k (t) = (t− 1)

r−1∑
i=1

P
(r)
k−i(t) .

Theorem 3.3. For k ≥ 1, r ≥ 2, the generating function of gr(m; t), let us call it

Gr(x1, . . . , xn; t), is

Gr(x1, . . . , xn; t) =
1

1− e1 −
∑n

k=r P
(r)
k (t)ek

.

This implies the

Fundamental Recurrence for gr: Let gr(m; t) be the weight-enumerator of words

in the alphabet {1, . . . , n} with m1 1’s, m2 2’s, . . .mn n’s (where we abbreviate m =

(m1, . . . ,mn)), using the weight “t raised to the power of the number of occurrences of

the consecutive pattern 1 · · · r”.

Also, let Vk be the set of 0− 1 vectors of length n with k ones. Then we have

gr(m) =
∑
v∈V1

gr(m− v) +

n∑
k=r

∑
v∈Vk

P
(r)
k (t) gr(m− v) .

Analogously to the avoidance case we can get efficient recurrences for the permuta-

tions, and words in 1s · · ·ns, for each s > 1. For each s it is still polynomial time, but

things are slower because of the variable t. This is implemented in the Maple package

ICPWt.txt .

3.3 Proofs by tweaking the Goulden-Jackson cluster method

3.3.1 Proof of Theorem 1

We will use the general set-up of the Goulden-Jackson cluster method as described in

Noonan and Zeilberger’s paper [11], but will be able to make things simpler by taking

advantage of the specific structure of our forbidden patterns, which are the increasing

patterns 1 · · · r. That will enable us to use an elegant combinatorial argument, without

solving a system of linear equations.

First let us quickly review some basic definitions. (We will not go into the details

of the cluster method but readers who wish to see an excellent and concise summary

29

of the cluster method are welcome to refer to the first section of Wen’s paper [14].) A

marked word is a word with some of its factors (consecutive subwords) marked. We

are assuming that all the marks are in the set of bad words B. For example (13212;

[1,3]) is a marked word with 132 marked, with [1,3] denoting the location of the mark.

A cluster is a marked word where the adjacent marks overlap with each other and

all the letters in the underlying word belong to at least one mark of the cluster. For

example (145632; [1,3],[2,4],[4,6]) is a cluster whereas (145632; [1,3],[4,6]) is not. We

let the weight of a marked word w = w1w2 · · ·wk be weight(w) := (−1)|S| ·
∏k
i=1 x[wi]

where S is the set of marks in w. For example, the weight of the cluster (135632;

[1,3],[2,4],[4,6]) is (−1)3x1x2x
2
3x5x6.

Let M be the set of all marked words in the alphabet {1, . . . , n}. Recall from [11]

that weight(M) = 1+weight(M)·(x1+x2+· · ·+xn)+weight(M)·weight(C) where C is

the set of all possible clusters. We also know from page 4 and 5 of [11] that weight(M) is

equal to the generating function for words avoiding the set of bad words. This implies

that the multivariate generating function for words avoiding the increasing pattern

1 · · · r (i.e., our target generating function) is equal to weight(M) = 1
1−e1−weight(C) . So

we only need to figure out weight(C). However, to use the classical Goulden-Jackson

cluster method, we would have to solve a system of
(
n
r

)
(the number of bad words)

equations (recall that we write C as a summation of C[v]’s where v is a word in B, and

for each C[v] there is an equation) and no obvious symmetry argument seems to help.

So we will use a slick combinatorial approach.

Notice that since the pattern to be avoided is 12 · · · r, the clusters can only be of

the form

(a1 · · · aj ; [1, r], . . .)

where

1 ≤ a1 < a2 < · · · < aj ≤ n .

Therefore weight(C) is a summations of multivariate monomials on x1, x2, . . . , xn where

the exponent of each variable xi is zero or one.

30

Any fixed monomial in weight(C) can come from many different clusters. The num-

ber of clusters it comes from and the coefficient of the monomial are uniquely determined

by the number of variables in the monomial. For example, for r = 3, the monomial

x1x3x5x6x7 can come from the cluster (13567; [1, 3], [2, 4], [3, 5]) or (13567; [1, 3], [3, 5]).

The first cluster contributes weight (−1)3x1x3x5x6x7 whereas the second cluster con-

tributes weight (−1)2x1x3x5x6x7. So when summing up, they cancel each other out

and there is no monomial x1x3x5x6x7 in weight(C). So is the case with any other

monomial of degree 5. Therefore, let us focus on the monomial x1x2x3 · · ·xk and figure

out its coefficient.

Definition 3.4. Let coeff(x1x2 · · ·xk) (k ≥ 1) be the coefficient of x1x2 · · ·xk in weight(C).

It is clear that for k < r, coeff(x1x2x3 · · ·xk) = 0, because 12 · · · k cannot be a

cluster (it does not have enough letters to be marked). And when k = r, we have

coeff(x1x2 · · ·xk) = −1, since there can be only one mark. So let us move on to the

case when k > r. We have the following Lemma.

Lemma 3.5. For k > r, coeff(x1x2 · · ·xk) = − coeff(x2x3 · · ·xk)− coeff(x3x4 · · ·xk)−

· · ·− coeff(xrxr+1 · · ·xk). (Equivalently, coeff(x1x2 · · ·xk) = − coeff(x1x2 · · ·xk−1)−

coeff(x1x2 · · ·xk−2)− · · ·− coeff(x1x2 · · ·xk−r+1).)

This is because there are (r − 1) ways in which the left-most marked word can

“interface” with the one to its immediate right. For example, if the clusters are of

the form (1 · · · k; [1, r], [3, r + 2], . . .) (that is, the second mark starts at 3), then the

contribution will be (−1)· coeff(x3x4 · · ·xk). This is simply because of the bijection

between the set of clusters in the form of (1 · · · k; [1, r], [3, r + 2], . . .) with set of the

clusters in the form (3 · · · k; [3, r + 2], . . .). By peeling off the first mark [1, r], we just

lose a factor of (−1) in the coefficient of our monomial.

Similarly, if the clusters are of the form (1 · · · k; [1, r], [u, u+ r− 1], . . .) (1 < u ≤ r),

then the contribution from this case will be (−1)· coeff(xuxu+1 · · ·xk). Note that

if k < 2r − 1, there cannot be as many as (r − 1) cases. However, in this case,

we can make the convention that there are (r − 1) places for the second mark be-

cause for k < r the coefficient of x1x2x3 · · ·xk is 0. So the above formula still holds.

31

For example, for the clusters associated with the word 123456, and r = 4, the first

mark has to be 1234, the second mark can only be 2345 or 3456. But, accord-

ing to the natural convention, the second mark can also start with 4 and be 456,

and so, coeff(x1x2x3x4x5x6) = −coeff(x2x3x4x5x6)−coeff(x3x4x5x6)−coeff(x4x5x6)=

−coeff(x2x3x4x5x6)−coeff(x3x4x5x6).

So we have: coeff(x1x2 · · ·xr) = −1; coeff(x1x2 · · ·xr+1) = (−1) · (−1) = 1;

coeff(x1x2 · · ·xr+2) = −coeff(x2x3 · · ·xr+2)− coeff(x3x4 · · ·xr+2) = −coeff(x1x2 · · ·xr+1)

− coeff(x1x2 · · ·xr) = 0. Continuing this process, it is easy to see that x1x2 · · ·xmr

(m ≥ 1) has coefficient −1 (so is any other monomial of degree mr) and x1x2 · · ·xmr+1

has coefficient 1 (so is any other monomial of degree mr + 1). The monomials with

other number of variables all have coefficient 0. From this argument and summing over

all clusters, we conclude weight(C) = −er + er+1 − e2r + e2r+1 + · · · and therefore

weight(M) = 1
1−e1+er−er+1+e2r−e2r+1+··· .

3.3.2 Proof of Theorem 3

This proof can be directly generalized from the proof of Theorem 3.1 based on the

‘t-generalization’ described in Noonan and Zeilberger’s paper [11]. Again, let the set of

marked words on {1, 2, . . . , n} be M . However, this time we let the weight of a marked

word w of length k be weight(w) := (t−1)|S|·
∏k
i=1 x[wi] where S is the set of marks in w.

We still have weight(M) = 1+weight(M) ·(x1+x2+ · · ·+xn)+weight(M) ·weight(C)

andGr(x1, . . . , xn; t) is equal to weight(M), which is 1
1−e1−weight(C) (for details, see page

11 and 12 of [11]).

The procedure to calculate weight(C) directly follows from the proof of Theorem

3.1. We simply replace (−1) with (t − 1) in various places, because the only dif-

ference is that now we assign a different weight to a marked word. For example,

we have coeff(x1x2 · · ·xr) = t − 1; coeff(x1x2 · · ·xr+1) = (t − 1)(t − 1) = (t − 1)2;

coeff(x1x2 · · ·xr+2) = (t− 1)(coeff(x2x3 · · ·xr+2) + coeff(x3x4 · · ·xr+2)) = (t− 1)((t−

1) + (t− 1)2). Again it is clear that for k < r, coeff(x1x2x3 · · ·xk) = 0 and when k = r,

coeff(x1x2 · · ·xk) = t − 1. For the case when k > r, we generalize Lemma 3.5 to the

following:

32

Lemma 3.6. For k > r, coeff(x1x2 · · ·xk) = (t−1) (coeff(x2x3 · · ·xk)+ coeff(x3x4 · · ·xk)+

· · ·+coeff(xrxr+1 · · ·xk)). (Equivalently, coeff(x1x2 · · ·xk) = (t−1) (coeff(x1x2 · · ·xk−1)+

coeff(x1x2 · · ·xk−2) + · · ·+ coeff(x1x2 · · ·xk−r+1).)

The proof of Lemma 3.6 directly generalizes from the proof of Lemma 3.5. Now one

mark contributes a factor of (t − 1) instead of (−1) to the weight of a marked word.

For example, for the clusters associated with the word 123456, and r = 3, the first

mark has to be 123, the second mark can be 234 or 345. So coeff(x1x2x3x4x5x6) =

(t − 1)(coeff(x2x3x4x5x6)+coeff(x3x4x5x6)). In general, like in the proof of Theorem

3.1, if we are interested in keeping track of the number of appearances of the consecutive

pattern 12 · · · r, then there are (r − 1) scenarios of clusters that can give rise to the

monomial x1x2 · · ·xk, depending on where the second mark is. By peeling off the first

mark, now we lose a factor of (t− 1) instead of (−1) in the coefficient of our monomial.

As the coefficients of the monomials of the same length are the same, Lemma 6

immediately implies that weight(C) =
∑n

k=r P
(r)
k (t)ek where P

(r)
k (t) satisfies the recur-

rence

P
(r)
k (t) = (t− 1)

r−1∑
i=1

P
(r)
k−i(t) .

(In fact P
(r)
k (t) is just a concise way of writing coeff(x1x2 · · ·xk), where the consecutive

pattern of interest is 12 · · · r.) From this Theorem 3.3 follows directly.

33

Chapter 4

Relaxed partitions

Starting this chapter, we venture into the fascinating territory of integer partitions.

More strictly speaking, in this chapter, we introduce a new combinatorial object that

can be seen as a variation of traditional integer partitions. We experiment on this com-

binatorial object and find intruiging results. Next chapter we will go back to traditional

integer partitions.

4.1 Introduction

Recall that a partition of a positive integer n is a finite nonincreasing sequence of

positive integers λ1, λ1 . . . λk whose sum is equal to n. A lot of beautiful theories and

conjectures have been developed in this area and this field is blooming.

In this chapter, we are going to take a road less traveled and study an object which

we call “relaxed partitions”, or more specifically, r-partitions with r to be specified.

Unlike the traditional partitions where we require λi − λi+1 ≥ 0, for r-partitions we

require λi−λi+1 ≥ r where r can be negative. For example, (2, 3, 1, 1) is a (−1)-partition

of 7.

Just as with traditional partitions, there are many questions one could ask about

r-partitions. Perhaps one of the first questions to ask is: “for a fixed r, how many

r-partitions of the integer n do we have?” Using an easy recurrence relation, we used

Maple to program a procedure which we called NPr(n, r), and it returns the number

of r-partitions of n for any given n and r. But can we find a generating function for

a given r? The answer turned out to be yes! And there is a nice single-sum formula

for it. By typing in a sequence of entries produced by NPr(n,−1) into the OEIS, we

34

found that its generating function seemed to be the reciprocal of

∞∑
k=0

(−1)kqk
2∏k

i=1 (1− qi)
.

Recognizing this is the generating function for the “weighted” (with weight (−1)k)

number of (traditional) partitions of integer n into parts with difference at least 2,

Doron Zeilberger provided an short and elegant bijective proof for it (interested reader

can look up the proof in the comments of the sequence A003116 in OEIS). This proof

can be directly generalized to general r, and the generating function for the number of

r-partitions of n is the reciprocal of

∞∑
k=0

(−1)kqk(2+(1−r)(k−1))/2∏k
i=1 (1− qi)

,

which is the “weighted” number of partitions of integer n into parts with difference at

least (−r + 1).

In this chapter, we will focus on restricted r-partitions such that the first part and

the number of the parts are fixed. Let ar(M,N, n) be the number of r-partitions of

n with the first part equal to M and exactly N parts. To go with the notation in

our Maple package rPar (the Maple package can be found at https://sites.math.

rutgers.edu/~my237/RP), let F (M,N, r, q) be the generating function for ar(M,N, n).

Using a simple recurrence relation F (M,N, r, q) satisfies, we were able to program it

in Maple and happily used Maple to conjecture (and prove!) the closed form for the

case q = 1 (i.e., the total number of r-partitions with the first part equal to M and

exactly N parts). It is:

F (M,N, r, 1) =
(M − r)(M + (1− r)N − 2)!

(N − 1)!(M − rN)!
=

(
M + (1− r)N − 2

N − 1

)
+r

(
M + (1− r)N − 2

N − 2

)
Although we were not yet able to find a closed form formula for the generating

function F (M,N, r, q), we found out (using Maple) some initial terms (according to N)

of it. In Section 3 of this chapter, we will present the first few terms corresponding to

N ≤ 5.

In the last section, we will present some possible future work to be done as well as

connections with other combinatorial objects.

https://sites.math.rutgers.edu/~my237/RP
https://sites.math.rutgers.edu/~my237/RP

35

4.2 The recurrence relation for F (M,N, r, q)

It is not hard to come up with a recurrence relation for F (M,N, r, q). Given an r-

partition of n with the first part equal to M and exactly N parts, we can knock off the

first row (we know by doing this we take away a factor of qM) and what is left is an

r-partition of n −M with the first part equal to M1 and exactly N − 1 parts, where

1 ≤M1 ≤M − r. Therefore we have the following recurrence relation:

F (M,N, r, q) = qM
M−r∑
M1=1

F (M1, N − 1, r, q) .

It is clear that F (M, 1, r, q) = qM . With this information, we could program the

procedure F(M,N, r,q) in Maple, which allows us to input specific M ,N ,r (q can be

symbolic), and it will output the corresponding generating function.

4.3 Using Maple to discover (and prove!) patterns for F (M,N, r, 1)

We start our experiment with F (M,N,−1, 1), which represents the total number of

(−1)-partitions with the first part equal to M and exactly N parts. By fixing N and

varying M , we generate the first 20 terms of F (M,N,−1, 1), which allows us to then

use the procedure GuessPol in our package rPar to try guessing a polynomial for this

sequence.

For example, typing [seq(F(M1,1,−1,1),M1 = 1..20)]; yields

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

To guess a polynomial for this sequence, type:

GuessPol([seq(F(M1,1,−1,1),M1 = 1..20)],M,1);

Not surprisingly, it yields the constant polynomial 1.

Now try N = 2. Typing [seq(F(M1,2,−1,1),M1 = 1..20)]; yields

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

36

GuessPol([seq(F(M1,2,−1,1),M1 = 1..20)],M,1); yields

M + 1

Also not a surpise. Moving right along,

GuessPol([seq(F(M1,3,−1,1),M1 = 1..20)],M,1); yields

(M + 4)(M + 1)

2

GuessPol([seq(F(M1,4,−1,1),M1 = 1..20)],M,1); yields

(M + 6)(M + 5)(M + 1)

6

GuessPol([seq(F(M1,5,−1,1),M1 = 1..20)],M,1); yields

(M + 8)(M + 7)(M + 6)(M + 1)

24

GuessPol([seq(F(M1,6,−1,1),M1 = 1..20)],M,1); yields

(10 +M)(9 +M)(8 +M)(7 +M)(M + 1)

120

Without much effort, one can conjecture the following:

F (M,N,−1, 1) =
(M + 1)(M + 2N − 2)!

(N − 1)!(M +N)!
.

Now let us experiment with r = −2.

GuessPol([seq(F(M1,1,−2,1),M1 = 1..20)],M,1); yields

1

GuessPol([seq(F(M1,2,−2,1),M1 = 1..20)],M,1); yields

M + 2

GuessPol([seq(F(M1,3,−2,1),M1 = 1..20)],M,1); yields

(M + 7)(M + 2)

2

GuessPol([seq(F(M1,4,−2,1),M1 = 1..20)],M,1); yields

(M + 10)(M + 9)(M + 2)

6

37

GuessPol([seq(F(M1,5,−2,1),M1 = 1..20)],M,1); yields

(M + 13)(M + 12)(M + 11)(M + 2)

24

GuessPol([seq(F(M1,6,−2,1),M1 = 1..20)],M,1); yields

(M + 16)(M + 15)(M + 14)(M + 13)(M + 2)

120

Again without much effort, one can conjecture that

F (M,N,−2, 1) =
(M + 2)(M + 3N − 2)!

(N − 1)!(M + 2N)!
.

Comparing these two guesses, one can easily conjecture the formula for a general r:

F (M,N, r, 1) =
(M − r)(M + (1− r)N − 2)!

(N − 1)!(M − rN)!
.

Now, how do we prove this conjecture?

Recall that we programmed F(M,N, r,q) using the recurrence relation

F (M,N, r, q) = qM
M−r∑
M1=1

F (M1, N − 1, r, q)

and the initial condition F (M, 1, r, q) = qM . Note that F (M,N, r, q) can be fully

defind by this information. In other words, if we have found a formula that satisfies

this recurrence relation and initial condition, then it is the formula for F (M,N, r, q).

This also applies to our current case when q = 1.

Therefore we went ahead and programmed the procedure checkF(M,N, r) and

hooray! Maple was able to show that, by using symbolic computation, our conjectured

formula for F (M,N, r, 1) indeed satisfies the recurrence relation (for q = 1). It is also

easy to verify that the initial condition is satisfied. Therefore we have arrived, with a

lot of help from Maple, at the following theorem:

Theorem 4.1.

F (M,N, r, 1) =
(M − r)(M + (1− r)N − 2)!

(N − 1)!(M − rN)!
.

Now the next step is to try to conjecture a formula for F (M,N, r, q).

38

4.4 Can we find a pattern for F (M,N, r, q)?

Just like with the case q = 1, before we get so bold to go figuring out a pattern for

F (M,N, r, q), let us start by trying to figure out a pattern for F (M,N,−1, q). Below

are the guesses (using the qGuessPol procedure) for N ≤ 5:

qGuessPol([seq(F(M1,1,−1,q),M1 = 1..20)],M,q,1); yields

qM

qGuessPol([seq(F(M1,2,−1,q),M1 = 1..20)],M,q,1); yields

qM+1(qM+1 − 1)

(q − 1)

qGuessPol([seq(F(M1,3,−1,q),M1 = 1..20)],M,q,1); yields

qM+2(qM+3 + q2 − q − 1)(qM+1 − 1)

(q − 1)2(q + 1)

qGuessPol([seq(F(M1,4,−1,q),M1 = 1..20)],M,q,1); yields

qM+3(q2M+8 + qM+7 − qM+5 − qM+4 − qM+3 + q6 − 2q4 − q3 + 2q + 1)(qM+1 − 1)

(q − 1)3(q + 1)(q2 + q + 1)

qGuessPol([seq(F(M1,5,−1,q),M1 = 1..20)],M,q,1); yields

qM+4(qM+5 + q4 − q − 1)(q2M+10 − qM+4 − qM+3 + q8 − q5 − 2q4 + 2q + 1)(qM+1 − 1)

(q − 1)4(q + 1)2(q2 + 1)(q2 + q + 1))

We can again prove that they are true by using the recurrence relation

F (M,N, r, q) = qM
M−r∑
M1=1

F (M1, N − 1, r, q)

and the initial condition F (M, 1, r, q) = qM , setting r = −1.

Note that, although the formulas above look like rational functions, they are in

fact polynomials. It is easy to see why the first two formulas are polynomials. The

39

rest are also polynomials simply because of the recurrence relation (a summation of

polynomials is also a polynomial). So far we have not yet been able to find a closed

form for F (M,N,−1, q). However, Drew Sills made an interesting observation.

Drew Sills’s Observation: F (M,N,−1, q) has denominator (q; q)N and a numerator

of degree N(M+N−1). Thus it is plausible that the numerator is a (possibly alternat-

ing) sum of polynomials that are a power of q times a Gaussian polynomial of the form

G(M,N) := GP (2N +M − 1, N), where GP stands for the usual gaussian polynomial:

GP (m, r) :=
(qm−r+1; q)r

(q; q)r

So far we have not made much progress in this, but we noticed an interesting pattern:

G(2, 1) = q2 + q + 1

F (2, 2,−1, q) = q5 + q4 + q3

G(2, 2) = q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1

F (2, 3,−1, q) = q9 + q8 + 2q7 + 2q6 + 2q5 + q4

G(2, 3) = q12 + q11 + 2q10 + 3q9 + 4q8 + 4q7 + 5q6 + 4q5 + 4q4

+3q3 + 2q2 + q + 1

F (2, 4,−1, q) = q14 + q13 + 2q12 + 3q11 + 4q10 + 4q9 + 5q8

+4q7 + 3q6 + q5

In each case, the underlined parts for G and F have the same coefficients. This pat-

tern continues for larger values of N(we tested until N=9). In addition, it is straightfor-

ward to deduce from definition that the highest power of F (2, N,−1, q) is N(N + 3)/2.

Therefore, we can conjecture 2N many terms of F (2, N,−1, q) using the first 2N terms

of G(2, N − 1) (N ≥ 3). Similarly, we have the following patterns for F (3, N,−1, q):

40

G(3, 1) = q3 + q2 + q + 1

F (3, 2,−1, q) = q7 + q6 + q5 + q4

G(3, 2) = q8 + q7 + 2q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1

F (3, 3,−1, q) = q12 + q11 + 2q10 + 2q9 + 3q8 + 2q7 + 2q6 + q5

G(3, 3) = q15 + q14 + 2q13 + 3q12 + 4q11 + 5q10 + 6q9 + 6q8 + 6q7 + 6q6

+5q5 + 4q4 + 3q3 + 2q2 + q + 1

F (3, 4,−1, q) = q18 + q17 + 2q16 + 3q15 + 4q14 + 5q13 + 6q12 + 6q11 + 6q10 + 6q9

+4q8 + 3q7 + q6

G(3, 4) = q24 + q23 + 2q22 + 3q21 + 5q20 + 6q19 + 9q18 + 10q17 + 13q16

+14q15 + 16q14 + 16q13 + 18q12 + 16q11 + 16q10

+14q9 + 13q8 + 10q7 + 9q6 + 6q5 + 5q4 + 3q3 + 2q2 + q + 1

F (3, 5,−1, q) = q25 + q24 + 2q23 + 3q22 + 5q21 + 6q20 + 9q19 + 10q18

+13q17 + 14q16 + 16q15 + 16q14

+17q13 + 15q12 + 14q11 + 11q10 + 7q9 + 4q8 + q7

Here the conjecture is that we can predict the first (2N + 2) terms of F (3, N,−1, q)

using the first (2N + 2) terms of G(3, N − 1) (N ≥ 3).

For M = 4, the conjecture is that we can predict the first (2N + 4) terms of

F (4, N,−1, q) using the first (2N + 4) terms of G(4, N − 1) (N ≥ 3).

Now, a “meta-pattern” appears, and the conjecture is that we can predict the first

(2N+2M−4) terms of F (M,N,−1, q) using the first (2N+2M−4) terms of G(M,N−

1)(N ≥ 3).

41

4.5 Future work and connection to other combinatorial objects

Interestingly, there is a direct connection between F (M,N,−1, 1) and Catalan’s triangle

(thanks again to OEIS to help us find such a connection). Catalan’s triangle is a

number triangle whose entries C(n, k) is the number of strings consisting of n X’s and

k Y ’s such that no initial segment of the string has more Y ’s than X’s. It satisfies the

following:

C(n, k) =

(
n+ k

k

)
−
(
n+ k

k − 1

)
C(n, k) =

(n+ k)!(n− k + 1)

k!(n+ 1)!

C(n+ 1, k) = C(n+ 1, k − 1) + C(n, k)

Since we have shown F (M,N,−1, 1) = (M−r)(M+(1−r)N−2)!
(N−1)!(M−rN)! , it is clear that:

F (M,N,−1, 1) = C(M +N − 1, N − 1)

.

This turns out to be more or less obvious by a geometric interpretation. If one

thinks in terms of lattice path, C(M+N−1, N−1) is the number of lattice paths from

the origin to the point (M +N − 1, N − 1) that do not go above the line y = x in the

xy-plane and with N−1 steps up. (Note in each step we are only allowed to move right

or up one step.) Each such path corresponds uniquely to a (−1)-partition with the first

part exactly equal to M and exactly N parts. The part of the path that is above the

line y = N − 2 can take (M + 1) shapes. The number of horizontal steps in the shape

determines the second part of the corresponding (−1)-partition (note there are (M +1)

possibilities for the second part). If there are k horizontal steps, then the second part

of the partition is M −k+ 1. Similarly, the third part of the partition is determined by

how many horizontal steps we take in the lattice path above line y = N − 3 and below

(including) the line y = N − 2.

There also seems to be a bit of connection between the standard Young Tableau and

F (M,N,−1, 1). For example, typing the sequence [seq(F (5, N,−1, 1), N = 1..20] into

42

OEIS, we will find it can also represent the number of standard Young Tableau of shape

(N+3, N−2). (A003517) If we change the value of M, then we can find correspondence

with other standard Young Tableau. We conjecture that F (M,N,−1, 1) is equal to the

number of standard Young Tableau of shape (N + dM/2e, N − bM/2c).

For general r, we haven’t found nice connections yet.

43

Chapter 5

Systematic counting of restricted partitions and searching

for new partition identities

In this chapter we go back to traditional integer partitions. We will first devise an

efficient algorithm to count for certain restricted partitions, and then use this algorithm

to search for new partition identities.

5.1 Introduction

Recall that a partition of a non-negative integer n is a list of integers (λ1, . . . , λk) such

that λ1 ≥ · · · ≥ λk ≥ 1 and λ1 + · · ·+ λk = n.

As usuall, we will denote the number of integer partitions of n by p(n). This is a

very famous sequence, OEIS sequence A41.

While there is no ‘explicit’ formula for p(n), there is a nice generating function, that

goes back to Leonhard Euler. Denoting the number of integer partitions of n by p(n),

Euler discovered that
∞∑
n=0

p(n) qn =

∞∏
i=1

1

1− qi
.

The bible of the theory of partitions is George Andrews’ classic [An]. We also

strongly recommend Drew Sills’ fascinating monograph [S].

Suppose that you did not know about Euler’s generating function, and you were

given the task of computing the first, say, 1000 terms of the sequence p(n), how would

you proceed? The most straightforward way would be to try and use dynamical pro-

gramming. Note that partitions have the hereditary property. If you chop-off the largest

entry of the partition of n, (λ1, . . . , λk), you would get a shorter partition, (λ2, . . . , λk),

of n− λ1. Alas, because of the condition λ1 ≥ λ2, we have to ‘remember’ what λ1 was,

44

after kicking it out. So we are forced to consider a more general quantity, let’s call it

P (n,m), enumerating the set of partitions of n whose largest part is exactly m. Once

we can compute this more general quantity, the original object of interest, p(n), is given

by

p(n) =
n∑

m=1

P (n,m) .

In order to compute P (n,m) we have the obvious recurrence (alias partial differ-

ence equation)

P (n,m) =

m∑
m′=1

P (n−m,m′) , n ≥ m ≥ 1, (FundamentalRecurrence)

subject to the boundary conditions P (m,m) = 1 and P (n,m) = 0 if n < m. Replacing

n by n− 1 and m by m− 1 in the above recurrence, and subtracting, one gets the even

simpler recurrence

P (n,m) = P (n− 1,m− 1) + P (n−m,m) . (SimplifiedFundamentalRecurrence)

This gives a quadratic time (and quadratic memory) algorithm, O(N2) for compiling

a table of p(n) for 1 ≤ n ≤ N .

This is not the most efficient way to compile such a table. An even better way is

via Euler’s recurrence (e.g. [An], p. 12)

p(n) =
∞∑
j=1

(−1)j−1 (p(n− j(3j − 1)/2) + p(n− j(3j + 1)/2)) ,

that was famously used by Major Percy MacMahon to compile such a table, that lead

to Ramanujan’s discovery of his famous congruences (see [An]).

Already Euler considered the enumeration of sets of partitions obeying some restric-

tions. For example the set of partitions into distinct parts, let’s call it d(n), is given

by the generating function ([An], p. 5)

∞∑
n=0

d(n)qn =
∞∏
i=1

(1 + qi) =
∞∏
i=0

1

1− q2i+1
.

More recently, Rogers and Ramanujan (with the help of MacMahon, see [An] and [S])

considered the problem of enumerating partitions with the property that the difference

between consecutive parts is at least 2, i.e. for which

λi − λi+1 ≥ 2 .

45

The first Rogers-Ramanujan identity states that these numbers, let’s call them d2(n),

also have a nice product generating function

∞∑
n=0

d2(n)qn =
∞∏
i=0

1

(1− q5i+1)(1− q5i+4)
.

We can say that distinct partitions avoid the ‘pattern’ [a, a] and Rogers-Ramanujan

partitions avoid both the pattern [a, a] and the pattern [a, a− 1].

This naturally leads to the question of enumerating partitions avoiding an arbitrary

(finite) set of patterns, but first let’s formally define the notion of a ‘pattern’ in the

context of partitions. Note that a commonly used term for our ‘pattern’ is ‘difference

condition’. They are equivalent in our setting, but we choose ‘pattern’ for simplicity.

Definition 5.1. A partition-pattern (pattern for short) is a list a = [a1, . . . , ar] of

length r ≥ 1 of non-negative integers.

Definition 5.2. A partition λ = (λ1, . . . , λk) contains the pattern a = [a1, . . . , ar] if

there exists 1 ≤ i ≤ k − r such that

λi − λi+1 = a1 , λi+1 − λi+2 = a2 , . . . λi+r−1 − λi+r = ar .

For example, the partition (7, 6, 5, 4, 4) contains the pattern [1] (several times), the

pattern [0] (since 4−4 = 0), the pattern [1, 1] (because of 765 and 654), the pattern [1, 0]

(because of 544), the pattern [1, 1, 1] (because of 7654), the pattern [1, 1, 0] (because of

6544), and the pattern [1, 1, 1, 0].

Definition 5.3. A partition λ avoids the pattern a if it does not contain the pattern

a.

Definition 5.4. A partition λ avoids the set of patterns A, if it avoids every pattern

in A.

With this language, the class of distinct partitions are those that avoid the pattern

[0], while the class of partitions whose differences are at least 2 avoids the set of patterns

{[0], [1]}.

46

Our goal in 5.2 and 5.3 is to devise an efficient algorithm, that inputs an arbitrary

set of patterns, P , and an arbitrary positive integer N , and outputs the first N terms

of the sequence enumerating partitions of n avoiding the set of patterns P .

A natural approach is to adapt the celebrated Goulden-Jackson [GJ] method to this

new context. Since it is based on sieving (i.e. ‘signed-counting’ using the deep identity

1 + (−1) = 0) we call it a negative approach.

The Goulden-Jackson method is lucidly explained (and significantly extended) in

the article [NZ]. Recently it has been adapted [EZ] to counting compositions avoiding

(a different kind of) patterns.

As it turned out, while this ‘negative’ approach is of considerable theoretical interest,

it is less efficient than a more straightforward, ‘positive’, approach, to be described in

5.3.. Readers can feel free to jump to 5.3. without reading 5.2., if the extension of

Goulden-Jackson cluster method is not of interest. The rest of the chapter does not

depend on 5.2..

In 5.4., we will generalize the efficient, ‘positive’ approach to account for partitions

with more general restrictions (depending on congruence conditions), for example, in

Schur’s celebrated 1926 theorem (see [An], p. 116), or the more complicated restrictions

featuring in Shashank Kanade and Matthew C. Russell’s intriguing conjectures ([KS],

see also [S], pp. 149-152).

With this efficient, generalized algorithm, we search for new Rogers-Ramanujan type

identities (Section 5.5). We should note that computer searches for Rogers-Ramanujan

type identities have been around for a while (for a lucid history, see [S] and [MSZ]

and [KR]), but our approach is interesting because our notation provides a new way of

looking at the restrictions, in addition to the efficiency of the algorithm. Because of

the size of our search is quite large, we also make use of the Amarel cluster computing

available at Rutgers to make our search even more efficient. For each search, we look

at a batch of approximately 227 (or less) ‘sum-sides’ and see which ones ‘factor’ into

nice ‘product sides’.

Many new Rogers Ramanujan type have been found using this approach, and at

least one of them generalize to an infinite family of identities. This is an ongoing

47

research project, and currently we are working on varying our algorithm and searching

for Nandi-type partition identities as well as other types of partition identities.

5.2 Adapting the Goulden-Jackson cluster method

Recall that in the Goulden-Jackson Cluster method [GJ][NZ], one finds the weight

enumerator for ‘marked words’ and that turns out to be exactly the same as the target

weight enumerator, that is, the weight enumerator for words avoiding a given set of

subwords. Since the cluster method involves the signed counting of a larger set, and

often involves negative numbers, we call it the ”negative” approach here. However, in

the setting of partitions, we cannot directly use the Goulden-Jackson Cluster method

for the following reason:

In the Goulden-Jackson cluster method, one uses the important fact that if one

peels off the first letter, or cluster, of a (non-empty) marked word, then the result can

be ANY marked word. So we have the following:

M = {empty word} ∪ V M ∪ CM

(Note: M is the set of all marked words, V is the alphabet, C is the set of all

clusters)

Our basic idea is the same as in the Goulden-Jackson cluster method (we may call

it the cluster method for simplicity from now on), however, since we are working with

partitions, not words, we need the parts of the partition to be in non-increasing order.

Therefore, when we peel off the first letter or cluster of a (non-empty) marked partition,

the result is not any marked partition, but a marked partition with possibly a smaller

first part such that after adding the cluster or the letter (that we peeled off) in front,

it would still be a partition.

We also define weight a little differently than in the cluster method. Recall that in

the cluster method, weight(w, S) = (−1)|S|slength(w) (S is the set of marks this word

has). Here we define weight(p, S) = (−1)|S|ssum(p) (where sum(p) denotes the sum of

the parts of p, that is, the integer that p is partitioning.)

In order to use dynamical programming, we define the following:

48

• P (A, k,m): the set of marked partitions that start with k and having m parts, A

being the set of patterns to avoid.

• C(A, k, l, w): the set of clusters starting with k, ending with l and of width w, A

being the set of patterns to avoid.

• w(P (A, k,m)): the weight enumerator of P (A, k,m)

• w(C(A, k, l, w)): the weight enumerator of C(A, k, l, w)

Let us start with a marked partition of largest part k and m parts. If the partition is

empty (m = 0), then the weight enumerator is 1. If m = 1, then the weight enumerator

is qk. If m ≥ 2, the first part of the marked partition can be either part of a cluster or

not, so for a fixed set of forbidden patterns A, we have the following decomposition:

P = kP ∪ CP ′

(P is the set of all marked partitions that start with k, having m parts; C is the set

of all clusters starting with k, with width no greater than m; P ′ is the set of marked

partitions whose first part is no greater than the last part of clusters in C). More

precisely, for m ≥ 2, we have:

w(P (A, k,m)) = qk
k∑
r=1

w(P (A, r,m−1))+
k∑
l=1

m∑
w=1

(w(C(A, k, l, w))
l∑

r=1

w(P (A, r,m−w)))

It remains to find w(C(A, k, l, w)). In order to do this, we introduce w(C(A, v, k, l, w)):

the weight enumerator for clusters starting with k, with v (v ∈ A) being the first pat-

tern, ending with l and of width w, A being the set of patterns to avoid. For example,

if A = {[2, 1], [1, 1]}, consider the cluster {8, 6, 5, 3, 2, 1, {[8, 6, 5], [5, 3, 2], [3, 2, 1]}}. v in

this case would be [2, 1] (corresponding to the first mark [8, 6, 5]). It is apparent that

w(C(A, k, l, w)) =
∑

v∈Aw(C(A, v, k, l, w)). So how do we find w(C(A, v, k, l, w))?

For a given cluster, we have two scenarios:

(S1) if the cluster has only one mark, then the weight for the cluster will just be (−1)·

qsum(s) (s being the underlying partition). For example, the cluster {3, 2, 1, {[3, 2, 1]}}

has weight −q6;

49

(S2) if the cluster has more than one mark, we can peel off the first mark (leav-

ing the overlapping part), and we get a smaller cluster. For example, for the cluster

{8, 6, 5, 3, 2, 1, {[8, 6, 5], [5, 3, 2], [3, 2, 1]}}, after peeling off the first mark, we are left with

the cluster {5, 3, 2, 1, {[5, 3, 2], [3, 2, 1]}. So, weight({8, 6, 5, 3, 2, 1, {[8, 6, 5], [5, 3, 2], [3, 2, 1]}})

= −q14weight({5, 3, 2, 1, {[5, 3, 2], [3, 2, 1]}).

This is done in similar fashion as in the Goulden-Jackson cluster method. However,

because of the nature of our extension, the details are more complicated. The first

scenario occurs only if our input has width exactly 1 greater than the length of v,

and the smallest part to “match” k (the largest part) and the forbidden pattern, that

is, k = l + sum(v). To compute the weight for clusters in the second scenario, we

first define OV ERLAP , which takes two partitions u and v and outputs a set of lists.

Each list is in the form [qi, j], where j denotes the number of parts that u and v are

overlapping, and i denotes the sum of the parts of u that is not overlapping with v. For

example, OV ERLAP ([4, 3, 2, 2], [2, 2, 2, 1]) would return {[q7, 2], [q9, 1]} because there

are two possible ways of overlapping here. (Note: “overlapping” is defined in the usual

sense, as in the cluster method, here the two possible overlaps are [2, 2] and [2], the

power 7 comes from 4 + 3, the power 9 comes from 4 + 3 + 2.)

Now, since we are really working with patterns (the v in the input for C(A, v, k, l, w)

is a pattern, not a partition), we define OV ERLAP1 which takes two patterns u and

v and two integers k1 and k2 and let u1 and u2 be the corresponding partitions that

start with k1 and k2 and with underlying pattern u and v respectively, and use u1 and

u2 as input for OV ERLAP .

For example, OV ERLAP1([1, 1, 0], [0, 0, 1], 4, 2) corresponds to

OV ERLAP ([4, 3, 2, 2], [2, 2, 2, 1]) and also outputs {[q7, 2], [q9, 1]}.

Now we are ready to compute w(C(A, v, k, l, w)):

w(C(A, v, k, l, w)) = (−1)qsum{v,k}(if k = l + sum(v) and w = |v|+ 1)

−
∑k

k1=1

∑
u∈A

∑
p∈OV ERLAP1(v,u,k,k1) p[1] · w(C(A, u, k1, l, w − |v| − 1 + p[2]))

(Note: {v, k} denotes the partition that start with k and has underlying pattern v,

50

for example, {[0, 1], 4} = [4, 4, 3]. |v| is the length of the pattern v. p[1] denotes the

first part of the list p, p[2] denotes the second part of p.)

In this formula, the part before the minus sign correspond to the first scenario, where

the cluster have only one mark, and we will leave it to the reader to verify. If we are

in the second scenario (computing the weight of the clusters that have more than one

mark), we choose a pattern u from A, and a largest part k1 (1 ≤ k1 ≤ k), and {u, k1}

is chosen to be the second mark of the cluster. We need to find all the ways {u, k1} can

overlap with {v, k} (that is, compute OV ERLAP1(v, u, k, k1)). Let us use the previous

example {v, k} = {[1, 1, 0], 4} = [4, 3, 2, 2], {u, k1} = {[0, 0, 1], 2} = [2, 2, 2, 1]. There

are two ways they can overlap, if the overlap is [2, 2], then p[1] would be q7, and p[2]

would be 2. After chopping off the [4, 3] (that is, chopping off the first mark, leaving

the overlapping part [2,2]) we would get a smaller cluster that starts with k1 = 2, still

ends with l, and with width (w − |v| − 1 + p[2]), thus the formula above.

Remark 2. One may wonder why we have to include the width as a variable. If we

do not, and if [0] or [0,0], or [0,0,0] etc. is in A, then we would have infinitely many

clusters (suppose there exist at least one cluster, we can then insert as many marks as

we wanted in the middle) and we would have an infitely loop in our program.

5.3 A more straight-forward approach

While, for enumerating words (in a fixed alphabet) avoiding a given set of ‘patterns’

(occurrences of consecutive subwords), the negative approach, pioneered by Goulden

and Jackson [GJ] is (usually) more efficient, it turns out that this is not the case for the

present problem of counting partitions avoiding the kind of patterns discussed here.

The “positive” approach, to be described in this section, turns out to be much more

efficient than the negative approach described in the previous section. Nevertheless, we

believe that this partition analog of the Goulden-Jackson method is very elegant and

has theoretical interest. It is also possible that it may lead to more efficient approaches.

We use an extension of the dynamical programming approach described in the in-

troduction that gave a quadratic-time and quadratic memory algorithm to compute the

51

original partition sequence {p(n)}, the iconic OEIS sequence A41.

It relied on the obvious fact that removing the largest part, λ1, from a partition λ =

(λ1, . . . , λk), results in a smaller partition, λ = (λ2, . . . , λk), without extra conditions,

except that λ2 ≤ λ1. That’s why in the dynamical programming approach described

in the introduction, we were forced to compute the more refined quantity, with two

arguments, P (n,m), and that set-up the recurrence scheme rolling.

If the set of forbidden patterns, A, consists only of patterns of length 1,

A = {[a1], [a2], . . . , [ak]} ,

then the analog of (FundamentalRecurrence) is easy. Let pA(n) be the number of

partitions of n that avoid the patterns in the set A, and let PA(n,m) be the number of

such partitions whose largest part is m. Then

PA(n,m) =
∑

1≤m′≤m
m−m′ 6∈{a1,...,ak}

PA(n−m,m′) , n ≥ m ≥ 1 ,

and pA(n) =
∑n

m=1 PA(n,m).

In order to motivate the general case, let’s first do a simple special case, where we

want to avoid the single pattern [1, 1, 1]. In other words, the set of patterns that we

want to avoid is the singleton set A = {[1, 1, 1]}. Consider a typical such partition

λ = (λ1, . . . , λk), whose largest part, λ1, is m. If λ2 6= λ1 − 1, then removing λ1

results with the same type of partition, hence the number of partitions of n, that we

are interested in, with λ1 = m and λ2 = m′ is exactly the same as number of such

partitions of n−m with largest part λ2, since there is a one-to-one correspondence. If

you have a good partition of n −m with largest part m′, then sticking m in the front

can’t cause trouble, since m−m′ 6= 1, so the forbidden pattern [1, 1, 1] can’t emerge.

On the other hand if m′ = m − 1 then we can create new trouble. If you have a

partition of, n, the form

(m,m− 1, λ3, . . . , λk) ,

then the ‘be-headed’ partition,of n−m

(m− 1, λ3, . . . , λk) ,

52

must, in addition to avoiding the pattern [1, 1, 1] also avoid the pattern [1, 1] at the

start. This forces us to introduce a new quantity, let’s call it P ′[1,1,1](n,m) the number

of partitions of n with largest part m, avoiding the pattern [1, 1, 1] everywhere, and in

addition, avoiding the pattern [1, 1] at the very beginning

P[1,1,1](n,m) =
∑

1≤m′≤m
m′ 6=m−1

P[1,1,1](n−m,m′) + P ′[1,1,1](n−m,m− 1) .

We now need to set-up a scheme for P ′[1,1,1](n,m). If you have a partition of n whose

largest part is m, avoiding [1, 1, 1], and in addition avoiding [1, 1] at the beginning, and

the second largest part is m′ with m − m′ 6= 1, then removing the largest part, m,

results in a partition of n−m avoiding the pattern [1, 1, 1], and no conditions at the

beginning. On the other hand, if m′ = m− 1, then we have a partition of n−m with

largest part m − 1, avoiding [1, 1, 1], and in addition, avoiding the pattern [1] at the

beginning. Let P ′′[1,1,1](n,m) be the number of such partitions. We have

P ′[1,1,1](n,m) =
∑

1≤m′≤m
m′ 6=m−1

P[1,1,1](n−m,m′) + P ′′[1,1,1](n−m,m− 1) .

Similarly

P ′′[1,1,1](n,m) =
∑

1≤m′≤m
m′ 6=m−1

P[1,1,1](n−m,m′) + P ′′′[1,1,1](n−m,m− 1) ,

where P ′′′[1,1,1](n,m) is the number of partitions of n with largest part m avoiding the

pattern [1, 1, 1] and in addition avoiding the empty list, [], at the beginning. But this

can never happen so P ′′′[1, 1, 1](n,m) is always zero.

Note that we were forced to introduce two auxiliary quantities, P ′(n,m), and

P ′′(n,m) that arose naturally.

In general, for any given set of patterns A, the computer automatically sets-up a

scheme, introducing more general quantities, parameterized, in addition to the set of

global conditions A, by a set of local conditions that should be avoided at the very

beginning. Then, for each such set of beginning restrictions, A′, depending on m′, either

we are back to only the global conditions, A, i.e. the new A′ is the empty set, or if

53

m − m′ happens to be one of the starting entries of A or A′, the chopped partition,

of n −m, in addition to obeying the global restrictions of A, must obey a brand-new

kind of restrictions A′′. So each ‘state’ (m,m′, A′) gives rise to a state (m′,m′′, A′′) for

some (possibly empty) set A′′. Finding these “children” state is automatically done

by the computer, setting up a quadratic-time scheme. At the end of the day, we are

only interested in the case where A′ = ∅, but we are forced to consider these auxiliary

quantitities. Since there are only finitely many of them, and there are still only two

arguments (namely n and m, where 1 ≤ m ≤ n), the algorithm remains quadratic time

and quadratic memory.

5.4 Generalization

What if we want to count partitions with more specific restrictions, for example, to avoid

patterns in the beginning of the partition, not just “globally”, or based on congruence

conditions?

Recall Shur’s celebrated 1926 theorem: the number of partitions of m into parts

with minimal difference 3 and with no consecutive multiples of 3 is equal to the number

of partitions of m into distinct parts ≡ 1, 2 (mod 3). We are interested in the “sum-

side” of this identity, that is, the number of partitions of m into parts with minimal

difference 3 and with no consecutive multiples of 3.

And how about more complicated restrictions feathuring in Shashank Kanade and

Matthew C. Russell’s intriguing conjectures, for example, the sum-side in 3.1.1. of

[KR2]:

(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(c) Even parts appear at most twice. (d) If a part 2j appears twice then 2j±3, 2j±2

are forbidden to appear at all.

(e) 2+2 is not allowed as a sub-partition.

We are motivated to refine and generalize our “positive approach” to account for

54

these fascinating, more generalized creatures, hoping that our efficient algorithm will

lead to the discovery of more of them.

In order to generalize our “positive” approach, we introduce some new notions and

formulate these sum-sides in a different way, which turns out to be very flexible and

also easy to feed to a computer.

Now the input of our algorithm will not just be A, m and n, but will be the following:

m: the largest part of the partition (same as before).

n: the integer to be partitioned (same as before).

A: the set of patterns to avoid “globally” (same as before).

Mod: the list of patterns to avoid according to mod conditions of the largest part

of a sub-partition. If Mod = [A0, A1, ..., Ak−1] (each Ai is a set of patterns), then

we are considering modulo k and avoiding the sub-partitions {a0, kj}, {a1, kj + 1},...,

{ak, kj + (k− 1)} where ai can be any pattern in Ai and j can be any positive integer.

(Note we are using the notation {v, k} to denote the partition that start with k and has

underlying pattern v, same as the notation at the bottom of page 48.) Equivalently,

we are saying: pick any part of the partition (let us call it m1), if m1 ≡ i mod k, then

we want to avoid patterns in Ai, starting from m1 going to the right. For example, if

Mod = [{[0]}, {[0, 0]}], it means even parts are not allowed to repeat, and odd parts

can appear at most twice.

B: the set of patterns to avoid at the beginning of the partition.

IC: the list of sub-partitions to avoid (we call this “initial conditions”). Let p1

and p2 be partitions. We say p1 is a sub-partition of p2 if p1 (seen as a sequence) is a

consecutive subsequence of p2. For example, [1, 1] is a sub-partitions of [2, 1, 1].

55

Let us look at these notations in light of the two examples above:

Schur: parts with minimal difference 3 translates to A = {[0], [1], [2]}. No consecu-

tive multiples of 3 translates to Mod = [{[3]}, {}, {}].

3.1.1. in [KR2]: No consecutive parts allowed translates to the global condition:

A = {[1]}. Odd parts do not repeat, even parts appear at most twice, along with part

(d) translate to Mod = [{[0, 0], [0, 3], [0, 2], [2, 0]}, {[0], [3, 0]}]. Part (e), that is, 2+2 is

not allowed as a sub-partition translates to IC=[[2,2]]. We do not have any beginning

restrictions, so B = {}.

Having introduced our new language, we now look at the inner-workings of this

generalized algorithm. Let GP (m,n,A,Mod,B, IC) be the number of partitions of n,

with largest part m, and the restrictions A, Mod, B, IC described above. In general,

we follow the following steps:

(1) If m > n, return 0.

(2) Check if m is equal to the largest part of any of the forbidden sub-partitions

in IC: if so (if not, we do nothing), and if the forbidden sub-partition is just [m] then

return 0, otherwise we add the underlying partition pattern to B and we have a set of

new beginning restrictions B′.

(3) If m = n, return 1.

(4) If Mod = {}, then by chopping off the largest part we get the recurrence:

GP (m,n,A,Mod,B, IC) =
∑

1≤m′≤m
[m−m′] 6∈A∪B′

GP (m′, n−m,A,Mod,B′′, IC) .

Note the “contributing” m′ will be those such that the singleton [m−m′] is not in the

forbidden patterns (either globally or at the beginning). B′′ is the set of new beginning

56

restrictions, obtained from A ∪B′ by chopping off the difference m−m′ from the pat-

terns in A ∪ B′ (if a pattern in A ∪ B′ does not contain m −m′ as its first part, then

we can “forget” about this pattern because there is no contribution there to B′′).

(5) If Mod 6= {}, let the length of Mod be k. If m ≡ i (mod k) then we get the

recurrence:

GP (m,n,A,Mod,B, IC) =
∑

1≤m′≤m
[m−m′] 6∈A∪B′∪Mod[i+1]

GP (m′, n−m,A,Mod,B′′, IC) .

Note the “illegible” m′ will be those such that the singleton [m − m′] is not in the

forbidden patterns (either globally or at the beginning or according to the mod condi-

tion). B′′ is the set of new beginning restrictions, obtained from A ∪ B′ ∪Mod[i + 1]

by chopping off the difference m −m′ from the patterns in A ∪ B′ ∪Mod[i + 1] (if a

pattern in A ∪ B′ ∪Mod[i + 1] does not contain m −m′ as its first part, then we can

“forget” about this pattern because there is no contribution there to B′′).

Let us apply this algorithm to

GP (8, 24, {[1]}, [{[0, 0], [2, 0], [0, 2], [0, 3]}, {[0], [3, 0]}], {}, [[2, 2]]).

(Note the restrictions correspond to the sum-side of 3.1.1. of [KR2].)

k = 2, m = 8 ≡ 0 (mod k), m 6= 2, so we do not need to worry about the

first 3 steps, and we are in situation (5): A = {[1]}; B′ = B = {}; Mod[i + 1] =

Mod[1] = {[0, 0], [2, 0], [0, 2], [0, 3]}, so A∪B′∪Mod[i+1] = {[1], [0, 0], [2, 0], [0, 2], [0, 3]}.

[m −m′] = [8 −m′] 6∈ A ∪ B′ ∪Mod[i + 1] implies m′ can be 1,2,3,4,5,6,8. It will be

tedious to work out the different cases for 7 different m′s, and we will just choose m′ = 8

here for the purpose of illustration. Since m−m′ = 0, we have B′′ = {[0], [2], [3]} and

GP (8, 16, {[1]}, [{[0, 0], [2, 0], [0, 2], [0, 3]}, {[0], [3, 0]}], {[0], [2], [3]}, [[2, 2]]).

In theory, this generalized algorithm can also be made quadratic in time and mem-

ory, in order to compute a table for the number of partitions of n obeying restrictions

57

A, Mod, B and IC, using similar ideas as in deriving the SimplifiedFundamentalRecur-

rence on page 43. This is because A, Mod, B and IC are all finite quantities. We will

not go into the details here, but can at least say that this algorithm experimentally run

very fast on our computer.

5.5 Searching for new partition identities

5.5.1 Background and preliminaries

Rogers Ramanujan identities are the following pair of (fascinating!) identities:

∞∑
n=0

qn
2

(q; q)n
=
∞∏
i=0

1

(1− q5i+1)(1− q5i+4)
(5.1)

∞∑
n=0

qn
2+n

(q; q)n
=
∞∏
i=0

1

(1− q5i+2)(1− q5i+3)
(5.2)

Where the “q-Pochhammer symbol” (a; q)n is defined as: (a; q)n :=
n−1∏
i=0

(1− aqi).

We refer to the left-hand-side of these two identities as “sum sides” and the right-

hand-side as “product sides”, for obvious reasons.

These identities also have very nice combinatorial meaning:

For the first identity,
qn

2

(q; q)n
is the generating function for partitions with exactly

n parts such that adjacent parts have difference at least 2;
1

(q; q5)∞(q4; q5)∞
is the

generating function for partitions such that each part is congruent to either 1 or 4

modulo 5. Therefore, the first identity is “saying” that the number of partitions of n

such that the adjacent parts differ by at least 2 is the same as the number of partitions

of n such that each part is congruent to either 1 or 4 modulo 5.

Similarly, the second identity is “saying” that the number of partitions of n such

that the adjacent parts differ by at least 2 and such that the smallest part is at least 2

is the same as the number of partitions of n such that each part is congruent to either

2 or 3 modulo 5.

58

There are many partition identities of this “type”, where we have a “sum side” that

deals with how parts interact with each other and a “product side” that deals with

partitions with parts that fall into certain congruence classes. However, the “type”

in “Rogers-Ramanujan type identities” has a deeper meaning (see the introduction of

[MSZ]). Also, the terms “sum side” and “product side” may refer to a broader context.

In this chapter, we refer to these terms as the following:

“Sum side”: a generating function that counts the pattern-avoiding partitions that

we are currently interested in (according to A, Mod and I). May or may not have an

analytic (multi-)sum.

“Product side”: the side with infinite products.

We use a “list notation” to denote a “product side”, for example [−2,−1, 0, 1, 0]

denotes (q4;q5)∞
(q;q5)2∞(q2;q5)∞

. That is, if there are m entries in the list, and the i-th entry is

k, that means we have a factor of (qi; qm)k∞ on the product side.

As another example, if the list has only −1 and 0 in it, that means the “prod-

uct side” satisfies certain congruence conditions. For example, [−1, 0, 0,−1, 0] denotes

1
(q;q5)∞(q4;q5)∞

, that is, the parts are 1 or 4 modulo 5, which is the “product side” of

(5.1).

Our goal is to use our efficient algorithm, along with Amarel cluster computing and

the use of Frank Gravan’s qseries package (used to factor the “sum sides”) to search

for “sum sides” that can be factored into nice “product sides”, where “nice” means we

only allow −2, −1, 0 and 1 in our list. We include −2 because we are also interested in

“two-colored” partitions, and we allow 1 because it can be used to cancel out terms in

the denominator.

59

5.5.2 Search strategy

Using the efficient generalized algorithm for GP (m,n,A,Mod,B, IC), we programmed

GxnSeq(N,A,Mod,B, I), which returns the first N terms of the sequence enumer-

ating partitions obeying restrictions according to A, Mod, B and I. And then we

programmed the search procedure Search(N,A,Mod,B, I,S) that searches partition

identities that have “product side” up to modulo bN/2c. Here, A is a set of sets of

forbidden patterns. For example: A = {{[0]}, {[1], [2, 2]}}.

For inputs A,Mod,B, I,S, We will search through all sets in A, the Cartesian

product of the powersets of the sets in Mod, as well as powerset of I. S is the set of

elements allowed to appear in the “list notation” of the “product side”. As discussed

on the last page, we take S = {−2,−1, 0, 1}. And we ususally just assume B to be {}

since we are not interested in restrictions at the beginning at this moment.

Let’s look at some examples to see how Search(N,A,Mod,B, I,S) works.

• A = {{[0]}, {[1], [2]}}, Mod = [], I = {}

–This means we search for partitions that avoid either A = {[0]} globally, or avoid

A = {[1], [2]} globally.

• A = {}, Mod = [{[0]}, {[0, 0]}], I = {[1]}

–This means we search for partitions that avoid nothing globally, but has either

Mod = [{}, {[0, 0]}], Mod = [{[0]}, {}], Mod = [{[0]}, {[0, 0]}] or Mod = [{}, {}]

(which is no restriction at all) for Mod restrictions. In addition, we are either

avoiding 1 as a part, or nothing at all for “initial conditions”.

Thanks to Amarel cluster computing (https://oarc.rutgers.edu/amarel/), we

are able to split our job into smaller tasks and feed the tasks to 500 nodes and “theo-

retically” increase our speed by 500 times.

https://oarc.rutgers.edu/amarel/

60

5.5.3 Search Space

Let Comp(m, k) be the set of patterns of length at most m (i.e., at most m parts) and

largest part at most k. For example, Comp(2, 1) = {[0, 0], [0, 1], [1, 0], [1, 1]}. We use the

notation {Comp(2, 1), 2} to denote the set of subsets of Comp(2, 1) such that each of the

subsets contain 2 patterns or less. That is, {Comp(2, 1), 2} = {{[0, 0]}, {[0, 1]}, {[1, 0]},

{[1,1]}, {[0,0],[0,1]},{[0,0],[1,0]},{[0,0],[1,1]},{[0,1],[1,0]},{[0,1],[1,1]}},{[1,0],[1,1]}}.

Below are the a list of 5 essential batches of searches that we conducted.

A Mod I

(1) powerset of Comp(2, 2) [Comp(1, 3), Comp(1, 3), Comp(1, 3)] {[1], [2]}

(2) {Comp(5, 1), 5} [] {[1]}

(3) {Comp(4, 2), 5} [] {[1]}

(4) {Comp(4, 1), 3} [Comp(1, 3), Comp(1, 3), Comp(1, 3)] {[1]}

(5) {} [{Comp(2, 3), 3}, {Comp(2, 3), 3}] {[1]}

Basically, we have to ensure that we are checking (approximately) at most 227 “sum-

sides” for Amarel to be able to handle in one day. Disclaimer: even for the list above,

we did not exhaust everything in them because a few of the tasks ran into problems

on Amarel. For most cases we take N to be 30. That is, we search for identities with

“product side” with modulo at most 15.

In next section, we will show what new identities we discovered within this search

space. Note that it is an incomplete list, as the process involves manually (and it is a

tedious process!) look for and collect identities that seem interesting and checking that

they are new, often by checking on the OEIS, looking at papers, and asking people.

But hopefully the list below will give the readers some ideas of the characteristics of

the identities that we are finding.

For one of the identities we are able to extend it to an infinite family. The discovery

of the infinite family also involves computer experimentation. We will put this infinite

family into a bigger context with some already known identities. Of course, all these

identities are still conjectures, but we have checked 100 terms of the generating function

to make sure the “sum side” matches with the “product side”–to us this is already very

61

good evidence that these conjectures are true.

5.5.4 Discoveries

Needless to say, we discovered many old identities, like Gordon, Andrews-Bressoud,

Capparelli, among many others. But many of them are new. Below is an incomplete

list. The notation is: A, Mod, I → Product Side.

(1) {}, [{[1], [2]}, {[0], [2], [3]}, {}], {} → 0, 1, 3, 6, 7, 8, 9, 11 mod 12

(2) {}, [{}, {[1], [2]}, {[0], [2], [3]}], {[1], [2]} → 0, 3, 4, 5, 6, 9, 11 mod 12

(3) {[1]}, [{[0], [3]}, {}, {}], {} → 1, 2, 4, 6, 8, 10, 11 mod 12

(4) {[1]}, [{},{[0], [3]}, {}], {[1]} → 0, 2, 3, 4, 6, 9, 10 mod 12

(5) {[1]}, [{}, {},{[0], [3]}], {[1]} → 0, 2, 3, 6, 8, 9, 10 mod 12

(6) {[1]}, [{}, {[0], [3]},{[0], [3]}], {[1]} → 0, 2, 3, 6, 9, 10 mod 12

(7) {}, [{[0, 1]}, {[2], [1, 1]}], {} → 0, 1, 2, 3, 6, 7, 8, 9, 10 mod 12

(8) {}, [{[0, 1], [1, 2]}, {[0], [1, 1], [2, 2]}], {} → 0, 1, 3, 4, 7, 8, 9, 10 mod 12

(9) {[1, 0], [1, 1, 1]}, [], {[1]} → 0, 2, 3, 4, 5, 6, 8, 9, 11 mod 12

(10) {[1, 1], [0, 0, 0], [1, 0, 1], [1, 0, 0, 1]}, [], {} → 1, 2, 3, 5, 7, 9, 10, 11 mod 12

62

From (9), we obtain its “companion identity” by hand (by “flipping” the product

side and A, and guessing the initial condition I):

{[0, 1], [1, 1, 1]}, [], {[1,1], [3,2,1]} → 0, 1, 3, 4, 6, 7, 8, 9, 10 mod 12

(10) is so far the most exciting one, since we are able to generalize it to an infinite

family of identities.

Let us revisit (10): {[1, 1], [0, 0, 0], [1, 0, 1], [1, 0, 0, 1]}, [], {} → 1, 2, 3, 5, 7, 9,

10, 11 mod 12

Observe that the “sum side” of (10) is equivalent to:

–At most 3 occurrences of every part

–For all i, not allowed to have i, i+ 1, i+ 2 in the partition (they do not have to be

consecutive)

This seems to generalize to an infinite family:

– At most k occurrences of any given part

– For all i, not allowed to have i, i+ 1, . . . , i+ k − 1 all as parts in the partition

We have experimentally verified this for many different values of k.

The “product sides” of (1) − (10) all correspond to partitions whose parts satisfy

certain congruence conditions, or equivalently, only 0 and −1 are present in the “list

notation”. Here are some identities we found that also allow 1 (again, a very incomplete

list):

(11) {[0,1,0]}, [{[0]}, {}, {}], {} → [-1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 0] (mod 12)

(12) {}, [{[1], [2]}, {[2]}, {[0], [3]}], {} → [-1, -1, -1, 1, 0, -1, -1, -1, -1, 0, 0, -1] (mod 12)

63

(13) {}, [{[1], [2]}, {[0], [2], [3]}, {[0], [3]}], {} → [-1, 0, -1, 1, 0, -1, -1, -1, -1, 0, 0, -1]

(mod 12)

(14) {[1, 2], [2, 1]}, [{}, {[0], [1], [2], [3]}, {[2]}], {[1], [2]} → [-1, 0, -1, 1, 0, -1, -1, -1,

-1, 0, 0, -1] (mod 12)

5.6 Future work

There are lots of future work to be done for this project. We will list a few below:

(1) Search for larger modulo identities by increasing the N in Search(N,A,Mod,B, I,S).

We have already tried this out for a small batch of inputs, and one identity we found is

the following: {[0]}, [{[2], [1, 1]}, {[1, 2], [3, 2]}], {} → [-1, 0, -1, 0, -1, 1, -1, -1, -1, 1,

-1, -1, -1, 1, -1, 0, -1, 0, -1, 0] (mod 20). We are hopeful that we will find many more

such identities.

(2) Put more variations on the initial conditions.

(3) Incorporate Nandi’s ∗ operator (the asterisk in the pattern [3, 2∗, 3, 0]; for details,

please see [N]) into our program to search for more Nandi-type partition identities. It

is not hard to adapt our algorithm to look for Nandi-type partitions, in fact, we have

already done that. But we would need more insight on “where to look”, as some initial

searches did not help us find new identities.

(4) Some identities have “wierd” “sum side”, for example, a big Göllnitz companion

identity (see Theorem A in [AA]) “sum side” requires difference of at least 6 between

parts EXCEPT that it is OK if the smallest two parts are 1 and 6. Maybe many such

“wierd” partition identites are out there, we would like to modify our algorithm to

search for them.

64

(5) Currently our approach only deals with conditions on contiguous sub-partitions. It

will be nice to develop a general frame work/an efficient way to search for identities

that avoid sub-partitions that are not necessarily contiguous (like in the infinite family

we presented).

65

References

[1] A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems
and proofs on enumerating consecutive-Wilf classes, in Advances in Combinatorics:
Waterloo Workshop in Computer Algebra, W80, May 26-29, 2011 [Volume in honor
of Herbert S. Wilf], edited by Ilias Kotsireas and Eugene Zima, Springer, 2013, pp.
121–138.

[2] A. Burstein, Enumeration of words with forbidden patterns, Ph.D. thesis, University
of Pennsylvania, 1998.

[3] A. Burstein and T. Mansour, Words restricted by patterns with at most 2 distinct
letters, Electron. J. Combin. 9 (2002), #R3.

[4] F. N. Davis and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962.

[5] S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math.
30 (2003), 110–125 .

[6] I. M. Gessel, Generating functions and enumeration of sequences, PhD thesis, Mas-
sachusetts Institute of Technology, 1977.

[7] I. M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A
53 (1990), 257–285.

[8] I. Goulden and D. Jackson, An inversion theorem for cluster decomposition of se-
quences with distinguished subsequences, J. London Math. Soc.(2) 20 (1979), 567–
576.

[9] A. Mendes and J.B. Remmel, Permutations and words counted by consecutive pat-
terns, Adv. Appl. Math, 37 (2006), 443–480.

[10] B. Nakamura, Computational approaches to consecutive pattern avoidance in
permutations, Pure Math. Appl. (PU.M.A.) 22 (2011), 253–268.

[11] J. Noonan and D. Zeilberger, The Goulden-Jackson cluster method: extensions,
applications, and implementations, J. Difference Eq. Appl. 5 (1999), 355–377.

[12] L. Pudwell, Enumeration schemes for pattern-avoiding words and permutations,
Ph.D. thesis, Rutgers University, May 2008,
http://faculty.valpo.edu/lpudwell/papers/pudwell_thesis.pdf

[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.
org.

http://faculty.valpo.edu/lpudwell/papers/pudwell_thesis.pdf
http://oeis.org
http://oeis.org

66

[14] X. Wen, The symbolic Goulden-Jackson cluster method, J. Difference Eq. Appl.
11 (2005), 173–179.

	Abstract
	Acknowledgements
	Dedication
	Introduction
	Words that contain the pattern 123 exactly once
	Increasing consecutive patterns in words
	Relaxed partitions
	Systematic counting of restricted partitions and searching for new partition identities

	Words that contain the pattern 123 exactly once
	Introduction
	Enumeration of words that contain the pattern 123 exactly once
	Generating functions
	Using Maple packages

	Increasing consecutive patterns in words
	Introduction
	Method, experimentation, and results
	Proofs by tweaking the Goulden-Jackson cluster method

	Relaxed partitions
	Introduction
	The recurrence relation for F(M,N,r,q)
	Using Maple to discover (and prove!) patterns for F(M,N,r,1)
	Can we find a pattern for F(M,N,r,q)?
	Future work and connection to other combinatorial objects

	Systematic counting of restricted partitions and searching for new partition identities
	Introduction
	Adapting the Goulden-Jackson cluster method
	A more straight-forward approach
	Generalization
	Searching for new partition identities
	Future work

	References

