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Chapter 1

Introduction

The underlying theme for this thesis is “experimental mathematics”. We use this

term to denote the use of computers in mathematical research. Over the past several

decades, experimental mathematics has been a burgeoning field. Computers were the

key to Appel and Haken’s proof of the four-color theorem, along with Thomas Hales’s

solution of the Kepler conjecture. In both works, the problem was reduced to checking

a very large number of cases.

Mathematics is one of the most interesting academic disciplines, as it lies at the

intersection of art and science. Most sciences have some experimental aspect to them,

and it is interesting to see in what ways this facet can be seen in mathematics. Much

of my work could be called carrying out “mathematical experiments” — trying a large

number of possibilities and examining the results. Other features of experimentation

sometimes arise in mathematics. For example, the integrality of the Dana Scott se-

quence was discovered “by accident” — Scott was attempting to program the Somos-4

sequence, a recursively defined sequence that surprisingly only contains integers, into a

computer to study it. However, he made a typing error while inputting the recurrence.

As a result, Scott serendipitiously made the discovery that the same phenomenon that

holds true for the Somos-4 sequence also occurs in this new sequence with the typo.

The practice of experimental mathematics can take many different forms. We now

highlight a few selected avenues, along with corresponding examples from this thesis.

In Chapters — and —, I use Maple code to automatically search for and discover

new (conjectural) partition identities of Rogers-Ramanujan type.The main point of

involving the computer in this process is to speed up calculations that could otherwise

be done by hand. For example, when I use computers to search for new partition



2

identities, I am just determining the first 30 or so terms of the formal power series for a

given “sum side”, and then seeing if it can be factored as a “nice” infinite product. Now,

I could probably do the calculations for any given sum side using pen and paper, and

sometimes, it is important to do some work myself to better be able to spot patterns.

However, this undertaking would probably take me an entire afternoon. If I were to use

computers instead, I can do the calculations for, say, a million sum sides in the same

amount of time. One can only imagine what Ramanujan would have accomplished

had he had access to modern computers. Using computers also has the advantage of

being more accurate. Because I am doing exact calculations, miscounting by a single

partition would throw off my entire calculations. Others have used computers to search

for partition identities in the past, but our “sum-side” conditions are more apparently

more general than what have been used in the past.

We can do more than simply use computers to conjecture results and involve them

in the proof process as well. Examples of this fill the next several chapters.

In the late 1980s, Andrews and Baxter published what they called a “motivated

proof” of the Rogers-Ramanujan identities. The key observation is that a sequence of

power series is constructed, beginning with the two Rogers-Ramanujan product sides,

and each term in the sequence is noted to be of the form 1 + qj + · · · for ever-increasing

values of j. They called this observation their “Empirical Hypothesis”.

Since this work, a program has been developed to apply this “motivated proof”

paradigm to other partition identities, including a project I worked on with Kanade,

Lepowsky, and Sills to provide a similar proof of the Andrews-Bressoud identities. Once

again, an “empirical hypothesis” was deduced. In our case, it truly was empirical —

Maple was used to calculate the first several dozen terms of the initial power series on

what we call the “zeroth shelf”, and then experimentation was used to find appropriate

linear combinations of these power series on the “zeroth shelf” to make up a “first shelf”,

and then a “second shelf”, and so on, always verifying that the elements of each “shelf”

are always power series of the form 1+qj+· · · . Once the correct linear combinations are

determined, it is then relatively straightforward to uncover the underlying interpretation

through partitions.
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Even if we are unable to use computers to provide complete proofs, we can use

them to guide our efforts to provide “human” proofs. These efforts are evident in the

chapters of my work on demonstrating that certain noncommutative recursions possess

the Laurent phenomenon — that every term of the recursively-defined sequence is a

Laurent polynomial in the initial variables. The main theorem is shown to hold for

any noncommutative recursion of a certain form using monic palindromic polynomials

in Q [x], generalizing a conjecture by Kontsevich. One way to prove the theorem, in

the spirit of Berenstein and Retakh, is by explicitly calculating the first term in the

recursion that could possibly not be a Laurent polynomial, and by demonstrating,

through extensive algebraic manipulations, that it is, in fact, a Laurent polynomial.

The form of these long calculations, where it is easy for a human to err, make it

natural to turn to a computer for assistance. Accordingly, I wrote a Maple package that

allowed me to prove the theorem for any fixed set of monic palindromic polynomials.

The computer is taught a list of “simplifying” rules, which gradually transform the

expression in question into a particular form. At the end of all of the calculations, the

expression can be observed to be a Laurent polynomial, which verifies the theorem in

that case.

Of course, writing this computer code is not enough to prove the theorem. I then

used the output of the program for certain cases of the theorem to guide my proof, which

is contained in chapter —. The proof is rather technical, consisting of a long series of

calculations, in the style of the computer. Watching the steps that my procedures take

to verify specific instances of the theorem allowed me to decide what intermediate steps

needed to be done.

In the rest of the chapter, I use what I have learned to extend this to a family of

two-dimensional recurrences. Again, having “practiced” by seeing the output of the

Maple procedures greatly facilitates the work by hand.

Perhaps the purest form of experimental mathematics is having the computer dis-

cover and then automatically prove new theorems. This paradigm is explored in Chap-

ter —. In this chapter, Somos-like sequences are discussed. These are the commutative

versions of the recursions mentioned in the previous paragraph. Again, the goal is to
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establish the Laurent phenomenon for specific sequences. If the initial variables of the

sequences are all specialized to 1, then the Laurent phenomenon becomes the statement

that every term in the sequences is an integer.

For a large number of recursions, chosen in a way that made them likely candi-

dates, I used Maple to first evaluate if the underlying sequence with the all-ones initial

conditions only contains integers for the first 15 terms or so. (Of course, we could do

this without specializing the variables to all be equal to 1, but using integers instead of

formal variables greatly speeds up the running time.)

This process indentified likely candidates for sequences with the Laurent phenomenon.

However, we can do even more. Fomin and Zelevinsky provided machinery to prove

the Laurent phenomenon for specific sequences that is very amenable to automation. I

implemented this machinery in Maple in such a way that the computer is able to nearly

simultaneously conjecture and prove new results.

Although the most important part of the work is, again, the computer code used to

discover the results, I spend part of the chapter proving the Laurent phenomenon for

certain infinite families of recursions, guided by the experimental data.

Although the mathematical fields I investigated in this thesis may be quite diverse,

the thread that ties this work together is more about the underlying methods used

in experimental mathematics. Note how in both some of my explorations in partition

theory and also in these Somos-like sequences, the approach is to calculate some number

of initial terms of a given sequence (in the case of partition identities, the sequence at

hand is the sequence of coefficient of the formal power series on the sum side), and then

check that all of the terms satisfy some condition.

Often, when people think of using computers in mathematics, “number-crunching”

is what comes to mind - long calculations in arithmetic designed to obtain approximate

answers. Instead, my work tends to be in areas where “symbol-crunching” is more

useful, involving long algebraic manipulations. Furthermore, I need exact answers in

my work — as noted earlier, being off by a single partition would throw off my entire

calculation.

It would be wonderful if more mathematics could be done by way of what Zeilberger
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calls the N0 principle. This framework of proof is when one checks that a theorem holds

in a certain number of cases, and then argues that the truth of the theorem for these

cases suffices to prove that the truth of the general theorem. Going back to the partition

identity conjectures, it certainly seems that we have enough cases to believe in their

truth. Again, using Maple (along with a bit of human ingenuity), we were able to verify

our conjectures to hold for all n ≤ 1500 (at the minimum). MacMahon famously was

convinced of the truth of the Rogers-Ramanujan identities after observing that they

held for about 90 terms. Unfortunately, right now, no such “meta-theorem” exists.

However, our new partition conjectures are leading to new research as others attempt

to understand them more deeply and prove them.

Chapter — is joint work with Shashank Kanade. Chapter — is joint work with

Shashank Kanade, James Lepowsky, and Andrew V. Sills.
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Chapter 2

Experimental mathematics and partition identities

2.1 Introduction

The work of this chapter is an attempt to construct a mechanism using computer

algebra systems to discover and conjecture new partition identities. Six new conjectured

partition identities are the major result of this chapter. The Maple code for the work

in this chapter and the following can be found in the package IdentityFinder, freely

available at http://math.rutgers.edu/~russell2/papers/partitions14.html.

These identities are in the spirit of many other well-known identities, such as Euler’s

identity, the Rogers-Ramanujan identities, Schur’s identity, Gordon’s identities, the

Andrews-Bressoud identities, Capparelli’s identities, and the little Göllnitz identities.

Using a systematic mechanism based on symbolic computation, we present six new

conjectured identities using IdentityFinder.

The main idea behind IdentityFinderis to calculate out a very large number of

sum side generating functions, followed by the use of Euler’s algorithm to turn the

generating functions into products. At this point, we examine the products to see which

ones provide “periodic” factorizations. If this happens (with a small enough period), we

identify the pair of the sum side and product side as a potential new partition identity.

Each sum side incorporates various restrictions on partitions, such as difference-at-

a-distance conditions, congruence-at-a-distance conditions, initial conditions, etc., each

of which conditions are coded as separate procedures. We hope that the “modular”

nature of our work will allow us to extend our work to incorporate other possible sum

side structures, allowing for new advances. A few selected avenues of research are

highlighted at the end of this chapter.

http://math.rutgers.edu/~russell2/papers/partitions14.html
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Using computer explorations to discover and prove partition identities is not new.

Similar methods to ours have been previously used effectively by Andrews (see [7] and

Chapter 10 of [6]). Computer searches have been used extensively in automatically

discovering finite Rogers-Ramanujan type identities (see [56] and [47]) and analytic

identities (see [47]). See the introduction of [47] for other references for computer

methods in partition identities.

Apart from their intrinsic interest, partition identities are fundamentally related in

deep ways to have connections to divers fields of mathematics. For example, Baxter [13]

demonstrated how the Rogers-Ramanujan identities are useful in statistical mechanics

in his solution of the hard-hexagon model. Also, Lepowsky and Wilson [38]–[41] found

connections between many partition identities (including the Rogers-Ramanujan iden-

tities) and affine Lie algebras in the realm of vertex operator algebras. Since then,

some new partition identities have been found through Lie-theoretic approaches, such

as Capparelli’s identities [16]. We believe that some of our conjectures (I1 — I3) are con-

nected with the level 3 standard modules of the affine Lie algebra D(3)
4 . (These feature

symmetric congruence classes for the product sides; we should not expect Lie-theoretic

connections when the congruence classes are asymmetric.)

While we do not have formal proofs of these conjectures, we strongly believe in their

truth. All six conjectures in this section have been verified up to at least partitions of

n = 1500 (through the polynomial recursions presented in section ——).

2.2 Preliminaries

Throughout this work, we will treat q as a formal variable. Let n be a non-negative

integer. A partition of n is a list of integers (λ1, λ2, . . . , λm) (which we will often write

as λ1 + λ2 + · · · + λm) such that λ1 + · · · + λm = n and λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 1. We

refer to the individual λis as “parts”. We assume that n = 0 has exactly one partition,

which is the null partition.

One obvious question related to partitions is to count the number of partitions of

a nonnegative integer n. We can also place restrictions on the partitions that we are
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considering. For example, we may desire to only count partitions where the parts are

in some residue class modulo some N — for example, partitions into odd parts.

A partition λ is said to contain a second partition µ as a subpartition if (µ1, µ2, . . . , µ`)

is a subsequence of (λ1, λ2, . . . , λm). In our work below, our initial conditions will typ-

ically be of the form of a small set of forbidden subpartitions.

To us, a “product side” is a generating function of the form
∏
j≥1

(
1− qj

)pj . Usually,

each pj will be in {0, 1}, which means that this expression will be the generating function

for partitions, where the allowable parts are those j such that pj = −1. Furthermore,

if {pj} is a periodic sequence, then the product can be interpreted as the generating

function for partitions whose parts satisfy certain congruence conditions modulo the

period.

However, the “sum side” involves difference conditions between parts — how the

parts interact with each other — along with initial conditions .(forbidding a small

number of subpartitions). As an example, the sum side of Euler’s identity is that all

parts must be distinct: λi > λi+1 for all i.

A “partition identity” is a statement that, for all nonnegative integers n, the number

of partitions of n that satisfy the product side conditions equals the number of partitions

of n that satisfy the sum side conditions.

Euler’s algorithm allows us a way to obtain a product side from a sum side by

“factoring”:

Proposition 2.2.1. Let f(q) be a formal power series such that

f(q) = 1 +
∑
n≥1

bnq
n. (2.1)

Then

f(q) =
∏
m≥1

(1− qm)−am , (2.2)

where the ams are defined recursively by:

nbn = nan +
∑

d|n, d<n

dad +
n−1∑
j=1

∑
d|j

dad

 bn−j . (2.3)
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For a proof using logarithmic differentiation, see Theorem 10.3 of [6].

If we have a generating function f(q) having constant term 1, we refer to the form

(2.1) as the “sum side” and to (2.2) as the “product side.”

Of course, our methods cannot actually produce genuinely infinite formal power

series. Rather, we end up with polynomials that approximate these infinite formal

power series. The following corollary implies that if we provide additional terms of

our generating function, obtaining a better approximation, the original factors in the

original product are unchanged. This will be used in our verification section.

Corollary 2.2.2. Let f(q) and g(q) be formal power series with constant term 1 such

that

f(q)− g(q) ∈ qk+1C[[q]]

for some k ≥ 1. If

f(q) =
∏
m≥1

(1− qm)−a
(f)
m (2.4)

and

g(q) =
∏
m≥1

(1− qm)−a
(g)
m (2.5)

then a
(f)
m = a

(g)
m for all m = 1, . . . , k.

Proof. Equation (2.3) implies that an is dependent only on b1, . . . , bn.

2.3 History

The history of partition identities is a particularly fascinating one. We will give a brief

overview; for more information, see [6].

The oldest partition identity is due to Euler. It states that for any non-negative

integer n, the number of partitions of n only using odd parts is the same as the number

of partitions of n in which all parts are distinct. This identity was originally stated and

proved in its generating function form:

∏
j≥1

1
(1− q2j−1)

=
∏
j≥1

(
1 + qj

)
, (2.6)
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This is the archetypal example of a partition identity. One of the restricted types is

into parts that fall into certain congruence classes (typically referred to as the “product

side”, as the generating function is most easily expressed as an infinite product), while

the other deals with how parts interact with each other (which we will call the “sum

side”, because its generating function is often written as an infinite sum — although

not in this case). Loosely speaking, a partition identity is a statement that, for all

non-negative integers n, the number of partitions of n into partitions of one restricted

type is the same as the number of partitions of n into partitions of a different restricted

type.

The proof of Euler’s identity is rather straightforward. One simply manipulates the

generating functions in the following way:

∏
j≥1

1
(1− q2j−1)

=
∏
j≥1

(
1− q2j

)
(1− q2j−1) (1− q2j)

(2.7)

=
∏
j≥1

(
1− qj

) (
1 + qj

)
(1− qj)

(2.8)

=
∏
j≥1

(
1 + qj

)
, (2.9)

where we make use of the identity
(
1− x2

)
= (1− x) (1 + x).

Euler’s identity is the only one on this list that can be proven by using “manipu-

latorics” — all of the other identities presented in this chapter have very deep proofs

(and so we should expect any proof of the conjectures to be appropriately complicated).

The next most complicated identities are the Rogers-Ramanujan identities, origi-

nally discovered by L. J. Rogers in 1894, and rediscovered by Ramanujan in the 1910s:

• The number of partitions of a non-negative integer into parts congruent to ±1

(mod 5) is the same as the number of partitions with difference at least 2.

• The number of partitions of a non-negative integer into parts congruent to ±2

(mod 5) is the same as the number of partitions with difference at least 2, and 1

is not allowed as a part.
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In generating function form, these are:

∏
j≥0

1
(1− q5j+1) (1− q5j+4)

=
∑
n≥0

d1(n)qn, (2.10)

∏
j≥0

1
(1− q5j+2) (1− q5j+3)

=
∑
n≥0

d2(n)qn, (2.11)

where di(n) is the number of partitions of n such that adjacent parts have difference at

least 2 and such that the smallest allowed part is i. Again, there are analytic forms for

the two identities, respectively:

∏
j≥0

1
(1− q5j+1) (1− q5j+4)

=
∑
n≥0

qn
2

(1− q) (1− q2) · · · (1− qn)
, (2.12)

∏
j≥0

1
(1− q5j+2) (1− q5j+3)

=
∑
n≥0

qn
2+n

(1− q) (1− q2) · · · (1− qn)
. (2.13)

It should be noted that, in the cases of both the Rogers-Ramanujan identities and

Euler’s identity, the algebraic statements were discovered and proved first, and only

later were the interpretations in terms of partitions provided.

Broad-sweeping generalizations of the Rogers-Ramanujan identities were provided

by Gordon [30], where the sum side conditions featured a new variant. Fix values of

k and d. If, for all j, λj − λj+k ≥ d, we say that the partition has difference at least

d at distance k. Thus, the difference condition in the Rogers-Ramanujan identities is

a difference at least 2 at distance 1 condition. The innovation in the sum sides for

Gordon’s identities is considering sum side conditions where the distance is at least 2:

G : The number of partitions of a non-negative integer into parts not congruent to 0

or ± (k − i+ 1) (mod 2k + 1) is the same as the number of partitions of n with

difference at least 2 at distance k − 1 such that 1 appears at most k − i times.

Analogous identities with even moduli were provided by Andrews and Bressoud [?]:

G : The number of partitions of a non-negative integer into parts not congruent to 0 or

± (k − i+ 1) (mod 2k) is the same as the number of partitions π = (π1, . . . , πs)

of n with difference at least 2 at distance k− 1 such that 1 appears at most k− i

times and, if πt − πt+k−2 ≤ 1, then πt + πt+1 + · · ·+ πt+k−2 ≡ i+ k (mod 2).
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Our final example in this survey of partition identities was provided by Stefano

Capparelli. Through his study of the affine Lie algebra A(2)
2 in his doctoral thesis [16],

he discovered (at first conjecturally) a pair of partition identities. The first of these is:

C1 : The number of partitions of a non-negative integer into parts congruent to ±2 or

±3 (mod 12) is the same as the number of partitions of n such that consecutive

parts must differ by at least 2, the difference is at least 4, unless consecutive parts

add up to a multiple of 3, and 1 is not allowed as a part.

This first of the two identities was initially proven by George Andrews in 1992 [7], and

eventually by Capparelli himself using Lie-theoretic means [17]. (For the fascinating

story of Andrews’s original proof, see [1]).

2.4 Methods

In this section, we will discuss the methodology we used to discover our partition

conjectures.

First, we need to discuss the types of conditions that we used (with varying param-

eters) to generate our sum sides. The following list provides the conditions, together

with the corresponding procedures in IdentityFinder:

• Smallest part size (SmPartCheck): This is the smallest allowable part, along with

the maximum multiplicity with which it is allowed to appear. For example, in

Gordon’s identities, there is a restriction on the number of occurrences of 1 as a

part.

• Difference-at-a-distance (DiffDistCheck): Fix values of k and d. If, for all j,

λj − λj+k ≥ d, we say that the partition satisfies the difference d at distance k

condition. For example, the two Rogers-Ramanujan identities both feature the

difference 2 at distance 1 condition.

• Congruence-at-a-distance (CapparelliCheck): If for all j, λj ≤ λj+A + B only

if λj + λj+1 · · · + λj+A is congruent to C (mod D), we say that the partition

satisfies the (A,B,C,D)-congruence condition. Using A = 1 is an important
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specialization. In this case, the condition simplifies to: two consecutive parts differ

by at most B only if their sum is congruent to C (mod D). For example, in our

notation, the key condition in Capparelli’s identities is the (1, 3, 0, 3)-congruence

condition. The Andrews-Bressoud identities use a congruence condition with D =

2. It can be important to consider seemingly “wrong” or “unnatural” congruence

conditions (see the “ghost series” in the motivated proof of the Andrews-Bressoud

identities in [35]).

The previous three conditions give us eight possible parameters (two for SmPartCheck,

two for DiffDistCheck, and four for CapparelliCheck. In practice, we choose small

ranges (say, 1 to 5) for each of these parameters (although, in CapparelliCheck, C is

always chosen to be between 0 and D−1, to avoid redundancies). For each combination

of parameters, we examine all partitions of n from 0 to N (typically using N = 30),

using the preceding procedures, and deduce initial terms for the corresponding (infinite)

generating function.

We arrive at

1 +
N∑
n=1

bnq
n,

and can use Euler’s algorithm to factor the expression just obtained as

f(q) =
∏
m≥1

(1− qm)−am .

In practice, we use the implementation of Euler’s algorithm in Frank Garvan’s qseries

package [30] as the procedure prodmake.

We now consider the sequence {am}Nm=1. If this sequence is periodic, with an ap-

propriately small period, then we have a candidate for a new partition identity.

The above process identifies potential candidates for new identities. After potential

candidate new identities were identified, we used the On-Line Encyclopedia of Integer

Sequences [49] to help determine which ones were already known (for example, in identi-

fying many cases of the Göllnitz-Gordon-Andrews theorem). If the conjectured identity

still appeared to be new at this point, we had two options to further verify candidates.

Experimentally, we can simply increase the value of N , calculating additional terms
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of the sum side, and verifying that this still matches the product side. Alternatively,

we can write down the recursions that govern the sum sides, along with their initial

conditions. Together, this can allow us to calculate hundreds or thousands of terms on

the sum side.

2.5 Results

Naturally, our methods rediscover many known identities. Our initial searches have

found six new (conjectured) identities, which were first published in [36]. All six of

these conjectures have been verified for at least 1500 terms. Three of them form a

single family of mod 9 identities:

I1 : The number of partitions of a non-negative integer into parts congruent to ±1 or

±3 (mod 9) is the same as the number of partitions with difference at least 3 at

distance 2 such that if two consecutive parts differ by at most 1, then their sum

is divisible by 3.

I2 : The number of partitions of a non-negative integer into parts congruent to ±2 or

±3 (mod 9) is the same as the number of partitions with smallest part at least 2

and difference at least 3 at distance 2 such that if two consecutive parts differ by

at most 1, then their sum is divisible by 3.

I3 : The number of partitions of a non-negative integer into parts congruent to ±3 or

±4 (mod 9) is the same as the number of partitions with smallest part at least 3

and difference at least 3 at distance 2 such that if two consecutive parts differ by

at most 1, then their sum is divisible by 3.

A fourth mod 9 identity appears to be related, but has asymmetric congruence condi-

tions:

I4 : The number of partitions of a non-negative integer into parts congruent to 2, 3, 5,

or 8 (mod 9) is the same as the number of partitions with smallest part at least

2 and difference at least 3 at distance 2 such that if two consecutive parts differ

by at most 1, then their sum is congruent to 2 (mod 3).
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We also found a pair of mod 12 identities, again with asymmetric congruence conditions:

I5 : The number of partitions of a non-negative integer into parts congruent to 1, 3,

4, 6, 7, 10, or 11 (mod 12) is the same as the number of partitions with at most

one appearance of the part 1 and difference at least 3 at distance 3 such that

if parts at distance two differ by at most 1, then their sum (together with the

intermediate part) is congruent to 1 (mod 3).

I6 : The number of partitions of a non-negative integer into parts congruent to 2, 3,

5, 6, 7, 8, or 11 (mod 12) is the same as the number of partitions with smallest

part at least 2, at most one appearance of the part 2, and difference at least 3 at

distance 3 such that if parts at distance two differ by at most 1, then their sum

(together with the intermediate part) is congruent to 2 (mod 3).

Let us illustrate I1, I2, and I3 with an example. There are fourteen partitions of

n = 13 into parts congruent to ±1 or ±3 (mod 9):

13, 10 + 3, 10 + 1 + 1 + 1, 8 + 3 + 1 + 1, 8 + 1 + 1 + 1 + 1 + 1, 6 + 6 + 1, 6 + 3 + 3 + 1,

6+3+1+1+1+1, 6+1+1+1+1+1+1+1, 3+3+3+3+1, 3+3+3+1+1+1+1,

3 + 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, and

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

There are seven partitions of n = 13 into parts congruent to ±2 or ±3 (mod 9):

11+2, 7+6, 7+3+3, 7+2+2+2, 6+3+2+2, 3+3+3+2+2, and 3+2+2+2+2+2.

There are five partitions of n = 13 into parts congruent to ±3 or ±4 (mod 9):

13, 6 + 4 + 3, 5 + 5 + 3, 5 + 4 + 4, and 4 + 3 + 3 + 3.

There are fourteen partitions of n = 13 that satisfy the sum side conditions of I1:

13, 10 + 3, 9 + 4, 8 + 5, 7 + 3 + 3, 11 + 2, 7 + 4 + 2, 12 + 1, 10 + 2 + 1, 9 + 3 + 1,

8 + 4 + 1, 7 + 5 + 1, 6 + 6 + 1, and 6 + 4 + 2 + 1.

This confirms I1 for n = 13. Our somewhat unorthodox ordering of these partitions

is to make it apparent that exactly seven of these partitions do not contain 1 as a

subpartition, and exactly five of these partitions do not contain 1 or 2 as subpartitions.

As the sum side conditions for I2 and I3 are exactly the same as for I1, except that 1
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is forbidden as a subpartition and 1 and 2 are forbidden as subpartitions, respectively,

this takes care of verifying I2 and I3.

Also, to illustrate I5, there are seventeen partitions of n = 11 into parts congruent

to 1, 3, 4, 6, 7, 10, or 11 (mod 12):

11, 10+1, 7+4, 7+3+1, 7+1+1+1+1, 6+4+1, 6+3+1+1, 6+1+1+1+1+1,

4 + 4 + 3, 4 + 4 + 1 + 1 + 1, 4 + 3 + 3 + 1, 4 + 3 + 1 + 1 + 1 + 1, 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1,

3 + 3 + 3 + 1 + 1, 3 + 3 + 1 + 1 + 1 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, and

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

To check this, we list the seventeen partitions of n = 11 that satisfy the sum side

conditions of I5:

11, 10 + 1, 9 + 2, 8 + 3, 8 + 2 + 1, 7 + 4, 7 + 3 + 1, 7 + 2 + 2, 6 + 5, 6 + 4 + 1, 6 + 3 + 2,

5 + 5 + 1, 5 + 4 + 2, 5 + 3 + 3, 5 + 3 + 2 + 1, 4 + 4 + 2 + 1, and 4 + 3 + 3 + 1.

2.6 Verification

Using the approaches detailed before, we can verify our conjectures for the first several

dozen terms. In order to increase this further, we have to use alternate methods for

calculating the sum sides, as detailed in this section. In order to do this, we use

generating functions for the sum sides, with added restrictions on the size of the largest

part (which means that these will be polynomials). In the limit as the allowable size

of the largest part goes to infinity, these polynomials converge to their respective sum

sides. This procedure allows us to quickly compute hundreds or thousands of terms for

the sum sides, and then verification with the product sides is routine.

This method is similar to one found in [9]. Analogous polynomials have been used

in motivated proofs of the Gordon, Göllnitz-Gordon-Andrews, and Andrews-Bressoud

identities, respectively (see [42], [23], and [35]).

For every identity, we write recursions for generating functions for partitions satis-

fying the conditions in the sum side with added upper bound N on the largest part. It

is easy to see that these new generating functions are polynomials which agree with the

full sum sides up to the coefficient of qN . From (2.3), it is easy to see that b1, . . . , bN
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uniquely determine a1, . . . , aN .

Let fj(q) be the generating function for the partitions counted in the sum side of

the identity Ij for j = 1, 2, 3. Let

Pj,k(q) = generating function for the partitions counted

in the sum side of the identity Ij , where j = 1, 2, 3,

with the added restriction that the largest part is at most k.

Let Pj,k(q) be the generating function for the partitions counted in the sum side

of the identity Ij , where j ∈ {1, 2, 3}, with the added restriction that the largest part

is at most k. It is easy to see that the polynomials Pj,k(q) satisfy the same recursion

irrespective of the value of j:

It is clear that Pj,k(q) is a polynomial, which agrees with fj(q) up to qk. Therefore,

by Corollary 2.2.2, the product obtained by applying Euler’s algorithm to Pj,k(q) agrees

with the product corresponding to fj(q) up to the factor (1− qk)−ak . It is easy to see

that the polynomials Pj,k(q) satisfy the same recursion irrespective of the value of j:

Pj,3n = Pj,3n−1 + q3nPj,3n−2 + q3nq3nPj,3n−3 (2.14)

Pj,3n+1 = Pj,3n + q3n+1Pj,3n−1 (2.15)

Pj,3n+2 = Pj,3n+1 + q3n+2q3n+1Pj,3n−1 + q3n+2q3nPj,3n−2 + q3n+2Pj,3n−1. (2.16)

Note that we have presented some exponents in an unsimplified form in our recur-

sions (above and below) to better illustrate how the latter are produced. The initial

conditions, however, depend on the value of j:

P1,1 = 1 + q P1,2 = 1 + q + q2 + q3 P1,3 = 1 + q + q2 + 2q3 + q4 + q6 (2.17)

P2,1 = 1 P2,2 = 1 + q2 P2,3 = 1 + q2 + q3 + q6 (2.18)

P3,1 = 1 P3,2 = 1 P3,3 = 1 + q3 + q6. (2.19)

For the remaining mod 9 identity, I4, letting Qk(q) be the generating function for
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the partitions counted in the sum side of the identity I4, with the added restriction

that the largest part is at most k, the recursions and initial conditions are:

For the remaining mod 9 identity, I4, letting

Qk(q) = generating function for the partitions counted

in the sum side of the identity I4,

with the added restriction that the largest part is at most k,

the recursions are:

Q3n = Q3n−1 + q3nq3n−1Q3n−3 + q3nq3n−2Q3n−4 + q3nQ3n−3 (2.20)

Q3n+1 = Q3n + q3n+1q3n+1Q3n−2 + q3n+1Q3n−1 (2.21)

Q3n+2 = Q3n+1 + q3n+2Q3n, (2.22)

with the initial conditions:

Q0 = 1, Q1 = 1, Q2 = 1 + q2, Q3 = 1 + q2 + q3 + q5.

For the first mod 12 identity, I5, let Rn,a(q) be the generating function of partitions

with largest part at most n and at most a parts equalling n, in addition to the given

constraints in the sum-sides. The following recursions and initial conditions are satisfied

by these polynomials:

Now, let us turn to the mod 12 identities. For the first mod 12 identity, I5, let

Rn,a(q) = generating function of partitions with largest part at most n

and at most a parts equalling n

in addition to the given constraints in the sum-sides. (2.23)

It is easy to see that we need only consider a ∈ {1, 2}. The following recursions and

initial conditions are satisfied by these polynomials:
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Rn,1 = qnRn−1,2 − qnqn−1qn−2qn−2Rn−4,1 +Rn−1,2 (2.24)

Rn,2 = qnqnRn−2,1 +Rn,1 (2.25)

R1,1 = 1 + q (2.26)

R1,2 = 1 + q (2.27)

R2,1 = 1 + q + q2 + q3 (2.28)

R2,2 = 1 + q + q2 + q3 + q4 (2.29)

R3,1 = 1 + q + q2 + 2q3 + 2q4 + q5 + q6 + q7 (2.30)

R3,2 = 1 + q + q2 + 2q3 + 2q4 + q5 + 2q6 + 2q7 (2.31)

R4,1 = 1 + q + q2 + 2q3 + 3q4 + 2q5 + 3q6 + 4q7 + 2q8 + q9 + 2q10 + q11 (2.32)

R4,2 = 1 + q + q2 + 2q3 + 3q4 + 2q5 + 3q6 + 4q7 + 3q8 + 2q9 + 3q10 + 2q11. (2.33)

Finally, defining Sn,a(q) analogously for I6, we compute

Sn,1 = qnSn−1,1 + Sn−1,2 (2.34)

Sn,2 = qnqnqn−1Sn−3,2 + qnqnSn−2,1 + Sn,1 (2.35)

S1,1 = 1 (2.36)

S1,2 = 1 (2.37)

S2,1 = 1 + q2 (2.38)

S2,2 = 1 + q2 (2.39)

S3,1 = 1 + q2 + q3 + q5 (2.40)

S3,2 = 1 + q2 + q3 + q5 + q6 + q8. (2.41)

Practically speaking, if we only desire to verify the conjectures up to some n = N ,

we can compute all of the polynomials above modulo qN+1. This significantly speeds

up the calculations.



20

2.7 Future work

The results of this chapter provide many ideas for future work. First, it is always

possible to expand the parameter-space search by incorporating more innovative con-

ditions on the sum sides (for instance, the Göllnitz-Gordon-Andrews identities [10], the

Andrews-Santos identities [12], etc.) or by optimizing the currently existing code to

search for more possible combinations of parameter values. We hope that more iden-

tities could be found in this way. It would be interesting to examine the sum sides of

more recent partition identities to see if they can inspire additional checks to build in

to the package. For one intriguing example, see the new difference conditions on the

sum sides of the conjectures in Nandi [48].

Recent research (see, for instance, [20]) has focused on providing overpartition ana-

logues of many classical partition identities. Overpartitions are similar to partitions,

except that you are allowed to overline — that is, mark in some special way — the

final occurrence of any part in the partition. It would be interesting to extend our

methods to consider overpartitions and, more generally, multi-color partition identities.

However, one main challenge is that there are many more overpartitions than partitions

of a given integer. Using a näıve approach, it may be difficult to calculate out enough

terms to form reasonable conjectures.

Obviously, it would be nice to be able to prove any or all of the above conjectured

identities, but this has proven to be difficult so far. We now discuss some possible

means of attack.

As observed by George Andrews [5], we can rewrite the generating function for the
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product side of I4 as

∏
j≥1

1
(1− q9j−7) (1− q9j−6) (1− q9j−4) (1− q9j−1)

=
∏
j≥1

(
1− q9j−3

) (
1− q9j

)
((1− q9j−7) (1− q9j−4) (1− q9j−1)) ((1− q9j−6) (1− q9j−3) (1− q9j))

=
∏
j≥1

(
1− q9j−3

) (
1− q9j

)
(1− q3j−1) (1− q3j)

=
∏
j≥1

(
1 + q3j−1 + q6j−2

) (
1 + q3j + q6j

)
,

which is the generating function for partitions into parts congruent to 0 or 2 (mod 3),

where each part is allowed to appear at most twice.

This sort of reformulation of the product side can be done in many cases, such as

Schur’s theorem and Capparelli’s theorems. The analogous process was a key step in

the first proof of Capparelli’s first identity in [9]. Andrews’s work in [10] was influenced

by a desire to explore this more closely. Unfortunately, no similar reformulations of the

generating functions for the product sides of I5—I6a have been found.

It would also greatly assist in the proofs of any of these identities if an analytic sum

side could be discovered.

A different possible approach may be through a “motivated proof” framework (see

[11], [42], [23], [35], or the chapter dealing with motivated proofs). The first three

identities, I1, I2, and I3, all appear to be connected with the affine Lie algebra D(3)
4 ,

and preliminary investigations into a motivated proof using the Macdonald identity

corresponding to D
(3)
4 have begun. While all of the previous papers used the Jacobi

Triple Product identity, Coulson [22] has made significant progress on a proof of the

Rogers-Ramanujan identities, but using the Macdonald identity forA(1)
2 . This is a major

breakthrough, as this Macdonald identity gives a double sum instead of a single sum.

So, there is hope that a motivated proof using the Macdonald identity corresponding to

D
(3)
4 is possible. However, this connection only exists if the product side is symmetric.

Hence, we should not expect Lie-theoretic interpretations of the remaining conjectures.
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Perhaps more in the spirit of this chapter is to consider other possible sum sides, es-

pecially by looking at other already established partition identities, such as the Göllnitz-

Gordon-Andrews identities.

¡Rewrite¿ As presented in Chapter 7 of [6] (which also gives the Rogers-Ramanujan

and Gordon-Andrews identities), these identities state that for any k ≥ 2 (for k = 1,

one gets the trivial identity 1 = 1) and i = 1, . . . , k,

∏
m≥1, m 6≡ 2 (mod 4),

m 6≡ 0, 2k±(2i−1) (mod 4k)

1
1− qm

=
∑
n≥0

dk,i(n)qn,

where dk,i(n) is the number of partitions (b1, . . . , bs) of n (with bp ≥ bp+1), satisfying

the following conditions:

1. No odd parts are repeated,

2. bp − bp+k−1 ≥ 2 if bp is odd,

3. bp − bp+k−1 > 2 if bp is even, and

4. at most k − i parts are equal to 1 or 2.

Alladi and Andrews [2]: The number of partitions of n into distinct parts congruent

to 3, 4, 5, or 8 (mod 8) is equal to the number of partitions of n into distinct parts > 1

which are 6≡ 2 (mod 4) such that the difference between consecutive parts is > 4 unless

they are both multiples of 4 or they add up to a multiple of 8.

Note that here, for the first time, we specifically forbid certain congruence classes

in the sum side.

(Alternatively, this can be viewed as a special case of congruence-at-a-distance

(CapparelliCheck) at distance 0.)
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Chapter 3

More on partition identities

Following the success of the IdentityFinder project [36], as discussed in the previous

chapter, I turned my attention towards discovering additional (conjectured) identities.

One major issue with the preceding work is that it assumes a very specific type of initial

conditions. However, there is no reason that we should expect all partition identities

to have this form. At this point, we will discuss a few more previously discovered

identities, which will prove helpful in guiding our searches.

Capparelli actually conjectured two identities in his thesis [16]. The second, not as

widely known as his first, states:

C2 : The number of partitions of a non-negative integer into distinct parts congruent

to 0, 1, 3, or 5 (mod 12) is the same as the number of partitions of n such that

consecutive parts must differ by at least 2, the difference is at least 4, unless

consecutive parts add up to a multiple of 3, and 2 is not allowed as a part.

(Note that the product side is written in terms of partitions into distinct parts contained

in certain residue classes. It is quite easy to show that Capparelli’s first identity has a

similar formulation using partitions into distinct parts.)

Another pair to consider are Göllnitz’s (big) theorem [29], together with its dual

(found by Alladi and Andrews [3]):

G : The number of partitions of a non-negative integer into parts congruent to 2, 5, or

11 (mod 12) is the same as the number of partitions such that consecutive parts

must differ by at least 6, the difference is at least 7, unless the parts are congruent

to 2, 4, or 5 (mod 6), and 1 and 3 are not allowed to appear in the partition.

G′ : The number of partitions of a non-negative integer into parts congruent to 1, 7, or
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10 (mod 12) is the same as the number of partitions such that consecutive parts

must differ by at least 6, the difference is at least 7, unless the parts are congruent

to 1, 2, or 5 (mod 6), with the exception that 6 + 1 may appear in the partition.

These are dual identities: the allowable residue classes on the product side for

Göllnitz’s theorem, 2, 5, and 11 (mod 12), are exactly the negatives of the residue

classes for the dual (−2, −5, and −11 (mod 12)). A similar phenomenon happens

with the congruence classes in the sum sides. However, the initial conditions have

significantly changed.

Unfortunately, none of these identities are of the form required using the methods

of the previous chapter. In particular, our procedure for checking initial conditions,

SmPartCheck, did not permit the sort of initial conditions that appear in these three

identities. For example, using SmPartCheck, there is no way to forbid 1 and 3 from

appearing in our partitions, while simultaneously permitting 2. Moreover, in Alladi

and Andrews’s theorem, the initial condition is a subpartition that would otherwise be

forbidden, but is explicitly allowed.

In this vein, I reworked part of IdentityFinder to incorporate a more general set of

initial conditions. In particular, I created a list of partitions that were somewhat likely

to appear in initial conditions. The initial conditions I was considering then became

forbidding some small subset of these partitions from appearing in our partitions. This

improvement led to the discovery of three new conjectures, which are listed below as

I4a, I5a, and I6a. Additionally, I4, I5, and I6 are repeated below, for purposes of

comparison.

I4 : The number of partitions of a non-negative integer into parts congruent to 2, 3,

5, or 8 (mod 9) is the same as the number of partitions with difference at least

3 at distance 2 such that, if two consecutive parts differ by at most 1, then their

sum is congruent to 2 (mod 3), and 1 is not allowed to appear in the partition.

I4a : The number of partitions of a non-negative integer into parts congruent to 1, 4, 6,

or 7 (mod 9) is the same as the number of partitions with difference at least 3 at

distance 2 such that, if two consecutive parts differ by at most 1, then their sum
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is congruent to 1 (mod 3), and 2 + 2 is not allowed to appear in the partition.

I5 : The number of partitions of a non-negative integer into parts congruent to 1, 3,

4, 6, 7, 10, or 11 (mod 12) is the same as the number of partitions with difference

at least 3 at distance 3 such that, if parts at distance two differ by at most 1,

then their sum (together with the intermediate part) is congruent to 1 (mod 3),

and 1 + 1 is not allowed to appear in the partition.

I5a : The number of partitions of a non-negative integer into parts congruent to 1, 2,

5, 6, 8, 9, or 11 (mod 12) is the same as the number of partitions with difference

at least 3 at distance 3 such that, if parts at distance two differ by at most 1,

then their sum (together with the intermediate part) is congruent to 2 (mod 3),

and 2 + 2 + 1 is not allowed to appear in the partition.

I6 : The number of partitions of a non-negative integer into parts congruent to 2, 3,

5, 6, 7, 8, or 11 (mod 12) is the same as the number of partitions with difference

at least 3 at distance 3 such that, if parts at distance two differ by at most 1,

then their sum (together with the intermediate part) is congruent to 2 (mod 3),

1 is not allowed to appear in the partition, and 2 + 2 is not allowed to appear in

the partition.

I6a : The number of partitions of a non-negative integer into parts congruent to 1, 4,

5, 6, 7, 9, or 10 (mod 12) is the same as the number of partitions with difference

at least 3 at distance 3 such that, if parts at distance two differ by at most 1,

then their sum (together with the intermediate part) is congruent to 1 (mod 3),

and 2 is not allowed to appear in the partition.

Note that I4a, I5a, and I6a are the duals of I4, I5, and I6, respectively. For example,

if we negate the allowable residue classes for I5, we obtain −1, −3, −4, −6, −7, −10,

and −11 (mod 12), which we rewrite as 1, 2, 5, 6, 8, 9, and 11 (mod 12) — which are

exactly the congruence classes for I5a.

Additionally, the sum side conditions are also dual: the requirement that the sum

is congruent to 1 (mod 3) in I5 is now a requirement that the sum is congruent to 2
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(mod 3) in I5a.

Furthermore, note that the iteration of IdentityFinder used in the work done in

the previous chapter would not have been able to find I5a, as the initial condition states

only that 2 + 2 + 1 is not allowed to appear in the partition.

The above three comments hold true (with appropriate modifications) for each of

I4a, I5a, and I6a. The hope is that finding these dual conjectures will help guide a proof

of them (and it is likely that each conjecture will be proved simultaneously with its

dual), but proofs have remained elusive. As with I4, a similar calculation demonstrates

that the generating function for the product side of I4a equals the generating function for

partitions into parts congruent to 0 or 1 (mod 3), where each part is allowed to appear

at most twice. So far, experimentation with the type of initial conditions where certain

subpartitions are explicitly permitted (as in Alladi and Andrews’s dual of Göllnitz’s

theorem) have not produced any new conjectures.
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Chapter 4

Experimentation, motivated proofs, and ghost series

Another way that I have used experimental mathematics to study partition idenities

was in my project with Kanade, Lepowsky, and Sills to provide a “motivated proof” of

the Andrews-Bressoud identities. The full story is told in [35], in which all of the cal-

culations are rigorously proven. This chapter chronicles the computer experimentation

I contributed that aided the project.

The Andrews-Bressoud identities state that for any k ≥ 2 and i ∈ {1, . . . , k},

the number of partitions of a non-negative integer n into parts not congruent to 0

or ± (k − i+ 1) (mod 2k) is the same as the number of partitions λ of n such that

the partition has difference at least 2 at distance k − 1 (that is, λt − λt+k−1 ≥ 2),

λt − λt+k−2 ≤ 1 only if λt + λt+1 + · · · + λt+k−2 ≡ i + k (mod 2), and at most k − i

parts are equal to 1. (Note that we have replaced r by k− i+ 1 in the statement of the

main theorem of [?].)

The goal of the project was to provide a motivated proof of these identities. The

first motivated proof was provided by Andrews and Baxter, who proved the Rogers-

Ramanujan identities using this framework [11]. The basic idea of motivated proofs

is as follows. Beginning with the product sides written as formal power series, one

constructs a sequence of new formal power series as linear combinations of the previous

terms in the sequence. These are all proven to be of the form 1 + qj + · · · for ever-

increasing values of j (this observation is called the Empirical Hypothesis). Then, this

fact is combined with the recursions that are used to generate the sequence of formal

power series, which are observed to be the same as the recursions for the sum sides

of the identities, completing the proof. As compared to traditional proofs of partition

identities, motivated proofs may provide some additional insight into the truth of the
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identities. Motivated proofs also fit in very nicely with the Lie-theoretic approach

mentioned in section —.

Subsequently, Lepowsky and Zhu provided a motivated proof of the Gordon iden-

tities [42], and Coulson, Kanade, Lepowsky, McRae, Qi, Sadowski, and myself did the

same for the Göllnitz-Gordon-Andrews identities [23]. Recently, Chris Sadowski, Collin

Takita, and I have completed a motivated proof of an overpartitition identity [55]. How-

ever, the work behind the motivated proof described in this section is different than

some of the others. In particular, our “Empirical Hypothesis” was truly empirical,

which separates it from [11], [42] and [23].

Here is where the experimental component of the project came into play. It is

easy to write down and calculate the generating functions for the product sides of the

Andrews-Bressoud identities:∏
m≥1(1− q2km)(1− q2km−k−i+1)(1− q2km−k+i−1)∏

m≥1(1− qm)

Fixing some particular value of k — say, k = 5 — we calculated the initial terms of B1,

B2, B3, B4, and B5:

Bi =
∑
n≥0

bi(n)qn,

where bi(n) is the number of partitions λλ = (λ1, . . . , λs) of n (with λt ≥ λt+1) such that

the partition has difference at least 2 at distance 4 (that is, λt−λt+4 ≥ 2), λt−λt+3 ≤ 1

only if λt + λt+1 + · · ·+ λt+3 ≡ i+ 5 (mod 2), and at most 5− i parts are equal to 1.

Initial explorations to create higher shelves merely using these series proved un-

fruitful. The idea I had was to consider the series with the “wrong” parity conditions,

which we called “ghost series”. Independently of this work, the ghost series (without

the name) from the zeroth shelf were discussed by K. Kurşungöz in [37]. They can be

recovered by setting d = 2, s = 1 in dB
s
k,a (n) in [37].

Accordingly, we then introduced series B̃1, B̃2, B̃3, B̃4, and B̃5, where

B̃i =
∑
n≥0

b̃i(n)qn,

where b̃i(n) is the number of partitions λλ = (λ1, . . . , λs) of n (with λt ≥ λt+1) such that

the partition has difference at least 2 at distance 4 (that is, λt−λt+4 ≥ 2), λt−λt+3 ≤ 1
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only if λt + λt+1 + · · ·+ λt+3 ≡ i+ 6 (mod 2), and at most 5− i parts are equal to 1.

Note that the definition here is nearly the same as the corresponding one for Br. The

only difference is that the parity condition has been changed.

Following the program developed in [42], it was quite clear that the most natural

way to construct the sum sides for the higher shelves was as follows: for r = (k−1)J+i,

with i ∈ {1, . . . , k},

Br =
∑
n≥0

bk,r(n)qn,

where bk,r(n) denotes the number of partitions λ =
(
λ1, λ2, . . . , λ`(λ)

)
of n such that:

• λt − λt+k−1 ≥ 2,

• λ`(λ) ≥ J + 1,

• mJ+1(λ) ≤ k − i,

• λt−λt+k−2 ≤ 1 only if λt+λt+1 + · · ·+λt+k−2 ≡ r+k ≡ (k−1)J+ i+k (mod 2).

Note that setting J = 0 in the above work allows us to recover the Andrews-Bressoud

sum sides.

Then, our ghost sum sides will be: for r = (k − 1)J + i, with i ∈ {2, . . . , k},

B̃r =
∑
n≥0

b̃k,r(n)qn,

where b̃k,r(n) denotes the number of partitions λ = (λ1, λ2, . . . , λ`(λ)) of n such that:

1. λt − λt+k−1 ≥ 2,

2. λ`(λ) ≥ J + 1,

3. mJ+1(λ) ≤ k − i,

4. λt−λt+k−2 ≤ 1 only if λt +λt+1 + · · ·+λt+k−2 ≡ r+ k+ 1 ≡ (k− 1)J + i+ k+ 1

(mod 2).



30

Using Maple, I then calculated out approximately the first 40 terms of each sum

side, and observed that the following relations held:

B6 = B̃5

=
(
B4 − B̃5

)
/q

B7 =
(
B̃4 −B5

)
/q

=
(
B3 − B̃4

)
/q2

B8 =
(
B̃3 −B4

)
/q2

=
(
B2 − B̃3

)
/q3

B9 =
(
B̃2 −B3

)
/q3

=
(
B1 − B̃2

)
/q3

B10 = B̃9

=
(
B8 − B̃9

)
/q2

B11 =
(
B̃8 −B9

)
/q2

=
(
B7 − B̃8

)
/q4

B12 =
(
B̃7 −B8

)
/q4

=
(
B6 − B̃7

)
/q6

B13 =
(
B̃6 −B7

)
/q6

=
(
B5 − B̃6

)
/q8

Furthermore, it was easy to observe the appropriate Empirical Hypotheses here:

B5 = 1 + q2 + · · · B̃5 = 1 + q2 + · · ·

B6 = 1 + q2 + · · · B̃6 = 1 + q2 + · · ·

B7 = 1 + q2 + · · · B̃7 = 1 + q2 + · · ·

B8 = 1 + q2 + · · · B̃8 = 1 + q2 + · · ·
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B9 = 1 + q3 + · · · B̃9 = 1 + q3 + · · ·

B10 = 1 + q3 + · · · B̃10 = 1 + q3 + · · ·

B11 = 1 + q3 + · · · B̃11 = 1 + q2 + · · ·

B12 = 1 + q3 + · · · B̃12 = 1 + q3 + · · ·

B13 = 1 + q4 + · · · B̃13 = 1 + q4 + · · ·

B14 = 1 + q4 + · · · B̃14 = 1 + q4 + · · ·

B15 = 1 + q4 + · · · B̃15 = 1 + q4 + · · ·

B16 = 1 + q4 + · · · B̃16 = 1 + q4 + · · ·

At this point, the above evidence demonstrated that these “ghost series” were the

best way to attack the motivated proof, as shown in [35].
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Chapter 5

Experimental mathematics and the Laurent phenomenon

5.1 Introduction

Let Kr (the Kontsevich map) be the automorphism of a noncommutative plane defined

by

Kr : (x, y) 7→
(
xyx−1, (1 + yr)x−1

)
.

Maxim Kontsevich conjectured that, for any r1, r2 ∈ N, the iterates

. . .Kr2Kr1Kr2Kr1 (x, y)

are all given by noncommutative Laurent polynomials in x and y. This is known as the

Laurent phenomenon. The conjecture was proved in special cases for certain values of r1

and r2 (see [57], [58], [25], and [26]), sometimes also with the positivity conjecture (that

all of the Laurent polynomials have nonnegative integer coefficients), and sometimes

replacing 1 + yr with any monic palindromic polynomial. Eventually, Berenstein and

Retakh [15] gave an elementary proof of the Kontsevich conjecture for general r1 and

r2, while Rupel [51] subsequently proved it using the Lee-Schiffler Dyck path model

(see [43]) while also settling the positivity conjecture.

Later, Berenstein and Retakh [14] extended their methods to consider a more general

class of recurrences given by Yk+1Yk−1 = hk (ak−1,kYkak,k+1), where hk ∈ Q [x] and

hk (x) = hk−2 (x) for all k ∈ Z, Y1a12Y2a23 = a32Y2a21Y1, and ak,k±1 are defined

recursively by ak+2,k+1 = a−1
k−1,k and ak+1,k+2 = a−1

k,k+1. Proceeding in a similar fashion

to their previous paper, they prove the Laurent phenomenon for these recurrences where

hk = 1 + xrk .

In the following sections, we endeavor to expand the methods of Berenstein and

Retakh [14] to higher-order recurrences, and to using monic palindromic polynomials
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instead of 1 + xr. In addition to proving our results, we provide a computer program

that implements and verifies the formulas found in these sections.

5.2 Preliminaries

Following section 4 of Berenstein and Retakh [14], let K ≥ 2. Let FK denote the

Q-algebra generated by a±1
1 , a±1

2 , . . . , a±1
K , b±1

1 , b±1
2 , . . . , b±1

K , and let FK (Y1, . . . , YK)

denote the algebra generated by FK and Y1, . . . , YK , subject to the relation

Y1a1Y2a2 · · ·YKaK = bKYKbK−1YK−1 · · · b1Y1. (5.1)

For n ∈ Z, define an and bn recursively by

an+K = b−1
n (5.2)

bn+K = a−1
n . (5.3)

Suppose we have a sequence of monic palindromic polynomials hn ∈ Q [x] such that

hn = hn−K for all n ∈ Z. Let us write hn (x) =
∑dn

i=0 Pn,ix
i, so Pn,0 = Pn,dn = 1 for all

n. Recursively define Yn ∈ FK (Y1, . . . , YK) for n ∈ Z \ {1, . . . ,K} by

Yn+KYn = hn (anYn+1an+1Yn+2 · · ·Yn+K−1an+K−1) . (5.4)

Define

Y −n,m = an−1YnanYn+1 · · · am−1Ymam n ≤ m

Y +
n,m = bnYnbn−1Yn−1 · · · bmYmbm−1 n ≥ m,

while also defining Y −n,n−1 = an−1 and Y +
n,n+1 = bn. Then, (5.4) becomes

Yn+KYn = hn

(
Y −n+1,n+K−1

)
. (5.5)

Proposition 5.2.1. For all n ∈ Z, we also have

YnYn+K = hn

(
Y +
n+K−1,n+1

)
(5.6)

YnY
−
n+1,n+K−1 = Y +

n+K−1,n+1Yn. (5.7)
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Proof. We proceed by induction on n. (We will only prove these for n ≥ 1; the proof

for n < 1 is similar.) Note that (5.1) gives us the base case of (5.7) for n = 1. Now,

suppose that (5.7) holds for some n ≥ 1. Conjugating (5.5) on the left by Yn gives

YnYn+K = Ynhn

(
Y −n+1,n+K−1

)
Y −1
n ,

but, since

Yn

(
Y −n+1,n+K−1

)i
Y −1
n =

(
Y +
n+K−1,n+1

)i
YnY

−1
n =

(
Y +
n+K−1,n+1

)i
for all i ≥ 0 (by the inductive hypothesis), we conclude that

YnYn+K = hn

(
Y +
n+K−1,n+1

)
,

which is (5.6).

Now, we desire to prove (5.7) for n+1. This is equivalent to proving Y −n+1,n+K−1Yn+K =

Yn+KY
+
n+K−1,n+1 (multiply each side by a−1

n = bn+K on the left and an+K = b−1
n on

the right to recover the original expression). We calculate

Y −n+1,n+K−1Yn+K = Y −1
n Y +

n+K−1,n+1YnYn+K

= Y −1
n Y +

n+K−1,n+1hn

(
Y +
n+K−1,n+1

)
= Y −1

n hn

(
Y +
n+K−1,n+1

)
Y +
n+K−1,n+1

= Y −1
n YnYn+KY

+
n+K−1,n+1

= Yn+KY
+
n+K−1,n+1,

using (5.7) for n (the inductive hypothesis) in the first equality and (5.6) in the second

and fourth equalities.

Lemma 5.2.2. For s ≥ 0, we have
(
Y −1,K−1

)s
YK = YK

(
Y +
K−1,1

)s
.
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Proof. Using (5.1) and (5.2), we note that

Y −1,K−1YK = a0Y1a1 · · ·YK−1aK−1YK

= a0 (Y1a1 · · ·YK−1aK−1YKaK) a−1
K

= b−1
K (bKYKbK−1YK−1 · · · b1Y1) b0

= YKbK−1YK−1 · · · b1Y1b0

= YKY
+
K−1,1.

The general claim follows by induction.

5.3 Results

Let An be the subalgebra of FK (Y1, . . . , YK) generated by FK and Yn, . . . , Yn+2K−1.

We now state our main result.

Theorem 5.3.1. For all n ∈ Z, An = A0.

Proof. It is enough to show that An+1 = An. Without loss of generality, we let n = 0.

So, we try to show that Y2K ∈ A0. By (5.6) and the definition of hK (x), we find

Y2K = Y −1
K hK

(
Y +

2K−1,K+1

)
= Y −1

K

dK−1∑
i=0

PK,i

(
Y +

2K−1,K+1

)i
+ Y −1

K

(
Y +

2K−1,K+1

)dK

, (5.8)

as hK is a monic palindromic polynomial.
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We would like to find an expression for Y −1
K

(
Y +

2K−1,K+1

)dK

. Using (5.4), we calcu-

late

Y0 = Y −1
K

(
1 +

d0∑
m=1

P0,m

(
Y −1,K−1

)m)

Y −1
K = Y0 − Y −1

K

d0∑
m=1

P0,m

(
Y −1,K−1

)m
Y −1
K

(
Y +

2K−1,K+1

)dK

= Y0

(
Y +

2K−1,K+1

)dK

− Y −1
K

d0∑
m=1

P0,m

(
Y −1,K−1

)m (
Y +

2K−1,K+1

)dK

= Y0

(
Y +

2K−1,K+1

)dK

− Y −1
K

d0∑
m=1

P0,m

(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m (
Y +

2K−1,K+1

)dK−m
.

(5.9)

− Y −1
K

d0∑
m=1

P0,m

(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m (
Y +

2K−1,K+1

)dK−m
.

(5.10)

Now, we would like a formula for
(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m
. Define h↓n (x) =

∑dn
i=1 Pn,ix

i =

hn (x)− 1 and h↓↓n (x) =
∑dn

i=1 Pn,ix
i−1 = hn(x)−1

x .

Lemma 5.3.2. For m ≥ 0, we have

(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m
= 1 +

m−1∑
s=0

(
Y −1,K−1

)sK−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(Y +
2K−1,K+1

)s
.

Proof. We proceed by induction on m. The case m = 0 is trivial. For the case m = 1,

we calculate Y −1,K−1Y
+
2K−1,K+1.

Lemma 5.3.3. For 0 ≤ l,

Y −1,lY
+
K+l,K+1 = 1 +

l∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

Proof. The base case l = 0 simply reduces to a0bK = 1, which checks. Now, assuming
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the inductive hypothesis,

Y −1,l+1Y
+
K+l+1,K+1 = Y −1,lYl+1al+1bK+l+1YK+l+1Y

+
K+l,K+1

= Y −1,lYl+1YK+l+1Y
+
K+l,K+1

= Y −1,lhl+1

(
Y +
K+l,l+2

)
Y +
K+l,K+1

= Y −1,lh
↓
l+1

(
Y +
K+l,l+2

)
Y +
K+l,K+1 + Y −1,lY

+
K+l,K+1

= Y −1,lh
↓
l+1

(
Y +
K+l,l+2

)
Y +
K+l,K+1 + 1 +

l∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

= 1 +
l+1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1,

and we have proved Lemma 5.3.3.

By this preceding lemma with l = K − 1, we see

Y −1,K−1Y
+
2K−1,K+1 = 1 +

K−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1,

which takes care of our base case. Proceeding to the inductive step, we calculate

(
Y −1,K−1

)m+1 (
Y +

2K−1,K+1

)m+1

=
(
Y −1,K−1

)m
Y −1,K−1Y

+
2K−1,K+1

(
Y +

2K−1,K+1

)m
=
(
Y −1,K−1

)m1 +
K−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(Y +
2K−1,K+1

)m

=
(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m
+
(
Y −1,K−1

)mK−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(Y +
2K−1,K+1

)m

= 1 +
m−1∑
s=0

(
Y −1,K−1

)sK−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(Y +
2K−1,K+1

)s

+
(
Y −1,K−1

)mK−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(Y +
2K−1,K+1

)m

= 1 +
m∑
s=0

(
Y −1,K−1

)sK−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(Y +
2K−1,K+1

)s
,

which completes our proof.
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Lemma 5.3.4. For 0 ≤ l ≤ K and l + 1 ≤ q ≤ K + 1, we have

Y −1,lY
+
K+l,q = YKY

+
K−1,q

l∏
t=1

ht

(
b−1
q−1Y

+
q−1,t+1Y

+
K+t−1,q

)
(5.11)

Proof. If l = 0, then the product in (5.11) is empty, and so we are left with

Y −1,0Y
+
K,q = YKY

+
K−1,q

a0Y
+
K,q = b−1

K Y +
K,q

which is true by (5.2), and so (5.11) holds. Otherwise, note that

Y −1,lY
+
K+l,q = Y −1,l−1YlalbK+lYK+lY

+
K+l−1,q

= Y −1,l−1YlYK+lY
+
K+l−1,q

= Y −1,l−1hl

(
Y +
K+l−1,l+1

)
Y +
K+l−1,q

= Y −1,l−1

(
dl∑
i=0

(
Y +
K+l−1,l+1

)i)
Y +
K+l−1,q

= Y −1,l−1

(
dl∑
i=0

(
Y +
K+l−1,qb

−1
q−1Y

+
q−1,l+1

)i
Y +
K+l−1,q

)

= Y −1,l−1

(
dl∑
i=0

Y +
K+l−1,q

(
b−1
q−1Y

+
q−1,l+1Y

+
K+l−1,q

)i)

= Y −1,l−1Y
+
K+l−1,q

(
dl∑
i=0

(
b−1
q−1Y

+
q−1,l+1Y

+
K+l−1,q

)i)

= Y −1,l−1Y
+
K+l−1,qhl

(
b−1
q−1Y

+
q−1,l+1Y

+
K+l−1,q

)
.

Repeating this, we find

Y −1,lY
+
K+l,q = Y −1,0Y

+
K,q

l∏
t=1

ht

(
b−1
q−1Y

+
q−1,t+1Y

+
K+t−1,q

)
= a0bKYKY

+
K−1,q

l∏
t=1

ht

(
b−1
q−1Y

+
q−1,t+1Y

+
K+t−1,q

)
= YKY

+
K−1,q

l∏
t=1

ht

(
b−1
q−1Y

+
q−1,t+1Y

+
K+t−1,q

)
.

Lemma 5.3.5. For m ≥ 0,(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m
= 1 + YK

m−1∑
s=0

K−1∑
j=1

(
Y +
K−1,1

)s
Y +
K−1,j+1A (j, s)
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where

A (j, s) =

(
j−1∏
t=1

ht

(
b−1
j Y +

j,t+1Y
+
K+t−1,j+1

))
h↓↓j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(
Y +

2K−1,K+1

)s
.

(5.12)

Proof. From Lemma 5.3.4 with l = j − 1 and q = j + 1,

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
= Y −1,j−1Y

+
K+j−1,j+1h

↓↓
j

(
Y +
K+j−1,j+1

)
= YKY

+
K−1,j+1

(
j−1∏
t=1

ht

(
b−1
j Y +

j,t+1Y
+
K+t−1,j+1

))
h↓↓j

(
Y +
K+j−1,j+1

)
,

and so, by Lemma 5.2.2,

(
Y −1,K−1

)s
Y −1,j−1h

↓
j

(
Y +
K+j−1,j+1

)
=
(
Y −1,K−1

)s
YKYK−1,j+1

(
j−1∏
t=1

ht

(
b−1
j Y +

j,t+1Y
+
K+t−1,j+1

))
h↓↓j

(
Y +
K+j−1,j+1

)
= YK

(
Y +
K−1,1

)s
YK−1,j+1

(
j−1∏
t=1

ht

(
b−1
j Y +

j,t+1Y
+
K+t−1,j+1

))
h↓↓j

(
Y +
K+j−1,j+1

)
.

Recalling Lemma 5.3.2, regrouping, and substituting the above expression gives

(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m
=1 +

m−1∑
s=0

(
Y −1,K−1

)sK−1∑
j=1

Y −1,j−1h
↓
j

(
Y +
K+j−1,j+1

)
Y +
K+j−1,K+1

(Y +
2K−1,K+1

)s
=1 +

m−1∑
s=0

K−1∑
j=1

((
Y −1,K−1

)s
Y −1,j−1h

↓
j

(
Y +
K+j−1,j+1

))
Y +
K+j−1,K+1

(
Y +

2K−1,K+1

)s
=1 +

m−1∑
s=0

K−1∑
j=1

(
YK

(
Y +
K−1,1

)s
YK−1,j+1

(
j−1∏
t=1

ht

(
b−1
j Y +

j,t+1Y
+
K+t−1,j+1

))
h↓↓j

(
Y +
K+j−1,j+1

))

· Y +
K+j−1,K+1

(
Y +

2K−1,K+1

)s
=1 + YK

m−1∑
s=0

K−1∑
j=1

(
Y +
K−1,1

)s
YK−1,j+1A (j, s) ,

as desired.

We now have our final expression for
(
Y −1,K−1

)m (
Y +

2K−1,K+1

)m
. So, by (??) and
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Lemma 5.3.5, we find

Y −1
K

(
Y +

2K−1,K+1

)dK

= Y0

(
Y +

2K−1,K+1

)dK

− Y −1
K

d0∑
m=1

P0,m

(
Y +

2K−1,K+1

)dK−m

− Y −1
K

d0∑
m=1

P0,m

YK m−1∑
s=0

K−1∑
j=1

(
Y +
K−1,1

)s
Y +
K−1,j+1A (j, dK + s−m)


= Y0

(
Y +

2K−1,K+1

)dK

− Y −1
K

d0∑
m=1

P0,m

(
Y +

2K−1,K+1

)dK−m

−
d0∑
m=1

m−1∑
s=0

K−1∑
j=1

P0,m

(
Y +
K−1,1

)s
Y +
K−1,j+1A (j, dK + s−m) .

Now, by (5.8),

Y2K = Y −1
K

dK−1∑
i=0

PK,i

(
Y +

2K−1,K+1

)i
+ Y0

(
Y +

2K−1,K+1

)dK

− Y −1
K

d0∑
m=1

P0,m

(
Y +

2K−1,K+1

)dK−m

−
d0∑
m=1

m−1∑
s=0

K−1∑
j=1

P0,m

(
Y +
K−1,1

)s
Y +
K−1,j+1A (j, dK + s−m) .

Using the facts that h0 = hK (so d0 = dK and P0,i = PK,i for all i) and h0 is palindromic,

we find

d0∑
m=1

P0,m

(
Y +

2K−1,K+1

)d0−m
=

d0∑
m=1

P0,d0−m

(
Y +

2K−1,K+1

)dK−m

=
d0−1∑
i=0

P0,i

(
Y +

2K−1,K+1

)i
=

dK−1∑
i=0

PK,i

(
Y +

2K−1,K+1

)i
.

We then get the desired cancellation of terms, and can write

Y2K = Y0

(
Y +

2K−1,K+1

)dK

−
d0∑
m=1

m−1∑
s=0

K−1∑
j=1

P0,m

(
Y +
K−1,1

)s
Y +
K−1,j+1A (j, dK + s−m) .

(5.13)

We have finally shown that Y2K ∈ A0, which proves our main theorem.

As a corollary, we see that these recursions have the Laurent phenomenon: each Yn

is a noncommutative Laurent polynomial in Y1, . . . , YK .
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5.4 Maple programs

The Maple package NonComChecker was written to accompany this paper. It is freely

available at math.rutgers.edu/~russell2/papers/recursions13.html.

The main function, VerifyPaper(H,x), inputs a H, a list of K polynomials in a

variable x, which are taken to be h1 (x) , h2 (x) , . . . , hK (x) = h0 (x). It then simpli-

fies Y2K using a list of equations that it generates, including (5.1), (5.2), (5.3), (5.5),

and (5.6), and verifies that the result equals (5.13).

5.5 The Laurent phenomenon in two-dimensional non-commutative

recurrences

5.5.1 Introduction

Di Francesco [24] has recently considered the two-dimensional non-commutative recur-

sion defined by

Tj,k+1T
•
j,k−1 = 1 + Tj−1,kT

•
j+1,k (5.14)

together with the relations

T−1
j,k−1Tj+1,k = T •j+1,k

(
T •j,k−1

)−1 (5.15)

Tj−1,kT
−1
j,k−1 =

(
T •j,k−1

)−1
T •j−1,k. (5.16)

His work proved the positive Laurent phenomenon for this system: that all T and

T • are noncommutative Laurent polynomials in the initial data with positive integral

coefficients, and showed that this was an integrable system. In this note, we will attempt

to expand this to more general recursions, following the methods first used in [15] and

later expanded on in [52]. Our methods will only prove the Laurent phenomenon

To-do:

comment on •

Discuss commutative analogues in history

break into props/lems/thms
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5.5.2 Preliminaries

Let h1 (x) and h2 (x) be two monic palindromic polynomials. Then, we define

Tj,k+1T
•
j,k−1 = h1

(
Tj−1,kT

•
j+1,k

)
if k is odd (5.17)

Tj,k+1T
•
j,k−1 = h2

(
Tj−1,kT

•
j+1,k

)
if k is even, (5.18)

together with the same relations in (5.15)–(5.16). By applying the anti-automorphism

• to the above equations, we also have

Tj,k−1T
•
j,k+1 = h1

(
Tj+1,kT

•
j−1,k

)
if k is odd (5.19)

Tj,k−1T
•
j,k+1 = h2

(
Tj+1,kT

•
j−1,k

)
if k is even. (5.20)

Finally, we also find that, through use of (5.15) and (5.16) (for a ∈ {1, 2}),

Tj,k+1 = ha
(
Tj−1,kT

•
j+1,k

) (
T •j,k−1

)−1 (5.21)

=
(
T •j,k−1

)−1
ha
(
T •j−1,kTj+1,k

)
(5.22)

T •j,k−1Tj,k+1 = ha
(
T •j−1,kTj+1,k

)
(5.23)

T •j,k+1 = (Tj,k−1)−1 ha
(
Tj+1,kT

•
j−1,k

)
(5.24)

= ha
(
T •j+1,kTj−1,k

)
(Tj,k−1)−1 (5.25)

T •j,k+1Tj,k−1 = ha
(
T •j+1,kTj−1,k

)
. (5.26)

5.5.3 Main results

We assume (without loss of generality) that k is even. We find

Tj,k+1 = h1

(
Tj−1,kT

•
j+1,k

) (
T •j,k−1

)−1 (5.27)

=
d1−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (
T •j,k−1

)−1 +
(
Tj−1,kT

•
j+1,k

)d1 (T •j,k−1

)−1
. (5.28)

But furthermore,

Tj,k−3T
•
j,k−1 = h1

(
Tj+1,k−2T

•
j−1,k−2

)
(5.29)

Tj,k−3 =
(

1 + h↓1
(
Tj+1,k−2T

•
j−1,k−2

)) (
T •j,k−1

)−1 (5.30)(
T •j,k−1

)−1 = Tj,k−3 − h↓1
(
Tj+1,k−2T

•
j−1,k−2

) (
T •j,k−1

)−1 (5.31)(
Tj−1,kT

•
j+1,k

)d1 (T •j,k−1

)−1 =
(
Tj−1,kT

•
j+1,k

)d1 Tj,k−3 −
(
Tj−1,kT

•
j+1,k

)d1 h↓1 (Tj+1,k−2T
•
j−1,k−2

) (
T •j,k−1

)−1
,

(5.32)
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so, substituting into our previous expression, we find

Tj,k+1 =
d1−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (
T •j,k−1

)−1 +
(
Tj−1,kT

•
j+1,k

)d1 Tj,k−3 (5.33)

−
(
Tj−1,kT

•
j+1,k

)d1 h↓1 (Tj+1,k−2T
•
j−1,k−2

) (
T •j,k−1

)−1
. (5.34)

Now,(
Tj−1,kT

•
j+1,k

)d1 h↓1 (Tj+1,k−2T
•
j−1,k−2

) (
T •j,k−1

)−1 (5.35)

=
(
Tj−1,kT

•
j+1,k

)d1 d1∑
m=1

(
Tj+1,k−2T

•
j−1,k−2

)m (
T •j,k−1

)−1 (5.36)

=
d1∑
m=1

(
Tj−1,kT

•
j+1,k

)d1−m (Tj−1,kT
•
j+1,k

)m (
Tj+1,k−2T

•
j−1,k−2

)m (
T •j,k−1

)−1
. (5.37)

We would like to calculate
(
Tj−1,kT

•
j+1,k

)m (
Tj+1,k−2T

•
j−1,k−2

)m
. In case m = 0,

this is just 1. If m = 1, then

Tj−1,kT
•
j+1,kTj+1,k−2T

•
j−1,k−2 = Tj−1,k

(
T •j+1,kTj+1,k−2

)
T •j−1,k−2 (5.38)

= Tj−1,kh2

(
T •j+2,k−1Tj,k−1

)
T •j−1,k−2 (5.39)

= Tj−1,kT
•
j−1,k−2 + Tj−1,kh

↓
2

(
T •j+2,k−1Tj,k−1

)
T •j−1,k−2

(5.40)

= h2

(
Tj−2,k−1T

•
j,k−1

)
+ Tj−1,kh

↓
2

(
T •j+2,k−1Tj,k−1

)
T •j−1,k−2

(5.41)

= 1 + h↓2
(
Tj−2,k−1T

•
j,k−1

)
+ Tj−1,kh

↓
2

(
T •j+2,k−1Tj,k−1

)
T •j−1,k−2

(5.42)

Now,(
Tj−1,kT

•
j+1,k

)m+1 (
Tj+1,k−2T

•
j−1,k−2

)m+1 (5.43)

=
(
Tj−1,kT

•
j+1,k

)m (
Tj−1,kT

•
j+1,kTj+1,k−2T

•
j−1,k−2

) (
Tj+1,k−2T

•
j−1,k−2

)m (5.44)

=
(
Tj−1,kT

•
j+1,k

)m (1 + h↓2
(
Tj−2,k−1T

•
j,k−1

)
+ Tj−1,kh

↓
2

(
T •j+2,k−1Tj,k−1

)
T •j−1,k−2

) (
Tj+1,k−2T

•
j−1,k−2

)m
(5.45)

=
(
Tj−1,kT

•
j+1,k

)m (
Tj+1,k−2T

•
j−1,k−2

)m (5.46)

+
(
Tj−1,kT

•
j+1,k

)m (
h↓2
(
Tj−2,k−1T

•
j,k−1

)
+ Tj−1,kh

↓
2

(
T •j+2,k−1Tj,k−1

)
T •j−1,k−2

) (
Tj+1,k−2T

•
j−1,k−2

)m
(5.47)
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Thus, by an inductive argument, we conclude that

(
Tj−1,kT

•
j+1,k

)m (
Tj+1,k−2T

•
j−1,k−2

)m (5.48)

= 1 +
m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (
h↓2
(
Tj−2,k−1T

•
j,k−1

)
+ Tj−1,kh

↓
2

(
T •j+2,k−1Tj,k−1

)
T •j−1,k−2

) (
Tj+1,k−2T

•
j−1,k−2

)i
(5.49)

= 1 +
m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
T •j,k−1 (5.50)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj,k−1T

•
j−1,k−2)

(
Tj+1,k−2T

•
j−1,k−2

)i (5.51)

= 1 +
m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
T •j,k−1 (5.52)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj−1,k−2T

•
j,k−1)

(
Tj+1,k−2T

•
j−1,k−2

)i (5.53)

= 1 +
m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
(5.54)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj−1,k−2)T •j,k−1

(
Tj+1,k−2T

•
j−1,k−2

)i (5.55)

Using (5.16) and (5.15), we calculate

T •j,k−1Tj+1,k−2T
•
j−1,k−2 = T •j+1,k−2Tj,k−1T

•
j−1,k−2 = T •j+1,k−2Tj−1,k−2T

•
j,k−1. (5.56)

Hence,

T •j,k−1

(
Tj+1,k−2T

•
j−1,k−2

)i =
(
T •j+1,k−2Tj−1,k−2

)i
T •j,k−1 =

(
T •j+1,k−2Tj−1,k−2

)i
T •j,k−1,

(5.57)

and so

(
Tj−1,kT

•
j+1,k

)m (
Tj+1,k−2T

•
j−1,k−2

)m (5.58)

= 1 +
m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
(5.59)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj−1,k−2)

(
T •j+1,k−2Tj−1,k−2

)i
T •j,k−1. (5.60)
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Now,(
Tj−1,kT

•
j+1,k

)d1 h↓1 (Tj+1,k−2T
•
j−1,k−2

) (
T •j,k−1

)−1 (5.61)

=
d1∑
m=1

(
Tj−1,kT

•
j+1,k

)d1−m (1 +
m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
(5.62)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj−1,k−2)

(
T •j+1,k−2Tj−1,k−2

)i
T •j,k−1)

(
T •j,k−1

)−1

(5.63)

=
d1∑
m=1

m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)d1−m (Tj−1,kT
•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
(5.64)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj−1,k−2)

(
T •j+1,k−2Tj−1,k−2

)i +
d1∑
m=1

(
Tj−1,kT

•
j+1,k

)d1−m (T •j,k−1

)−1
.

(5.65)

Putting it all together, we see that

Tj,k+1 =
d1−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (
T •j,k−1

)−1 +
(
Tj−1,kT

•
j+1,k

)d1 Tj,k−3 (5.66)

−
d1∑
m=1

m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)d1−m (Tj−1,kT
•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
(5.67)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj−1,k−2)

(
T •j+1,k−2Tj−1,k−2

)i (5.68)

−
d1∑
m=1

(
Tj−1,kT

•
j+1,k

)d1−m (T •j,k−1

)−1
. (5.69)

But,
d1∑
m=1

(
Tj−1,kT

•
j+1,k

)d1−m (T •j,k−1

)−1 =
d1−1∑
i=0

(
Tj−1,kT

•
j+1,k

)i (
T •j,k−1

)−1
, (5.70)

so it simplifies to

Tj,k+1 =
(
Tj−1,kT

•
j+1,k

)d1 Tj,k−3 (5.71)

−
d1∑
m=1

m−1∑
i=0

(
Tj−1,kT

•
j+1,k

)d1−m (Tj−1,kT
•
j+1,k

)i (Tj−2,k−1h
↓↓
2

(
T •j,k−1Tj−2,k−1

)
(5.72)

+ Tj−1,kT
•
j+2,k−1h

↓↓
2

(
Tj,k−1T

•
j+2,k−1

)
Tj−1,k−2)

(
T •j+1,k−2Tj−1,k−2

)i
. (5.73)

No negative powers — Laurent phenomenon!
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5.5.4 Further work

It would be interesting to try to expand this work to more general two-dimensional

recurrences of greater order - for example, —. Alternatively, it would be interesting to

consider three- or higher-dimensional recurrences.

Commutative analogues of these recurrences have already been considered in —.
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Chapter 6

Experimental mathematics and integer sequences

The Somos sequences, first studied by Michael Somos, are recurrence relations that

surprisingly produce only integers. Their integrality turns out to be a special case of

the Laurent phenomenon. Since their initial discovery, additional families of sequences

with this property have been discovered. We will discuss methods for searching for

new sequences with the Laurent phenomenon - with the conjecturing and proving both

automated. Careful examination of the computer-generated proofs in individual cases

can then lead to human proofs for new infinite families.

6.1 Introduction and background

In his study of elliptic curves, Michael Somos came across the following intriguing

sequences:

. The Somos-4 sequence. Define a sequence a (n) by a (1) = a (2) = a (3) = a (4) = 1,

and, for n > 4, a (n) = a(n−1)a(n−3)+a(n−2)2

a(n−4) .

. The Somos-5 sequence. Define a sequence a (n) by a (1) = a (2) = a (3) = a (4) =

a (5) = 1, and, for n > 5, a (n) = a(n−1)a(n−4)+a(n−2)a(n−3)
a(n−5) .

Clearly, both Somos sequences will generate rational numbers. Surprisingly, they

both appeared to generate only integers: The Somos-4 sequence begins 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, . . . ,

and the Somos-5 sequence begins 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, . . . (A006720

and A006721 in the OEIS [49]). The Somos-4 sequence was proven to be integral in [];

the proof examined a series of congruences.

Later, while researching the Somos-4 sequence, Dana Scott discovered the sequence

that bears his name.
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. Dana Scott’s sequence. Define a sequence a (n) by a (1) = a (2) = a (3) = a (4) = 1,

and, for n > 4, a (n) = a(n−1)a(n−3)+a(n−2)
a(n−4) .

This sequence is defined the same as the Somos-4 sequence, except that the power of

the a (n− 2) is now 1 instead of 2. (This was supposedly due to a typo by Scott.) Once

again, an integral sequence is generated: 1, 1, 1, 1, 2, 3, 5, 13, 22, 41, 111, 191, 361, . . . (A048736

in the OEIS [49]). An interesting aspect of Dana Scott’s sequence is the fact that it was

not purely quadratic - it contained both linear and quadratic terms, unlike the Somos

sequences.

Then, Fomin and Zelevinsky [27] made a major breakthrough in understanding

sequences of this type. If, instead of using beginning our sequences with 1, . . . , 1, we use

formal variables a(1) = a1, a(2) = a2, . . . , a(K) = aK , then we say that a sequence has

the Laurent phenomenon if each of its terms is a Laurent polynomial in a1, . . . , aK (that

is, each term is a rational function of a1, . . . , aK whose denominator is a monomial).

They then provided some quite powerful algebraic machinery for proving Laurentness

of sequences, which can be used to prove integrality of all of the above sequences (a

proof for Somos-4 is a special case of Example 3.3 in [27]). Of course, Laurentness of

a sequence immediately implies integrality of the corresponding sequence with all ones

at the beginning (as the numerator will always be an integer, and the denominator will

always equal 1).

Let F be a polynomial in x1, . . . , xK−1, and consider the recurrence defined by

a(n)a(n−K) = F (a(n− 1), . . . , a(n−K + 1)). (6.1)

If we are discussing integrality of the sequence, we use initial conditions a(1) = a(2) =

· · · = a(K) = 1. On the other hand, if we are discussing Laurentness, we use formal

variables a(1) = a1, a(2) = a2, . . . , a(K) = aK . Laurentness of a sequence implies

integrality in the corresponding case, and thus is more general, but in a certain sense,

integrality results are more interesting, as we can form lots of explicit sequences and

see if they are in the OEIS [49] or not.

Fomin and Zelevinsky [27] give sufficient conditions for the resulting recurrence to
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satisfy the Laurent phenomenon. They define

Qm = F (xm+1, . . . , xK−1, 0, x1, . . . , xm−1) (6.2)

In other words, xi is replaced by x(m+i) mod K , with xK−m being replaced by 0. Then,

they define a sequence of polynomials GK−1, . . . , G0 by GK−1 = F , and then, each

Gm−1 is obtained from Gm by

∼
Gm−1= Gm |xm� Qm

xm

(6.3)

≈
Gm−1=

∼
Gm
L

(6.4)

Gm−1 =
≈
Gm−1

Qbm
, (6.5)

where L is a Laurent monomial that makes
≈
Gm−1 be a polynomial not divisible by

any xi or non-invertible scalar, and b is the highest power of Qm that divides
≈
Gm−1.

Their theorem 3.1 essentially says that a sequence of the form (6.1) has the Laurent

phenomenon if the following three conditions for F hold:

1. F is not divisible by any xi.

2. Each Qm is an irreducible element of Z
[
x±1 , x

±
K−1

]
.

3. G0 = F .

In this work, we only consider quadratic recurrences: those where F is a polynomial

of degree at most 2. Furthermore, we consider only the case where each possible term

of F appears with a coefficient of either 0 or 1. The theorems and conjectures that now

follow were inspired by a computer search of all possible polynomials F of this form for

small values of K.

This paper is accompanied by the Maple package SOMOS. It is available at the

website for this paper, math.rutgers.edu/~russell2/papers/somos. The package

contains procedures that, for given d and K, finds all recurrences of order K in the

form (6.1) with initial conditions a (1) = · · · = a (K) = 1, where F is a polynomial of

degree at most d, and where the coefficient of each term in F is either 0 or 1. Then,

for each sequence, the procedure conjectures whether or not it is integral by calculating
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out a number of terms (obviously, if at any point it calculates a non-integral term, the

sequence is not integral). If the sequence is conjectured to be integral, then it then

automatically attempts to prove integrality using the Fomin-Zelevinsky criteria, and, if

successful, can output a proof. (Of course, a failed test does not indicate non-integrality

or non-Laurentness.) All of the theorems were first conjectured by looking at the output

of the program, and all of the proofs were guided by looking at the computer-generated

proofs.

6.2 Infinite families of sequences with the Laurent Phenomenon

Throughout this section, we assume that the sequences begin with formal variables

a(1) = a1, a(2) = a2, . . . , a(K) = aK , unless otherwise noted.

Theorem 6.2.1. Consider the recurrence

a(n)a(n−K) =
k−1∑
j=1

a (n− j)2 . (6.6)

This sequence has the Laurent phenomenon.

Proof. The corresponding polynomial is

F (x1, . . . , xK−1) =
K−1∑
j=1

x2
j . (6.7)

From (6.2), we have

Qm =
K−1∑

j=1,j 6=m
x2
j . (6.8)
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We have GK−1 = F , and, for all i from 1 to K − 1, we have

∼
GK−i−1 =

K−1∑
j=1,j 6=K−i

x2
j +

(∑K−1
j=1,j 6=K−i x

2
j

)2

x2
K−i

(6.9)

≈
GK−i−1 =

∼
GK−i−1 x

2
K−i (6.10)

=

 K−1∑
j=1,j 6=K−i

x2
j

x2
K−i +

K−1∑
j=1,j 6=K−i

x2
j

 (6.11)

= QK−i

K−1∑
j=1

x2
j (6.12)

GK−i−1 =
≈
GK−i−1

QK−i
(6.13)

=
K−1∑
j=1

x2
j = F, (6.14)

which is easily verified by induction. Thus, we have G0 = F , so the sequence is integral,

by the Fomin-Zelevinsky criteria.

Remark 6.2.2. The corresponding sequences for K = 3, 4, 5 appear in OEIS [49] as

A064098, A072878, and A072879, but the sequences for K ≥ 6 do not appear to be

included.

Theorem 6.2.3. Consider the recurrence

a(n)a(n−K) = 1 +
k−1∑
j=1

a (n− j) + a(n− 1)a(n−K + 1). (6.15)

This sequence has the Laurent phenomenon.

Proof. Our polynomial is

F (x1, . . . , xK−1) = 1 +
K−1∑
j=1

xj + x1xK−1. (6.16)

Then, from (6.2), we have

Qm =


1 +

∑K−1
j=1,j 6=m xj if m = 1 or m = K − 1

1 +
∑K−1

j=1,j 6=m xj + xm+1xm−1 otherwise.
(6.17)

Now, GK−1 = F , and
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Claim 6.2.4. For 2 ≤ j ≤ K − 1, we have GK−j = 1 + x1 + xK−1.

Proof. Proceeding by backwards induction,

∼
GK−2 = GK−1 |xK−1� Qm

xm

(6.18)

= 1 +
K−2∑
j=1

xj + (1 + x1)
1 +

∑K−2
j=1 xj

xK−1
(6.19)

≈
GK−2 = xK−1

∼
GK−1 (6.20)

=

1 +
K−2∑
j=1

xj

 (1 + x1 + xK−1) (6.21)

= (1 + x1 + xK−1)QK−1 (6.22)

GK−2 =
≈
G

QK−1
= 1 + x1 + xK−1. (6.23)

Suppose inductive hypothesis.

∼
GK−j−1 = GK−j |

xK−j�
QK−j
xK−j

(6.24)

= 1 + x1 + xK−1 = GK−j (6.25)
≈
GK−j−1 =

∼
GK−j−1 (6.26)

GK−j−1 =
≈
GK−j−1= 1 + x1 + xK−1 (6.27)

This completes the proof.

So, we are left with G1 = 1 + x1 + xK−1. Then,

∼
G0 = G1 |x1� Q1

x1

(6.28)

= 1 + xK−1 +
1 +

∑K−1
j=2 xj

x 1
(6.29)

≈
G0 = x1

∼
G0 (6.30)

= x1 (1 + xK−1) + 1 +
K−1∑
j=2

xj (6.31)

= 1 +
K−1∑
j=1

xjx1xK−1 (6.32)

G0 =
≈
G0= 1 +

K−1∑
j=1

xjx1xK−1 = GK−1. (6.33)
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Thus, we have the Laurent phenomenon.

Remark 6.2.5. ForK = 3, we get the sequence 1, 1, 1, 4, 10, 55, 154, 868, 2449, 13825, 39025, . . . ,

for K = 4, we find 1, 1, 1, 1, 5, 13, 33, 217, 617, 1633, 10813, . . . , and for K = 5, we have

1, 1, 1, 1, 1, 6, 16, 41, 106, 806, 2311, . . . . None of these sequences appear to be in the

OEIS [49].

Theorem 6.2.6. Let K be odd. Consider the recurrence

a(n)a(n−K) =

K−1
2∑
j=1

a (n− 2j + 1) a (n− 2j) . (6.34)

This sequence has the Laurent phenomenon.

Proof. We find that GK−1 = F =
∑(K−1)/2

j=1 x2j−1x2j .

Qm =


∑m−1

2
j=1 x2j−1x2j +

∑K−3
2

j=(m+1)/2 x2jx2j+1 for m odd∑m
2
−1

j=1 x2jx2j+1 +
∑K−3

2

j=m/2 x2j+1x2j+2 for m even.
(6.35)

Claim 6.2.7. For l odd, we have

Gl = xlQl+1 + xl+1Ql. (6.36)

Proof. Backwards induction: begin withGK−2. Here, we haveQK−1 =
∑(K−3)/2

j=1 x2jx2j+1.

∼
GK−2 = GK−1 |

xK−1�
QK−1
xK−1

(6.37)

=
(K−3)/2∑
j=1

x2j−1x2j +
xK−2

xK−1
QK−1 (6.38)

≈
GK−2 = xK−1

∼
GK−2 (6.39)

= xK−1

(K−3)/2∑
j=1

x2j−1x2j + xK−2QK−1 (6.40)

= xK−1QK−2 + xK−2QK−1 (6.41)

GK−2 =
≈
GK−2= xK−2QK−1 + xK−1QK−2. (6.42)

This takes care of the base case.
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∼
Gl−1 = Gl |xl�

Ql
xl

(6.43)

=
Ql
xl

 l−3
2∑
j=1

x2jx2j+1 +
xl−1

xl
Ql +

K−3
2∑

j=(l+1)/2

x2j+1x2j+2

+ xl+1Ql (6.44)

≈
Gl−1 = x2

l

∼
Gl−1 (6.45)

= xl−1Q
2
l + xlQl

 l−3
2∑
j=1

x2jx2j+1 +

K−3
2∑

j=(l+1)/2

x2j+1x2j+2

+ x2
l xl+1Ql (6.46)

= xl−1Q
2
l + xlQl

 l−3
2∑
j=1

x2jx2j+1 + xlxl+1 +

K−3
2∑

j=(l+1)/2

x2j+1x2j+2

 (6.47)

= xl−1Q
2
l + xlQl

 l−3
2∑
j=1

x2jx2j+1 +

K−3
2∑

j=(l−1)/2

x2j+1x2j+2

 (6.48)

= Ql (xl−1Ql + xlQl−1) (6.49)

Gl−1 =
≈
Gl−1

Ql
= xl−1Ql + xlQl−1 (6.50)

∼
Gl−2 = Gl−1 |

xl−1�
Ql−1
xl−1

(6.51)

=
Ql−1

xl−1

 l−3
2∑
j=1

x2j−1x2j +
xl−2

xl−1
Ql−1 +

K−3
2∑

j=(l+1)/2

x2jx2j+1

+ xlQl−1 (6.52)

≈
Gl−2 = x2

l−1

∼
Gl−2 (6.53)

= xl−2Q
2
l−1 + xl−1Ql−1

 l−3
2∑
j=1

x2j−1x2j +

K−3
2∑

j=(l+1)/2

x2jx2j+1

+ x2
l−1xlQl−1

(6.54)

= xl−2Q
2
l−1 + xl−1Ql−1

 l−3
2∑
j=1

x2j−1x2j + xl−1xl +

K−3
2∑

j=(l+1)/2

x2jx2j+1

 (6.55)

= xl−2Q
2
l−1 + xl−1Ql−1

 l−3
2∑
j=1

x2j−1x2j +

K−3
2∑

j=(l−1)/2

x2jx2j+1

 (6.56)

= Ql−1 (xl−2Ql−1 + xl−1Ql−2) (6.57)

Gl−2 =
≈
Gl−2

Ql−1
(6.58)

= xl−2Ql−1 + xl−1Ql−2. (6.59)
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Thus, we end up with G1 = x1Q2 + x2Q1. We have Q1 =
∑(K−3)/2

j=1 x2jx2j+1, and

can then find

∼
G0 = G1 |x1� Q1

x1

(6.60)

=
Q1

x1
Q2 + x2Q1 (6.61)

≈
G0 = x1

∼
G0 (6.62)

= Q1 (x1x2 +Q2) (6.63)

G0 =
≈
G0

Q1
(6.64)

= x1x2 +

(K−3)
2∑
j=1

x2j+1x2j+2 (6.65)

=

(K−1)
2∑
j=1

x2j−1x2j = GK−1. (6.66)

Remark 6.2.8. For K = 5, this is simply the Somos-5 sequence. For K = 7, we have

1, 1, 1, 1, 1, 1, 1, 3, 5, 17, 89, 1529, 136169, . . . , and forK = 9, we get 1, . . . , 1, 4, 7, 31, 223, 6943, . . . .

Neither of these are in the OEIS [49].

Theorem 6.2.9. Let K be odd, and consider the recurrence

a(n)a(n−K) = 1 +
K−2∑
i=1

a (n− i) a (n− i− 1) . (6.67)

This sequence has the Laurent phenomenon.

Proof. The corresponding polynomial is

F (x1, . . . , xK−1) = 1 +
K−2∑
i=1

xixi+1. (6.68)

From (6.2), we have

Qm = 1 +
m−2∑
i=1

xixi+1 +
K−2∑
i=m+1

xixi+1. (6.69)

The first two criteria easily check, so we are left with checking the third criterion.
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Claim 6.2.10. For j ∈
{

1, . . . , K−1
2

}
, we have GK−2j = xK−2j + xK−2j+1.

Proof. We will proceed by induction. We find

∼
GK−2 = GK−1|

xK−1�
QK−1
xK−1

(6.70)

= 1 +
K−3∑
i=1

xixi+1 +
xK−2

xK−1

(
1 +

K−3∑
i=1

xixi+1

)
(6.71)

≈
GK−2 =

∼
GK−2 xK−1 (6.72)

=

(
1 +

K−3∑
i=1

xixi+1

)
(xK−2 + xK−1) (6.73)

= QK−1 (xK−2 + xK−1) (6.74)

GK−2 =
≈
GK−2

QK−1
= xK−2 + xK−1. (6.75)
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This establishes the base case, j = 1. Now,

∼
GK−2j−1 = GK−2j |

xK−2j�
QK−2j
xK−2j

(6.76)

=
1 +

∑K−2j−2
i=1 xixi+1 +

∑K−2
i=K−2j+1 xixi+1

xK−2j
+ xK−2j+1 (6.77)

≈
GK−2j−1 =

∼
GK−2j−1 xK−2j (6.78)

= 1 +
K−2j−2∑
i=1

xixi+1 +
K−2∑

i=K−2j+1

xixi+1 + xK−2jxK−2j+1 (6.79)

= 1 +
K−2j−2∑
i=1

xixi+1 +
K−2∑

i=K−2j

xixi+1 (6.80)

GK−2j−1 =
≈
GK−2j−1

Q0
K−2j

= 1 +
K−2j−2∑
i=1

xixi+1 +
K−2∑

i=K−2j

xixi+1 (6.81)

∼
GK−2j−2 = GK−2j−1|

xK−2j−1�
QK−2j−1
xK−2j−1

(6.82)

= 1 +
K−2j−3∑
i=1

xixi+1 +
xK−2j−2

xK−2j−1

1 +
K−2j−3∑
i=1

xixi+1 +
K−2∑

i=K−2j

xixi+1

+
K−2∑

i=K−2j

xixi+1

(6.83)

≈
GK−2j−2 =

∼
GK−2j−2 xK−2j−1 (6.84)

=

1 +
K−2j−3∑
i=1

xixi+1 +
K−2∑

i=K−2j

xixi+1

 (xK−2j−2 + xK−2j−1) (6.85)

= QK−2j−1 (xK−2j−2 + xK−2j−1) (6.86)

GK−2j−2 =
≈
GK−2

QK−2j−1
= xK−2j−2 + xK−2j−1. (6.87)

This completes the inductive step.
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Consequently, in the case j = K−1
2 , we find GK−2K−1

2
= G1 = x1 + x2. Then,

∼
G0 = G1|x1� Q1

x1

(6.88)

=
1 +

∑K−2
i=2 xixi+1

x1
+ x2 (6.89)

≈
G0 =

∼
G0 x1 (6.90)

= 1 +
K−2∑
i=2

xixi+1 + x1x2 (6.91)

= 1 +
K−2∑
i=1

xixi+1 (6.92)

G0 =
≈
G0

Q0
1

= 1 +
K−2∑
i=1

xixi+1 = F. (6.93)

Thus, we conclude that this sequence has the Laurent phenomenon.

Remark 6.2.11. The sequence for K = 3, 1, 1, 1, 2, 3, 7, 11, 26, 41, 97, 153, 362, 571, . . . ,

is A005246 in the OEIS [49]. None of the sequences forK = 5: 1, 1, 1, 1, 1, 4, 7, 34, 271, 9481, 644701, . . . ,

for K = 7: 1, 1, 1, 1, 1, 1, 1, 6, 11, 76, 911, 70146, 63973151, . . . , and, finally, for K = 9:

1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 15, 134, 2143, 289304, 620267775, . . . , are in the OEIS.

Theorem 6.2.12. Let K be even and i be such that 0 < i < K
2 . Consider the

recurrence

a(n)a(n−K) = a

(
n− K

2

)
+ a (n− i) a (n−K + i) . (6.94)

This sequence has the Laurent phenomenon.

Proof. The corresponding polynomial is

F (x1, . . . , xK−1) = xK/2 + xixK−i. (6.95)
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From (6.2), we have

Qm =



xm+K/2 + xm+ixm+K−i, m < i

xK/2+i, m = i

xm+K/2 + xm+ixm−i, i < m < K
2

xK/2−ixK/2+i, m = K
2

xm−K/2 + xm+ixm−i,
K
2 < m < K − i

xK/2−i, m = K − i

xm−K/2 + xm+i−Kxm−i, K − i < m.

(6.96)

The first two criteria easily check, so we are left with checking the third criterion.

Claim 6.2.13. For 1 ≤ j ≤ i, we have GK−j = xK/2 + xixK−i.

Proof. We will proceed by induction. By definition, GK−1 = F = xK/2 +xixK−i, which

shows that our base case is satisfied. Assuming the inductive hypothesis, we have

∼
GK−1−j = GK−j |

xK−j�
QK−j
xK−j

(6.97)

= xK/2 + xixK−i (6.98)
≈
GK−1−j =

∼
GK−1−j (6.99)

GK−1−j =
≈
GK−1−j=K/2 +xixK−i. (6.100)

This proves the inductive step, and hence the claim.

Claim 6.2.14. For i < j ≤ K
2 , we have GK−j = xK/2−ixi + xK/2xK−i.

Proof. From the previous claim, we have GK−i = xK/2 + xixK−i. Thus,

∼
GK−i−1 = GK−i|

xK−i�
QK−i
xK−i

(6.101)

= xK/2 +
xixK/2−i

xK−i
(6.102)

≈
GK−i−1 = xK−i

∼
GK−j1 (6.103)

= xK/2xK−i + xixK/2−i (6.104)

GK−i−1 =
≈
GK−i−1= xK/2xK−i + xixK/2−i. (6.105)
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This takes care of the base case. Then, assuming the inductive hypothesis, we have

∼
GK−1−j = GK−j |

xK−j�
QK−j
xK−j

(6.106)

= xK/2xK−i + xixK/2−i (6.107)
≈
GK−1−j =

∼
GK−i−1 (6.108)

GK−1−j =
≈
GK−1−j= xK/2xK−i + xixK/2−i, (6.109)

which finishes the proof.

Claim 6.2.15. For K
2 < j ≤ K − i, we have GK−j = xK/2xi + xK−ixK/2+i.

Proof. From our previous claim, we have GK/2 = xK/2xK−i + xixK/2−i. Then,

∼
GK/2−1 = GK/2|

xK/2�
QK/2
xK/2

(6.110)

= xixK/2−i +
xK−ixK/2−ixK/2+i

xK/2
(6.111)

≈
GK/2−1 =

xK/2

xK/2−i

∼
GK/2−1 (6.112)

= xixK/2 + xK−ixK/2+i (6.113)

GK/2−1 =
≈
GK/2−1= xixK/2 + xK−ixK/2+i, (6.114)

which takes care of the base case. For the inductive step:

∼
GK−1−j = GK−j |

xK−j�
QK−j
xK−j

(6.115)

= xixK/2 + xK−ixK/2+i (6.116)
≈
GK−1−j =

∼
GK−j−1= xixK/2 + xK−ixK/2+i (6.117)

GK−1−j =
≈
GK−j−1= xixK/2 + xK−ixK/2+i, (6.118)

which completes the proof of the claim.

Claim 6.2.16. For K − i < j ≤ K − 1, we have GK−j = xK/2 + xixK−i.

Proof. Base case: from before, Gi = GK−(K−i) = xK/2xi + xK−ixK/2+i. Thus,
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∼
Gi−1 = Gi |xi�

Qi
xi

(6.119)

= xK/2
xK/2+i

xi
+ xK−ixK/2+i (6.120)

≈
Gi−1 =

xi
xK/2+i

∼
Gi−1 (6.121)

= xK/2 + xK−ixi (6.122)

Gi−1 =
≈
Gi−1= xK/2 + xK−ixi. (6.123)

This finishes the base case. We move on to the inductive step:

∼
GK−j−1 = GK−j |

xK−j�
QK−j
xK−j

(6.124)

= xK/2 + xK−ixi (6.125)
≈
GK−j−1 =

∼
GK−j−1= xK/2 + xK−ixi (6.126)

GK−j−1 =
≈
GK−j−1= xK/2 + xK−ixi. (6.127)

This completes the proof of the claim.

Thus, by using j = K−1 in the last claim, we find G0 = xK/2+xK−ixi = GK−1.

Theorem 6.2.17. Consider the recurrence

a(n)a(n−K) = 1 + a(n− j)a(n−K + j) (6.128)

for 1 ≤ j ≤ K
2 . This sequence has the Laurent phenomenon.

Proof. The corresponding polynomial is

F (x1, . . . , xK−1) = 1 + xjxK−j . (6.129)

From (6.2), we have

Qm =


1 if m = j or m = K − j

1 + xm+j(modK)xK+m−j(modK) otherwise.
(6.130)
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The first two conditions trivially check. (Forgive the messiness that follows, I promise

all the work is correct, but I haven’t had time to polish the exposition.) For the third,

we have GK−1 = 1 + xjxK−j , and then GK−i−1 = GK−1 for i < j (because xi does not

appear, see (6.2)). Then, for the j case, we have

∼
GK−j−1 = 1 +

xj
xK−j

(6.131)

≈
GK−j−1 = xK−j + xj (6.132)

GK−j−1 = xK−j + xj . (6.133)

After that, we will have GK−i−1 = GK−j−1 for j < i < K − j, and in the K − j case,

we have

∼
Gj−1 = xK−j +

1
xj

(6.134)

≈
Gj−1 = xK−jxj + 1 (6.135)

Gj−1 = 1 + xjxK−j . (6.136)

Finally, we will have GK−i−1 = Gj−1 for i > K − j, so G0 = 1 + xjxK−j = F .

Remark 6.2.18. This construction seems to give lots of fairly simple sequences, just

about all of which do not appear in OEIS [49]. For example, the case where K = 4,

F = 1 + x1x3 produces the sequence 1, 1, 1, 1, 2, 3, 4, 9, 14, 19, 43, which is not in the

OEIS. However, these sequences are probably C-finite, and thus not as interesting.

6.3 General thoughts, conjectures, and directions for further work

We now present a couple of more general conjectures about the structure of polynomials

F that give

Conjecture 6.3.1. (Symmetry Conjecture) If F is a polynomial of degree at most two

and every coefficient zero or one that satisfies the three conditions of Fomin and Zelevin-

sky’s Theorem 3.1, then we have F (x1, x2, . . . , xK−2, xK−1) = F (xK−1, xK−2, . . . , x2, x1) .

Conjecture 6.3.2. (Squared terms in odd recurrences conjecture) If F is a polynomial

of degree at most two and every coefficient zero or one that satisfies the three conditions
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of Fomin and Zelevinsky’s Theorem 3.1, and K is odd (so that F has an even number

of variables), then either every possible squared term (x2
1, x

2
2, . . . , x

2
K−1) appears in F ,

or none of them do.

It does appear that Fomin and Zelevinsky’s Theorem 3.1 is not a necessary condition:

Conjecture 6.3.3. The sequence with K = 4,F = (1 + x1) (1 + x3) generates an

This sequence begins

1, 1, 1, 1, 4, 10, 22, 115, . . . (6.137)

It is not in the OEIS, but its integrality has been verified for the first 5000 terms. It

fails the second Fomin-Zelevinsky criterion.

There are also many other cases where the sequences appear to be integral (after

calculating out the first 60 terms or so, at which point it becomes computationally

intensive), and the F polynomial satisfies the first two Fomin-Zelevinsky criteria, but

fails the third. For example, the sequence with K = 4,F = 1 + x1x2 + x2x3 appears to

be integral (and, in fact, appears in OEIS [49] - but without a reference to a proof of

integrality.

In her thesis [34], Emilie Hogan used three different methods to prove that nonlinear

recurrences gave integral solutions: a direct argument using elementary number theory,

demonstratring that the recurrence in question actually satisfied a linear recurrence,

and Fomin and Zelevinsky’s Laurent phenomenon techniques [27]. Other papers use

techniques from the theory of elliptic curves.

It is unclear what methods could be used to show that sequences actually fail to

be integral, other than simply calculating out terms until a non-integral term is found.

However, this could be difficult, as there is no known bound for how far you would have

to go (at least, I don’t know one). For example, the recurrence of the form (6.1) with

K = 4 and F = x1x3 + x2 (x1 + x2 + x3) is integral through the first 27 terms, but the

28th term fails to be integral (and is roughly 101200). On the other hand, its Laurentness

does fail at the ninth term - which is actually the first place that it could fail. I do not

know if this always happens - if Laurentness always fails immediately. Furthermore, we
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know that Laurentness implies integrality. I wonder if the two conditions can be shown

to be equivalent.

Fomin and Zelevinsky also did much work looking at two- and three-dimensional

recurrences.
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