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ABSTRACT OF THE DISSERTATION
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By JOHN CHIARELLI

Dissertation Director: Michael Saks

This thesis centers around two projects that I have undertaken in the subject of

discrete mathematics. The primary project pertains to the stable marriage problem,

and puts particular focus on a relaxation of stability that we call S-stability. The

secondary project looks at boolean functions as polynomials, and seeks to understand

and use a complexity measure called the maxonomial hitting set size.

The stable marriage problem is a well-known problem in discrete mathematics, with

many practical applications for the algorithms derived from it. Our investigations into

the stable marriage problem center around the operation ψ : E(G(I)) → E(G(I)); we

show that for sufficiently large k, ψkI maps everything to a set of edges that we call the

hub, and give algorithms for evaluating ψI(S) for specific values of S. Subsequently, we

extend results on the lattice structure of stable matchings to S-stability and consider

the polytope of fractional matchings for these same weaker notions of stability. We also

reflect on graphs represented by instances with every edge in the hub.

Given a boolean function f : {0, 1}n → {0, 1}, it is well-known that it can be repre-

sented as a unique multilinear polynomial. We improve a result by Nisan and Szegedy

on the maximum number of relevant variables in a low degree boolean polynomial using

the maxonomial hitting set size, and look at the largest possible maxonomial hitting

set size for a degree d boolean function.
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Chapter 1

Introduction

This thesis centers around two major projects that I have undertaken in the subject

of discrete mathematics. The first project, discussed in Chapters 3-7, pertains to the

stable marriage problem, and puts particular focus on a relaxation of stability that we

call S-stability. The second project, which appears in Chapters 8 and 9, looks at the

properties of boolean functions as polynomials.

The stable marriage problem is a well-known problem in discrete mathematics; a

full background on the topic appears in Chapter 2. Our investigations into the stable

marriage problem center around the operation ψ : E(G(I)) → E(G(I)), which we

establish a framework for in Chapter 3 and define in Chapter 4; we show that for

sufficiently large k, ψkI maps everything to a set of edges that we call the hub, and give

algorithms for evaluating ψI(S) for specific values of S. In later chapters, we extend

results on the lattice structure of stable matchings to the discussed weaker notions of

stability (Chapter 5) and consider the polytope of fractional matchings for these same

weaker notions (Chapter 6). We also reflect on graphs represented by instances with

every edge in the hub (Chapter 7).

It is well known that any boolean function f : {0, 1}n → {0, 1} can be represented

as a unique multilinear polynomial. In Chapter 8, we consider a sensitivity measure

that we call the maxonomial hitting set size, and apply it in order to improve a result

by Nisan and Szegedy on the maximum number of variables in a low degree boolean

polynomial (theorem 8.1). In Chapter 9, we focus on expanding our understanding of

the largest possible maxonomial hitting set size for a degree d boolean function.
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Chapter 2

Background on the Stable Matching Problem

In this chapter of the thesis, we review the stable matching problem, which will be the

central focus for most of this thesis. We focus particular attention on the structure of

the lattice of stable matchings. The results of this section are not original to our work,

though some of the notation is our invention. We refer the reader to the excellent book

by Dan Gusfield and Robert Irving ([GI89]).

2.1 Stable Matchings and the Domination Ordering

In the stable matching problem, an n×n instance I consists of nmen Vm = {m1, . . . ,mn}

and n women Vw = {w1, . . . , wn}; in addition, each individual is associated with a pref-

erence list - an ordered list of a subset of the individuals of the opposite gender. (We

can think of this list as representing that individual’s acceptable partners.) In general,

we assume that mi is on wj ’s preference list iff wj is on mi’s preference list. An individ-

ual v prefers v′ to v′′ if v′ appears no later than v′′ in v’s preference list; in addition,

every v prefers every v′ on its preference list to v. (We also say that v strictly prefers

v′ to v′′ if v prefers v′ to v′′ and v′ 6= v′′.) The graph of the instance G(I) is the

bipartite graph with V (G(I)) = Vm ∪ Vw such that (mi, wj) ∈ G(I) iff mi and wj are

in each other’s preference list. (Since G(I) is bipartite with parts equal to Vm and Vw,

every edge e can be described as (me, we), where me ∈ Vm and we ∈ Vw.) An instance

I is complete if G(I) is the complete bipartite graph between Vm(I) and Vw(I).

A matching M is a subgraph of G(I) where every vertex has degree at most 1 - in

this case, every vertex in M with degree 1 has a partner, the vertex it is adjacent to in

M . We can also describe a matching via the function pM : V (G(I))→ V (G(I)), where

pM (v) = v if v has degree 0 in M , and is v’s partner in M otherwise. A matching M
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is perfect if it is 1-regular - i.e. pM (v) 6= v for all v ∈ V (G(I)).

An edge e ∈ E(G(I)) destabilizes M if me prefers we to pM (me) and we prefers

me to pM (we); a matching M is stable if no e ∈ E(G(I)) destabilizes M . While it

is not immediately obvious that a stable marriage exists over an arbitrary instance,

David Gale and Lloyd Shapley showed that complete instances always have at least one

perfect stable matching, and discovered an algorithm - the Gale-Shapley algorithm -

that could find one such stable matching.

Algorithm 2.1. Given a stable marriage instance I, we construct a matching as fol-

lows:

1. Set pM (v) = v for all v ∈ V (G(I)).

2. While there exists some m ∈ Vm(I) such that m is not frustrated and pM (m) = m,

do the following

(a) Select any such m. If m has proposed to every member of his preference

list, m becomes frustrated; otherwise, m proposes to the first elements of his

preference list that he has not yet proposed to.

(b) When m proposes to w, if w prefers m to pM (w), then pM (m) becomes w

and pM (w) becomes m. If pM (w) was previously some other m′ ∈ Vm(I),

then pM (m′) becomes m′.

Theorem 2.2. For any instance I, any execution of algorithm 2.1 outputs the same

stable matching M . ([GS62])

Theorem 2.3. If I is a complete n × n instance, then the matching M created by

algorithm 2.1 is a perfect stable matching. ([GS62],Theorem 1).

A stable matching is not necessarily perfect; however, as shown by Gale and Marilda

Sotomayor ([GS85]), a vertex v is unmatched in a stable matching over an instance I

iff it is unmatched in every stable matching over that instance. We refer to an instance

I as satisfactory if every stable matching over I is perfect.

Theorem 2.4. Every stable matching covers the same vertices. ([GS85], Theorem 1)



4

Corollary 2.5. An instance I is satisfactory if there exists a perfect stable matching

over I.

Theorem 2.6. For all n ∈ N, every complete n× n instance is satisfactory.

We note that a given instance can be considered to have other, ”smaller” instances

within it. A restriction I[S] of the instance I to S ⊆ E(G(I)) is the instance on

the same vertex set such that the preference list of every vertex in I[S] is the order-

preserving sublist of its vertex list in I where, for any v1, v2 ∈ V (G(I)), v1 appears on

v2’s preference list iff (v1, v2) ∈ S. A particularly noteworthy type of restriction is a

truncation - a restriction created by iteratively selecting a vertex and removing the

final element of that vertex’s preference list. We can construct any truncation of I by

taking a subset V ⊆ V (G(I)) and selecting, for each v ∈ V , a minimum acceptable

partner a(v) from v’s preference list, and for all v′ such that v strictly prefers a(v) to

v′, we remove v and v′ from each other’s preference lists. We write this truncation

as I(Tw,Tm), where Tm = {(m, a(m)) : m ∈ Vm(I) ∩ V } and Tw = {(a(w), w) : w ∈

Vm(I) ∩ V }.

2.2 The Lattice of Stable Matchings

For an instance I, the set Ls = Ls(I) of all stable matchings over I has a natural partial

order given by M �M ′ iff every man m prefers pM (m) to p′M (m), and every woman w

prefers pM ′(w) to pM (w). We say that M dominates M ′ if M � M ′, and refer to �

as the domination ordering. We refer to a stable matching over I as man-optimal

if it dominates every other stable matching, and woman-optimal if every other stable

matching dominates it. (It is trivial to see that there can be at most one man-optimal

and one woman-optimal stable matching.)

Theorem 2.7. Given an instance I, algorithm 2.1 generates the unique man-optimal

stable matching over I. ([GS62], Theorem 2)

In particular, theorem 2.7 implies that for any instance I, there exists a unique

man-optimal stable matching (and similarly a unique woman-optimal stable match-

ing) over I.We may also contemplate the idea of ”combining” two stable matchings to
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create another stable matching such that some number of vertices are given their pre-

ferred partners among the two input matchings. This intuition prompted the following

theorems, which Donald Knuth ([Knu76]) attributed to John Conway.

Theorem 2.8. Let M1 and M2 be two stable matchings over I. Then, the following

hold:

• There exists a unique matching M1 ∧wM2 such that each woman is matched with

her preferred partner among her partners in M1 and M2, and M1∧wM2 is stable.

• There exists a unique matching M1 ∧m M2 such that each man is matched with

his less preferred partner among his partners in M1 and M2, and M1 ∧m M2 =

M1 ∧wM2.

• There exists a unique matching M1 ∨m M2 such that each man is matched with

his preferred partner among his partners in M1 and M2, and M1 ∨mM2 is stable.

• There exists a unique matching M1 ∨wM2 such that each woman is matched with

her less preferred partner among her partners in M1 and M2, and M1 ∨w M2 =

M1 ∨mM2.

([Knu76], p. 87-88)

We refer to the matchings M1 ∧w M2 and M1 ∨m M2 as M1 ∧M2 and M1 ∨M2

respectively. It is not trivial that the matchings M1 ∧M2 and M1 ∨M2 are stable,

or that they even exist. The proof of this depends on both M1 and M2 being stable,

and the operations of ∧ and ∨ have their domains limited to pairs of stable matchings.

(In Chapter 3, we will look at how we could naturally expand the domains of these

operations.) As observed in [Knu76], the domination ordering forms a lattice with

meet and join operations given by theorem 2.8. Furthermore, it is easy to show that ∧

and ∨ distribute over one another, and therefore:

Theorem 2.9. Given two stable matchings M,M ′ over I, M dominates M ′ iff every

w ∈ Vw(I) prefers pM ′(w) to pM (w). In addition, the poset Ls of the stable matchings

with the domination ordering forms a distributive lattice. ([Knu76], p. 87-92)
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Furthermore, Charles Blair ([Bla84], Theorem 1), answering a question posed by

Knuth ([Knu76], p. 92) showed that for every distributive lattice L, there exists an

instance I such that the resulting lattice (Ls,�) is isomorphic to L. An algorithm to

create such an instance with relatively few vertices is given by Dan Gusfield, Robert

Irving, Paul Leather, and Michael Saks ([GILS87], Section 2.2). (We present it as

algorithm 5.11.)

2.3 Rotations Over the Stable Matchings

We want to better understand the structure of the distributive lattice Ls(I) associated

with an instance I. As a first step, we review the well-known Birkhoff Representation

Theorem, which allows us to express the elements of a distributive lattice in terms of

its join-irreducible elements.

A distributive lattice L has a least element and greatest element, which we represent

as 0̂L and 1̂L respectively. (In cases where L is implied, we shorten these to 0̂ and 1̂.)

We say that an element l ∈ L is join-irreducible if for any subset of elements L ⊆ L

such that ∨j∈Lj = l, l ⊆ L. Since the join of the emptyset is 0̂, 0̂ is not join-irreducible,

despite the fact that it cannot be expressed as the join of any number of elements ≺ 0̂;

in fact, 0̂ is the unique l ∈ L that is not join-irreducible such that if |L| = 2 and

∨j∈Lj = l, then l ∈ L. Similarly, l is meet-irreducible if for any subset of elements

L ⊆ L such that ∧j∈Lj = l, l ⊆ L; 1̂ is the unique l ∈ L that is not meet-irreducible

such that if |L| = 2 and ∧j∈Lj = l, then l ∈ L.

Theorem 2.10. Given a distributive lattice L with partial order �, let J be the poset

of the join-irreducible elements of L. Then, there exists an isomorphism κ from L to

the downsets of J , such that for all l ∈ L, κ maps l to 0̂ ∪ {j ∈ J : j � l}. ([Bir37],

Theorem 5)

Thus, a distributive lattice is completely determined by its poset of join irreducibel

elements. We want to apply this to better understand the lattice Ls(I) of stable match-

ings. To do this, we want to provide an explicit way to describe the poset of join

irreducibles. The key to this is the concept of a rotation.
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Let I be an instance, and Cs(I) be the set of pairs (M,M ′) of stable matchings

where M ′ covers M in Ls(I). We define a rotation over I to be a pair ρ = (ρm, ρw)

with ρm, ρw ⊆ E(G(I)) such that there is a pair (M,M ′) ∈ Cs(I) such that ρm = M−M ′

and ρw = M ′ −M . Note that for a rotation ρ, ρm and ρw are matchings in G(I) that

cover the same vertices.

Theorem 2.11. Let ρ be a rotation over I. Then, there exists an r ∈ N, a se-

quence {m1, . . . ,mr} ⊆ Vm(I), and a sequence {w1, . . . , wr} ⊆ Vw(I) such that ρ =

({(m1, w1), (m2, w2), . . . (mr, wr)}, {(m1, w2), . . . , (mr−1, wr), (mr, w1)}). ([GI89], The-

orem 2.5.3)

For any i ∈ [r], mi prefers pρm(mi) = pM (mi) to pρw(mi) = pM ′(mi) and wi prefers

pρw(wi) = pM ′(wi) to pρm(wi) = pM (wi), so ρm ≺ ρw. We say that a vertex v ∈ V (G(I))

is in a rotation ρ if there exists some vertex v′ ∈ V (G(I)) such that (v, v′) ∈ ρm. (We

note by theorem 2.11 that this occurs iff there exists some vertex v′′ ∈ V (G(I)) such

that (v, v′′) ∈ ρw.)

If we have a stable matching M over I, we can consider the truncation I(M,∅),

created by deleting from I all edges (m,w) such that w strictly prefers pM (w) to m.

We note that the edges deleted this way include all edges such that m strictly prefers

w to pM (m) - otherwise, (m,w) would destabilize M . Therefore, M matches each man

with his top choice in I(M,∅) and each woman with her bottom choice. We say that M

exposes a pair of matchings (ρm, ρw) over I that cover the same vertices if ρm ⊆ M

and, for each man m ∈ ρ, ρw matches m with his second choice in I(M,∅). In particular,

we see that every pair of matchings exposed by some stable matching is a rotation.

Proposition 2.12. If M exposes (ρm, ρw) over I, then (ρm, ρw) is a rotation over I

and M ∪ρw−ρm is a stable matching over I that covers M in Ls(I). ([GI89], Theorem

2.5.1)

The following lemmas show the converse, that every rotation is exposed by some

stable matching.

Lemma 2.13. If ρ is a rotation over I, then there exists a stable matching M such

that M exposes ρ. ([GI89], Theorem 2.5.3)
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Lemma 2.14. Given an instance I, let {M0,M1, . . . ,Mk} be any maximal chain in

Ls(I). (Note that this implies that M0 is the man-optimal stable matching over I, and

Mk is the woman-optimal stable matching over I.) Then, {(Mi−1 −Mi,Mi −Mi−1) :

i ∈ [k]} is the set of all rotations over I. ([GI89], Theorem 2.5.4)

Corollary 2.15. Given an instance I, let M0,M1, . . . ,Mr be any maximal chain in

Ls(I) such that M0 and Mr are the man-optimal and woman-optimal stable matchings

over I respectively. Then, the set of all edges that appear in some stable matching over

I is ∪ri=0Mi. ([Gus87], Theorem 2)

Proposition 2.16. Let M,M ′ be a pair of stable matchings and ρ be a rotation over I

such that ρ = ({e ∈ E(G(I)) : e ∈ M, e /∈ M ′}, {e ∈ E(G(I)) : e /∈ M, e ∈ M ′}. Then,

M ′ covers M . ([GI89], Theorem 2.4.2)

The above theorems show us that we can consider a more compact form of describing

the lattice of stable matchings - namely, through its rotations. For a given instance I,

we define the rotation poset of I to be the poset on the set of rotations of I with

the partial order that ρ ≤ ρ′ iff for every stable matching M over I and m ∈ Vm(I), m

either prefers pρw(m) to pM (m) or prefers pM (m) to pρm(m). We represent the rotation

poset of I by Π(I). The following theorem gives a more explicit description of the order

relation of Π(i).

Theorem 2.17. For a given stable marriage instance I, let R be the digraph such that

V (R) is the set of all rotations over I, and (ρ, ρ′) is an edge in R iff at least one of the

following holds:

• ρw ∩ ρ′m 6= ∅.

• There exists a man m0 ∈ ρ′ and a woman w0 ∈ ρ such that (m0, w0) does not

appear in any element of {ρ(i) : i ∈ [k]} and, in I, m0 prefers pρ′m(m0) to w0 to

pρ′w(m0) and w0 prefers pρw(w0) to m0 to pρm(w0).

Then, Π(I) is the transitive closure of R. ([Gus87], Theorem 4 and Lemma 6)

Theorem 2.18. Let ν be the map from the downsets of Π(I) to the stable matchings

over I such that for any downset D ∈ Π(I), ν(D) = M0∪(∪ρ∈Dρw)−(∪ρ∈Dρm). Then,
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ν is an isomorphism, and for any stable matching M , ν−1(M) is the set of all rotations

ρ such that, for all (m,w) ∈ ρ, m strictly prefers w to pM (m). ([IL86], Theorem 5.1)

One major advantage of representing the lattice of stable matchings through the

rotation poset is its compact nature. The entire lattice of stable matchings over an

n×n instance could potentially be superpolynomial in terms of n. The lattice of stable

matchings over an n×n instance can have size exponential in n ([IL86], Corollary 2.1).

However, the number of rotations is at most O(n2) (since the elements of {ρw : ρ ∈

Π(I)} are disjoint by lemma 2.14, and each ρw contains at least two edges in G(I)).

Therefore, the rotation poset provides a compact representation of the lattice Ls(I).

The more compact representation of Ls(I) afforded by Π(I) allows us to perform certain

computational tasks far more efficiently - as seen in the following theorems, as well as

in Chapter 5.

Theorem 2.19. Given an n × n instance I, we can construct the rotation poset of I

in O(n2) time. ([Gus87], Theorem 5)

Corollary 2.20. Given an n×n instance I, there exists an algorithm that determines,

in O(n2) time, the set of all edges in G(I) that appear in a stable matching over I.

([Gus87], Theorem 3)

2.4 The vNM-Stable Matchings

A significant portion of this thesis is dedicated to weakenings of stability. A weakening

that is of particular interest here is von Neumman-Morgenstern stability, or vNM-

stability, which was studied in [Ehl07], [Wak08], and [Wak10].

Given a stable matching instance I, a set of matchings M is vNM-stable over I

if it satisfies the following conditions:

• For all M1,M2 ∈ M and v ∈ Vm ∪ Vw, at least one of v and pM1(v) prefers their

partner in M2 to the other.

• For all M /∈M, there exists an M ′ ∈M and v ∈ Vm∪Vw such that v and pM ′(v)

strictly prefer each other to their respective partners in M .
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The first major result on vNM-stable sets we need is attributed to Lars Ehlers.

Theorem 2.21. IfM is a vNM-stable set of matchings over an instance I, then (M,�)

is a distributive lattice, and every stable matching over I appears in M. ([Ehl07],

Theorem 2))

It is not clear from the definition that every instance has a vNM-stable set of match-

ings, and if it does, whether it is unique. This was established by Jun Wako, who

showed:

Theorem 2.22. For any instance I, there exists a unique vNM-stable set of matchings

over I. ([Wak08], Theorem 5.1)

This allows us to talk about the vNM-stable set of matchings of an instance I.

We say that a matching is vNM-stable over I if it belongs to the vNM-stable set of

matchings.

It is clear from the second part of the definition that a vNM-stable set of matchings

must contain all stable matchings, and so vNM stability is a weakening of stability. If I

is an instance where every edge is in a stable matching, then stability and vNM-stability

coincide.

The proof that appears in Wako is based on a construction that follows this outline:

1. Initially, let C0 be the set of all stable matchings over I and set n = 0.

2. Let UDn be the set of all matchings that are not destabilized by any edge that

appears in a matching in C0.

3. If Cn ( UDn, find Cn+1, the set of all stable matchings over I[∪M∈UDnM ].

Return to step 2 with n := n + 1. If Cn = UDn, then Cn gives the unique

vNM-stable set of matchings.

Wako was able to make the final assertion in the above construction by the following

lemma.

Lemma 2.23. If Cn = Cn+1 for any n ∈ N, then Cn = UDn. ([Wak08], Lemma 5.1)
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It is an interesting question as to how many iterations are required to find the

vNM-stable set of an n× n instance I in the algorithm provided by ?? - we will show

in Chapter 4 that at most 2n − 3 iterations are needed. Later, Wako discovered an

algorithm that would construct, given an instance I, a compact representation of the

vNM-stable set of matchings.

Theorem 2.24. For any instance I, there exists an algorithm that, in O(n2) time,

outputs an instance I ′ such that the set of stable matchings over I ′ is the vNM-stable

set of I. ([Wak10], Theorem 6.1+6.2)

This algorithm does not use the iterative technique in ?? described above. In

Chapter 4, we reformulate the Wako algorithm in a slightly modified form that allows

us to reveal a few additional conclusions, and provide an alternate polynomial-time

algorthm to construct a compact representation of the vNM-stable set of an n × n

instance.

Finally, we note that theorem 2.24 implies that there exists a man-optimal vNM-

stable matching, and that there exists an algorithm to compute it in O(n2) time. In one

of the appendices, we will show an algorithm that outputs a specific matching M0 over

the n× n instance I in O(n3) time, and prove that M0 is the man-optimal vNM-stable

matching over I. (The algorithm was originally found by Mircea Digulescu in [Dig16],

but the proof that it creates the man-optimal vNM-stable matching is our own.) This

construction has the following direct consequence.

Theorem 2.25. Let M0 be the man-optimal vNM-stable matching over the n × n′

instance I. Then, we may label the vertices of Vm(I) as {m1, . . . ,mn} and the vertices

of Vw(I) as {w1, . . . , wn′} such that M0 = {(m1, w1), (m2, w2), . . . , (mk, wk)} for some

k ∈ N, and for all i ∈ [k] and j > i, mi prefers wi to wj.

The proof of this statement appears in Appendix C. This property has an obvious

analogue for the woman-optimal vNM-stable matching.

Corollary 2.26. Let M1 be the woman-optimal vNM-stable matching over the n × n′

instance I. Then, we may label the vertices of Vm(I) as {m1, . . . ,mn} and the vertices
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of Vw(I) as {w1, . . . , wn′} such that M1 = {(m1, w1), (m2, w2), . . . , (mk, wk)} for some

k ∈ N, and for all i ∈ [k] and j > i, wi prefers mi to mj.

2.5 Overview of the Pertinent Sections

The overarching focus of Chapters 3 through 7 of this thesis is on a relaxation of stability

that we refer to as S-stability. In Chapter 3, we generalize the notion of join and meet

on stable matchings, find the conditions on sets of matchings where such notions can be

applied, and use them to introduce the notion of S-stability. In Chapter 4, we consider

the operation ψI : E(G(I)) → E(G(I)) for an instance I, and use it to replicate the

results of [Wak08]. We also consider how the operation of ψI[S] compares to ψI for

restrictions of the form I[S] - most notable in theorem 4.29. Lastly, we show that, for

any S, ψkI (S) is the unique hub (as defined for theorem 4.1) for sufficiently large k,

and use it to construct an alternate algorithm to represent the vNM-stable matchings

(theorem 4.53).

The next three chapters look at ways to apply the concepts of S-stability to other

questions that stem from the structures of the stable matchings. In Chapter 5, we

extend the representation of distributive lattices as seen in [GILS87] to the vNM-stable

matchings, and discuss the necessary and sufficient conditions that a lattice-sublattice

pair must uphold to respectively represent the vNM-stable matchings and stable match-

ings of some instance (theorem 5.1). In Chapter 6, we look at the concept of a fractional

S-stable matching, consider the necessary and sufficient constraints on the polytope of

fractional S-stable matchings for important values of S (theorem 6.3), and attempt a

classification of this polytope for general S. In Chapter 7, we look at representing a

graph as the union of a stable matching for some instace, and talk about the discov-

eries and interesting examples we have found. (Chapters 8 and 9 discuss work on an

unrelated problem about boolean functions.)

The appendices pertain to results that originated in previous papers and were re-

discovered by us; we present their proofs in our own notation. In Appendix A, we look

at a result that [GI89] presents with the skeleton of a proof; in particular, we clarifiy
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some ambiguous phrasing from the book and present our proof of the result. Appendix

B features a proof of lemma 4.10, which follows the same logic as Wako uses in his

proof of lemma 2.23. Appendix C gives the algorithm for the man-optimal vNM-stable

matching that originated in [Dig16], and shows how it lets us show theorem 2.25 and

replicate the results in theorem 2.24.
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Chapter 3

An Expanded Notion of Join and Meet

We recall that from theorem 2.9 ([Knu76]), the set of stable matchings Ls of an instance

I form a distributive lattice under the domination ordering, and that any two stable

matchings have a join and a meet that are also stable matchings. We will be interested

in relaxations of the stability condition, and in this context it is natural to ask under

what conditions do two (not necessarily stable) matchings have a meet and join.

3.1 Join and Meet on Assignments

Recall that, given two stable matchings M1 and M2, M1 ∨M2 is the stable matching

such that each woman is partnered with her preferred partner among M1 and M2, and

each man is partnered with his preferred partner among M1 and M2. It is not obvious

that these outputs or stable - or even matchings; this fact is heavily dependent on M1

and M2 being stable. If we wish to extend the notion of ∨ and ∧ to operate over a

larger domain than just all pairs of stable matchings, we need to extend our domain

beyond just matchings.

We may think of a matching (not necessarily stable, or even complete) as a subgraph

of G(I) with maximum degree 1. We define an arbitrary subgraph A ⊆ G(I) to be

a man-assignment if every man in A has degree at most 1; similarly, we define a

subgraph B ⊆ G(I) to be a woman-assignment if every woman in B has degree at

most 1. Let A be the family of all man-assignments, B to be the family of all woman-

assignments, and C to be the family of all matchings. (Trivially, C = A ∩ B.) For a

man-assignment A and man m, pA(m) = m if m has degree 0 in A, and equals the

(singular) woman adjacent to m in A otherwise; similarly, for a woman-assignment

B and woman w, pB(w) = w if w has degree 0 in B, and equals the (singular) man
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adjacent to w in B otherwise.

We can order A via the ordering �m, where A1 �m A2 iff for all m ∈ Vm(I), m

prefers pA1(m) to pA2(m). This ordering is a product of chains (where each chain

corresponds to some m ∈ Vm(I) and consists of m’s ordered preference list of women),

and so A is a distibutive lattice with join and meet defined as follows:

• A1 ∧m A2 consists of all edges of the form (m,w), where m is any man and w is

his most preferred partner among pA1(m) and pA2(m).

• A1 ∨m A2 consists of all edges of the form (m,w), where m is any man and w is

his least preferred partner among pA1(m) and pA2(m).

It is trivial to see that, for any two man-assignments A1 and A2, A1 ∧m A2 and

A1 ∨m A2 are preserved when the instance I is replaced with any restriction I[S] such

that A1 ∪A2 ⊆ S.

We can similarly order B via the ordering �w, where B1 �w B2 iff for all w ∈ Vw(I),

w prefers pB1(w) to pB2(w). This ordering is a product of chains (where each chain

corresponds to some w ∈ Vm(I) having its partner increase in desirability), and so B is

a distibutive lattice with join and meet defined as follows:

• B1 ∧w B2 consists of all edges of the form (m,w), where w is any woman and m

is her least preferred partner among pB1(w) and pB2(w).

• B1 ∨w B2 consists of all edges of the form (m,w), where w is any woman and m

is her most preferred partner among pB1(w) and pB2(w).

It is trivial to see that, for any two woman-assignments B1 and B2, B1 ∧w B2 and

B1 ∨m B2 are preserved when the instance I is replaced with any restriction I[S] such

that B1 ∪B2 ⊆ S. 1

Since a subgraph is a matching iff it is both a man-assignment and a woman-

assignment, for any two matchings M1 and M2, we can find M1 ∧m M2, M1 ∨m M2,

1The reader might find it curious that ∧m matches vertices with their preferred partners, and ∧w

does not (and vice versa for ∨m and ∨w). We use this initially counterintuitive notation because, in
the domains we focus on most closely, ∧m and ∧w will be equal as operations (and similarly for ∨m

and ∨w).
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M1 ∧w M2, and M1 ∨m M2; furthermore, if M1 and M2 are stable matchings, then

M1 ∧mM2 and M1 ∧wM2 both equal M1 ∧M2 in the lattice of stable matchings, while

M1∨mM2 andM1∨wM2 both equalM1∨M2 in the lattice of stable matchings. However,

if M1 and/or M2 are not stable, the resulting assignments are not necessarily matchings.

(As an example, consider the instance I such that Vm(I) = {m1,m2}, Vw(I) = {w1, w2},

m1 and m2 each have [w1, w2] as their respective preference list, and w1 and w2 each

have [m1,m2] as their respective preference list. If M1 = {(m1, w1), (m2, w2)} and

M2 = {(m1, w2), (m2, w1)}, then it is trivial to see that none of M1 ∨mM2, M1 ∧mM2,

M1 ∨wM2, and M1 ∧wM2 are matchings.)

[QUESTION: INSERT FIGURE HERE?]

3.2 Costable Matchings

For sets A ⊆ Vm(I) and B ⊆ Vw(I) such that |A| = |B|, let M(A,B) the the set

of all perfect matchings between M ′ and W ′. By theorem 2.4, for any instance I,

there exist A,B such that Ls(I) ⊆ M(A,B). We know that Ls(I) is closed under ∨

and ∧. The generalizations of ∨ and ∧ to man-assignments and woman-assignments

allows us to extend these operations to non-stable matchings. We consider the following

questions: given two matchings M1 and M2, under what conditions is M1 ∨mM2 (resp.

M1 ∨w M2, M1 ∧m M2, and M1 ∧w M2) a matching? Under what conditions does

M1 ∨mM2 = M1 ∨wM2 (resp. M1 ∧mM2 = M1 ∧wM2)?

The answers to these questions lead to the concept of co-stability which we now

define. Given a stable marriage instance I, we recall that a matching M on the instance

is destabilized by e ∈ E(G(I)) if me prefers we to pM (me) and we prefers me to

pM (we); if S ⊆ E(G(I)) and M is not destabilized by any e ∈ S, we say that M is

S-stable. (We generally denote the set of all S-stable matchings as MS .)

Theorem 3.1. Let M,M ′ ⊆ S be two matchings that are also S-stable. Then, all of

M ∧m M ′, M ∧w M ′, M ∨m M ′, and M ∨w M ′ are S-stable matchings. In addition,

M ∧mM ′ = M ∧wM ′ and M ∨mM ′ = M ∨wM ′.

Proof. Consider the restriction I[S]. Both M and M ′ are stable matchings over I[S],
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so the following hold over I[S]:

• M ∧mM ′ = M ∧wM ′ = M ∧M ′.

• M ∨mM ′ = M ∨wM ′ = M ∨M ′.

Furthermore, by the properties of stable matchings, M0 ≡M ∧M ′ and M1 ≡M ∨M ′

are stable matchings over I[S]; they are also matchings over I, and retain the property

of being S-stable.

In such a case, we may define M ∧M ′ ≡ M ∧mM ′ and M ∨M ′ ≡ M ∨mM ′; it is

trivial to see that this agrees with our previous definition of ∧ and ∨ in the context of

stable matchings. We define two matchings M,M ′ to be costable if M is M ′-stable

and M ′ is M -stable. (Note that if M is S-stable, it is also T -stable for any T ⊆ S.)

Corollary 3.2. Let M,M ′ be two costable matchings. Then, all of M∧mM ′, M∧wM ′,

M ∨m M ′, and M ∨w M ′ are matchings. In addition, M ∧m M ′ = M ∧w M ′ and

M ∨mM ′ = M ∨wM ′.

Proof. Let S = M ∪ M ′; since M and M ′ are costable (and no matching can be

destabilized by an edge in that matching), M and M ′ are both ⊆ S and S-stable. By

theorem 3.1, we are done.

In particular, corollary 3.2 implies that we may naturally extend the operations ∧

and ∨ to accept any pair of costable matchings as input. There are some additional

observations that we can make on costable matchings.

Proposition 3.3. Let M and M ′ be any pair of costable matchings. Then, M and M ′

cover the same set of vertices.

Proof. We prove this by contradiction. Assume, for the sake of contradiction, that

there exists a vertex v that only one of the matchings covers; WLOG, we may assume

v is a man and is covered by M but not M ′. We may construct a pair of sequences

{m0,m1,m2, . . .} and {w1, w2, . . .} inductively by setting m0 ≡ v and, for all positive

i ∈ N, wi = pM (mi−1) and mi = pM ′(wi).
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Lemma 3.4. For all positive i ∈ N, wi ∈ Vw(I) prefers pM ′(wi) to pM (wi), and

mi ∈ Vm(I) prefers pM (mi) to pM ′(mi).

Proof. We prove this result by induction on i. For our base case, we note that m0 = v

is a man that prefers his partner in M to that in M ′ - as he has a partner in M but

not in M ′.

For our inductive step, assume for any positive i ∈ N that mi−1 is a man which

is paired under M , and prefers his partner in M to that in M ′. By definition, wi =

pM (mi−1); by our inductive assumptions, mi−1 is a man that is paired under M , so wi

is a woman. Given that mi−1 prefers his partner in M to that in M ′, wi must prefer her

partner in M ′ to that in M - otherwise, M ′ would be destabilized by (mi−1, wi) ∈ M ,

contradicting costability. Since wi strictly prefers pM ′(wi) to mi−1 to wi, mi = pM ′(wi)

is a man; in addition, mi must prefer his partner in M to that in M ′ - otherwise, M

would be destabilized by (mi, wi) ∈ M ′, contradicting costability. (This also tells us

that mi is paired under M , since M prefers pM (mi) to wi to mi.) By induction, we see

that for all positive i ∈ N, wi is a woman that prefers her partner in M ′ to that in M ,

and mi is a man that prefers his partner in M to that in M ′. (In particular, wi and mi

have partners in both M and M ′.)

We may define L ≡ {m0, w1,m1, w2,m2, . . .}, the sequence such that, for all i ∈ N,

L2i = mi and L2i+1 = wi+1. Since this sequence is an infinite sequence in a finite

domain (namely, V (I)), there must be a minimum k such that Lk = Lj for some j ≤ k.

Lk has a partner in M ′, and L0 = v doesn’t, so the resulting j cannot equal 0. However,

if j ≥ 1, then the fact that Lk = Lj means they have the same gender, so j and k are

either both even or both odd.

• If k is even, then Lk = pM ′(Lk−1) and Lj = pM ′(Lj−1). Since being paired in M ′

is a symmetric property, Lk−1 = pM ′(Lk) = pM ′(Lj) = Lj−1. This contradicts

the minimality of k such that Lk is not a new term in L, so k cannot be even.

• If k is odd, then Lk = pM (Lk−1) and Lj = pM (Lj−1). Since being paired in M

is a symmetric property, Lk−1 = pM (Lk) = pM (Lj) = Lj−1. This contradicts the
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minimality of k such that Lk is not a new term in L, so k cannot be odd.

However, k must be even or odd. This creates a contradiction, so no such v can exist,

and M and M ′ cover the same set of vertices.

The following corollary is not used in this section, but will be referenced in future

ones:

Corollary 3.5. If S ⊆ G(I) is a set of edges such that S ⊇ M0 for some S-stable

matching M0, then every S-stable matching covers the same set of vertices as M0.

Proof. Let M be an arbitrary S-stable matching; then, M is also M0-stable. In ad-

dition M0 is M -stable (by virtue of being stable), so M and M0 are costable. By

proposition 3.3, M and M0 cover the same set of vertices.

Proposition 3.6. Let M and M ′ be any pair of costable matchings over an instance I,

V ′m ⊆ Vm be the set of all men m that strictly prefer pM (m) to pM ′(m), and V ′w ⊆ Vw

be the set of all women w that strictly prefer pM ′(w) to pM (w). Then, |V ′m| = |V ′w|, and

for all m ∈ Vm, m ∈ V ′m iff pM (m) ∈ V ′w iff pM ′(m) ∈ V ′w.

Proof. We first note, by proposition 3.3, that every vertex v that is unpaired in M is

also unpaired in M ′, and so pM (v) = pM ′(v) = v; as a result, v /∈ V ′m or V ′w.

Let V ∗m ⊆ Vm and V ∗w ⊆ Vw respectively represent the men and women that are

paired under M ; by the definition of pM and proposition 3.3, pM and pM ′ are bijections

between V ∗m and V ∗w . For any m ∈ V ∗M , if m ∈ V ′m and pM (m) /∈ V ′w, then m and

pM (m) strictly prefer each other to their respective partners in M ′, so M ′ is destabilized

by (m, pM (m)) ∈ M ; this contradicts the fact that M ′ is M -stable, so we have a

contradiction and see that if m ∈ V ′m, pM (m) ∈ V ′w. As pM is a bijection between

V ∗m ⊇ V ′m and V ∗w ⊇ V ′w, |V ′m| ≤ |V ′w|.

Similarly, for any m ∈ V ∗M , if m /∈ V ′m and pM ′(m) ∈ V ′w, then m and pM ′(m)

strictly prefer each other to their respective partners in M , so M is destabilized by

(m, pM ′(m)) ∈M ′; this contradicts the fact that M is M ′-stable, so we have a contra-

diction and see that if pM ′(m) ∈ V ′w, m ∈ V ′m. As pM ′ is a bijection between V ∗m and
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V ∗w , |V ′m| ≥ |V ′w|. However, this means that |V ′m| = |V ′w|; consequentially every element

of V ′w can be expressed as pM (m) for some m ∈ V ′m, or as pM ′(m) for some m ∈ V ′m.

The natural converse of proposition 3.6 also holds.

Proposition 3.7. Let I be a stable marriage instance, and M,M ′ be two matchings

such that both pM and pM ′ are bijections between V ′m and V ′w (as defined in proposi-

tion 3.6). Then, M and M ′ are costable.

Proof. Consider an arbitrary e ∈M . If me prefers we to pM ′(me), then me ∈ V ′m; this

implies that we = pM (me) ∈ V ′w, so we prefers pM ′(we) to me. As a result, for every

e ∈M , either me or we prefers their partner in M ′ to the other, and so M ′ is M -stable.

Similarly, consider an arbitrary e ∈M ′. If we prefers me to pM (we), then we ∈ V ′w;

this implies that me = pM ′(we) ∈ V ′m, so me prefers pM (me) to we. As a result, for

every e ∈ M ′, either me or we prefers their partner in M to the other, and so M is

M ′-stable. By the definition of costability, M and M ′ are costable.

3.3 Rotations Over the S-Stable Matchings

A noteworthy example of a set of costable matchings is the set of all S-stable matchings,

given that S is a set of edges such that every S-stable matching is ⊆ S; we refer to such

an S as stable-closed over I. We take particular note of theorem 3.1 in this context.

Proposition 3.8. Let I be any instance, and S be stable-closed over I. Then, the set

of all S-stable matchings over I is the set of all stable matchings over I[S].

Proof. By the definition of S-stability and I[S], it is trivial to see that any matching

M over I[S] is stable over I[S] iff it is S-stable over I. Every matching over I[S] is also

a matching over I; in addition, since S is stable-closed, every S-stable matching is also

a matching over I[S]. Therefore, the proposition holds.

Theorem 3.9. Suppose that S ⊆ E(G(I)) is stable-closed. Then, the collection of

S-stable matchings forms a distributive lattice L′S, where M1 ≤ M2 iff M1 dominates
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M2, and the operations ∨ and ∧ in theorem 3.1 are the join and meet operations on L′S
respectively.

Proof. By proposition 3.8, the collection of S-stable matchings is the collection of stable

matchings over I[S]; as a result, by theorem 2.9, Ls(I[S]) a distributive lattice under

the ordering where M1 ≤M2 iff M1 dominates M2, with ∨ and ∧ as the join and meet

operators respectively. Since the operations of domination, ∨, and ∧ are defined only

by local properties, it is trivial to see that these properties extend to the poset L′S under

the same ordering.

For a given instance, the structure of L′S may change for different stable-closed S.

However, all of them contain the lattice of stable matchings LG(I) as a sublattice (since

the stable matchings are closed under ∨ and ∧). In fact, this sublattice also preserves

the covering property, which we will spend the remainder of this section showing.

Proposition 3.10. Let S ⊆ E(G(I)) be any stable-closed set of edges over I. Then,

any rotation ρ over I is also a rotation over I[S].

Proof. Take any such ρ. By lemma 2.13, there exists a stable matching M0 over I that

exposes ρ. Let M1 = (M − ρm ∪ ρw); by the definition of an exposed rotation, M1 is

a stable matching. M0 and M1 are obviously S-stable as well, and so appear as stable

matchings over I[S].

Now, every man’s preference list in the truncation I[S](M0,∅) is a subset of his pref-

erence list in I(M0,∅). In addition, every edge in M0 or M1 is still in I[S](M0,∅) (since

every woman weakly prefers her partner in either of M0 and M1 to her partner in M0),

so for all men m ∈ ρ, pρm(m) and pρw(m) continue to be m’s first and second choice

respectively in I[S]M0 . Consequentially, ρ is a rotation over I[S] exposed by M0, and

so is a rotation over I[S].

Given a lattice L1 and a sublattice L0, we say that L0 is a cover-preserving

sublattice of L1 if for all l, l′ ∈ L0 such that l′ covers l in L0, l′ covers l in L1. (Note

that if l, l′ ∈ L0 and l′ covers l in L1, l′ covers l in L0 trivially.)
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Theorem 3.11. Let I be any instance and S ⊆ E(G(I)) be stable-closed over I. Then,

Ls is a cover-preserving distributive sublattice of L′S.

Proof. By virtue of being closed under ∨ and ∧, Ls is a distributive sublattice of

L′S . Now, take any M,M ′ ∈ Ls such that M ′ covers M in Ls; ({e ∈ E(G(I)) : e ∈

M, e /∈ M ′}, {e ∈ E(G(I)) : e /∈ M, e ∈ M ′} is therefore a rotation over I, and by

proposition 3.10, is also a rotation over I[S]. By proposition 2.16, M ′ covers M in L′S .

However, since our choice of M and M ′ is arbitrary, Ls must be a cover-preserving

sublattice of L′S .
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Chapter 4

The ψ Operation and the Pull of the Hub

In [Wak08], Jun Wako presented an algorithm that could find the set of vNM-stable

matchings for a given n×n instance I (see theorem 2.22). However, the algorithm had

a prohibitively long runtime in the form that it was presented.

Associated to each stable matching instance I, we define a mapping ψI : E(G(I))→

E(G(I)). As we’ll see, the result that every instance has a unique vNM-stable set

(theorem 2.22) is equivalent to the statement that ψI has a unique fixed point. We also

consider how the operation of ψI[S] compares to ψI for restrictions of the form I[S], most

notably in theorem 4.29. Our foremost conclusions show that if I is an n× n instance,

for k ≥ max(n, 2n−3), ψkI maps everything to the unique fixed point of ψI (theorem 4.1

and theorem 4.51); we use it to construct an alternate algorithm that produces the fixed

point of ψI (where I is an n× n instance) in O(n3) time (theorem 4.53).

4.1 Preliminaries on the ψ Operation

Associated to every stable marriage instance I is a function ψI : 2E → 2E , where

E = E(G(I)). For any S ⊆ E(G(I)), we define ψI(S) = ∪M∈MS
M , the union of all

S-stable matchings. (In cases where the instance I is implied, ψI(S) is shortened to

ψ(S).) We are especially interested in the fixed points of ψI - we define a subset of the

edges S ⊆ E to be a hub if ψ(S) = S.

Theorem 4.1. 1. There exists a set ψ∞I and an integer r so that for all s ≥ r,

ψsI(∅) = ψ∞I . (In particular, we note that ψ∞I is a hub.)

2. Let ξ(I) be the minimum r such that ψrI (∅) = ψ∞I . Then, for all S ⊆ E(G(I)),

ψ
ξ(I)
I (S) = ψ∞I .
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3. ψ∞I is the unique hub of I.

In cases where I is implied, ψ∞I is shortened to ψ∞. We define a matching to be hub-

stable over I if it is ψ∞I -stable. In particular, we note that a matching is hub-stable

over I iff it is vNM-stable over I, and so item 1 also follows from theorem 2.22. In this

section, we will present a proof of theorem 4.1 that follows a similar path as the proof for

theorem 2.22 in [Wak08]; however, we discovered the result independently of Wako, and

only found his result after. The strategy that we will use to prove item 1 is to consider

the sequences Q = {∅, ψ2(∅), . . .} and Q′ = {ψ(∅), ψ3(∅), . . .}, then show that these

sequences converge to the same set of edges. By focusing on ψ : 2E(G(I)) → 2E(G(I)),

as opposed to a function that maps sets of matchings over I to sets of matchings over

I, we are then able to use our arguments to show items 2 and 3. (While item 3 also

follows from theorem 2.22, item 2 does not.)

Before we show these results, we note some elementary properties of ψ.

Proposition 4.2. For any instance I, ψ(∅) = E.

Proof. Since the range of ψ is 2E , every possible output of ψ is ⊆ E, including ψ(∅).

For any matching in E, the property of being ∅-stable is vacuous; therefore, for any

edge e ∈ E, the subgraph with edge set {e} is a ∅-stable matching. This shows that

ψ(∅) ⊇ E, and thus ψ(∅) = E.

Proposition 4.3. For any instance I, ψ is weakly order-reversing - i.e. if S1, S2 ⊆ E

and S1 ⊆ S2, then ψ(S1) ⊇ ψ(S2).

Proof. Suppose S1 ⊆ S2 ⊆ E. Every matching that is S2-stable is also S1-stable (since

each such matching is stable with respect to every edge in S2 - which includes every edge

in S1). Take any edge e ∈ ψ(S2); since it appears in a matching which is S2-stable, it

appears in a matching which is S1-stable (the exact same matching), and so e ∈ ψ(S1).

The edge e is arbitrary, so ψ(S1) ⊇ ψ(S2).

Corollary 4.4. For any instance I, ψ2 is weakly order-preserving - i.e. if S1, S2 ⊆ E

and S1 ⊆ S2, then ψ2(S1) ⊆ ψ(S2).
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The above properties are sufficient for us to begin making observations on the se-

quences Q and Q′ described above.

Lemma 4.5. For any instance I, the sequence Q = {∅, ψ2(∅), . . . , ψ2n(∅), . . .} is an

increasing sequence that converges to a set of edges S∅ ⊆ E in a finite number of steps

(i.e. there exists an n′ ∈ N such that Qn = S∅ for all n ≥ n′).

Proof. We will prove that Q is increasing by induction on the elements of Q. For our

base case, Q0 = ∅ is a subset of every element in the range of ψ; since Q1 = ψ(ψ(∅))

is in this range, Q1 ⊆ Q2. By induction via corollary 4.4, we see that Qi ⊆ Qi+1 for

every positive integer i, and so Q is increasing.

However, every element of Q is in 2E , a finite set; since Q is also increasing, it must

converge to an element of 2E in a finite number of steps - i.e. there exists an n′ ∈ N

such that Qi = S∅ for all i ≥ n′.

We define n0 to be the minimum such n′ from lemma 4.5.

Corollary 4.6. For any instance I, the sequence Q′ = {E,ψ2(E), . . . , ψ2n(E), . . . , } is

a decreasing sequence that converges to a set of edges SE ⊆ E in at most n0 steps (i.e.

Qn = SE for all n ≥ n0).

Proof. Since E = ψ(∅), for all n ∈ N, Q′n = ψ2n(E) = ψ2n+1(∅) = ψ(ψ2n(∅)) = ψ(Qn),

so Q′ = ψ(Q). Since ψ is weakly order-reversing and Q is increasing, Q′ is decreasing,

and converges to SE = ψ(S∅) ⊆ E in at most n0 steps.

We will show that S∅ = SE ; this in turn implies that the sequence {∅, ψ(∅), . . . , ψn(∅), . . .}

converges to a hub. To see why this sequence converges to a hub, we need to identify

some important properties about S∅ and SE .

Proposition 4.7. SE = ψ(S∅) and S∅ = ψ(SE).

Proof. As noted in the proof of corollary 4.6, Q′n = ψ(Qn) for all n ∈ N, so SE = ψ(S∅).

Now, set n0 ∈ N such that Qn0 = S∅. As Q is an increasing sequence that converges

to S∅, every subsequent term of Q equals S∅ - including Qn0+1 - and so S∅ = Qn0+1 =

ψ2(Qn0) = ψ(ψ(S∅)). However, ψ(S∅) = SE , so by substitution, S∅ = ψ(SE).
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Proposition 4.8. S∅ ⊆ SE.

Proof. By the definitions of Q and Q′, Q0 = ∅ ⊆ E = Q′0. The function ψ2 is weakly

order-preserving, so (ψ2)n0 = ψ2n0 is weakly order preserving as well, and ψ2n0(∅) ⊆

ψ2n0(E). However, ψ2n0(∅) = Qn0 and ψ2n0(E) = Q′n0
. By the definition of n0,

Qn0 = S∅ and Q′n0
= SE , so by substitution, S∅ ⊆ SE .

As an aside, all of these propositions allow us to show that the elements of {ψ2k(∅) :

k ∈ N} form a chain, with the order ∅ ⊆ ψ2(∅) ⊆ ψ4(∅) ⊆ . . . ⊆ ψ3(∅) ⊆ ψ(∅). 1

Theorem 4.9. Let i, j ∈ N with i ≤ j. Then, ψi(∅) ⊆ ψj(∅) if i is even, and ψj(∅) ⊆

ψi(∅) if i is odd.

Proof. Suppose that i is even, so i
2 ∈ N. If j is also even, then j

2 ∈ N, so ψ2( i
2

)(∅) ⊆

ψ2( j
2

)(∅) by lemma 4.5. Otherwise, ψi(∅) ∈ Q and ψj(∅) ∈ Q′, so ψi(∅) ⊆ S∅ ⊆ SE ⊆

ψj(∅), by lemma 4.5, proposition 4.8, and corollary 4.6 respectively.

Now, suppose that i is odd, so i−1
2 ∈ N. If j is also odd, then j−1

2 ∈ N, so

ψ2( j−1
2

)+1(∅) ⊆ ψ2( i−1
2

)+1(∅) by corollary 4.6. Otherwise, ψi(∅) ∈ Q′ and ψj(∅) ∈

Q, so ψj(∅) ⊆ S∅ ⊆ SE ⊆ ψi(∅), by lemma 4.5, proposition 4.8, and corollary 4.6

respectively.

Given these propositions, we now consider the following lemma:

Lemma 4.10. Let J,K ⊆ E. If J ⊆ K, ψ(J) = K, and ψ(K) = J , then J = K.

([Wak08], Lemma 5.1)

We note that this lemma is equivalent to lemma 2.23. We rediscovered it indepen-

dently of Wako, and include our own phrasing of the proof in Appendix B. Now, since

S∅ and SE satisfy the hypotheses of the lemma, we obtain:

Corollary 4.11. S∅ = SE.

As a result, we see that item 1 of theorem 4.1 holds, and ψ∞I = S∅. The following

theorem and corollary show that items 2 and 3 hold as well.

1We do not immediately use this theorem in this section, but we will use it a number of times in
the following sections, and also find it useful for the purposes of visualizing the chain.
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Theorem 4.12. For any stable marriage instance I and S ⊆ E(G(I)), ψ
ξ(I)
I (S) = ψ∞I .

Proof. By the prior corollary, S∅ is a hub, as ψ(S∅) = SE = S∅. Now, let S be any

set of edges for the instance. Since S ⊆ E, ∅ ⊆ S ⊆ ψ(∅) = E; by the order-reversing

property of ψ, this implies that ψ(∅) ⊇ ψ(S) ⊇ ψ2(∅). By repeating this process a total

of 2n times for any n ∈ N, we see that ψ2n(∅) ⊆ ψ2n(S) ⊆ ψ2n+1(∅) for all n ∈ N.

For any sufficiently large value of n, ψ2n(∅) = S∅ and ψ2n+1(∅) = SE , so the above

relation becomes S∅ ⊆ ψ2n(S) ⊆ SE . However, since S∅ = SE , S∅ ⊆ ψ2n(S) ⊆ S∅,

which can only occur if ψ2n(S) = S∅; S∅ is a hub, so this implies that for all r ≥ 2n,

ψr(S) = ψr−2n(ψ2n(S)) = ψr−2n(S∅) = S∅.

Corollary 4.13. ψ∞I is the unique hub of I.

In this way, we see that the above S∅ is the unique hub ψ∞I . Furthermore, since every

hub-stable matching is ⊆ ψ∞, proposition 3.10 and theorem 3.11 have the following

trivial corollaries.

Proposition 4.14. The collection of hub-stable matchings forms a distributive lattice

Lh, where M1 ≤M2 iff M1 dominates M2, and the operations ∨m and ∧m in theorem 3.1

are the join and meet operations on Lh respectively. Furthermore, the collection of hub-

stable matchings is the collection of stable matchings on I[ψ∞I ], the instance created by

restricting I to ψ∞I .

Theorem 4.15. Over any given instance I, Ls is a cover-preserving sublattice of Lh.

One final conjecture that we may contemplate is that every S such that ψ(S) ⊆ S

contains ψ∞ as a subset. However, this is not the case - if we take any instance I such

that ψ∞ 6= ψ(E), and let e be any edge in ψ∞−ψ(E), then E−{e} ⊇ ψ(E−{e}), but

E − {e} does not contain ψ∞ as a subset.

4.2 Preliminaries on Satisfactory Instances

We recall that an instance I is satisfactory if there exists a perfect stable matching Mc

over I. As noted in [GS85], this is equivalent to every stable matching being perfect.
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As we have previously noted, matchings (including stable matchings and hub-stable

matchings) do not have to be perfect matchings; however, for a given instance I, all

of the stable matchings will cover the same vertices. Note that this is not the case for

the S-stable matchings in general; as an example, when S = ∅ and E(G(I)) 6= ∅, every

matching over I is S-stable, so if e ∈ E(G(I)), then ∅ and {e} are S-stable matchings

that cover different vertices. However, we will show in theorem 4.18 that for particularly

important values of S, the S-stable matchings do all cover the same vertices.

It is straightforward to see that for any complete n × n instance, every e ∈ ψI(S)

appears in a perfect S-stable matching (any non-perfect matching can be made perfect

by arbitrarily matching unpaired vertices, with no vertex becoming less happy). In

this section, we will show that satisfactory instances have the same property when

S = ψkI (∅) for some k ∈ N.

We recall that a restriction I[S] of the instance I to S ⊆ E(G(I)) is the instance

on the same vertex set such that the preference list of every vertex in I[S] is the order-

preserving sublist of its vertex list in I where, for any v1, v2 ∈ V (G(I)), v1 appears on

v2’s preference list iff (v1, v2) ∈ S.

Proposition 4.16. Suppose, over a given instance I, that there exists a perfect hub-

stable matching Mc′. Then, every hub-stable matching over I is perfect.

Proof. Consider the restriction I[ψ∞I ]; by proposition 4.14, since Mc′ is stable over I ′,

I ′ is satisfactory. As a result, every stable matching over I ′ is perfect. However, every

hub-stable matching over I is a stable matching over I ′, so every hub-stable matching

over I is perfect.

Proposition 4.17. Let I be an instance. Then, there exists a perfect hub-stable match-

ing over I iff I is satisfactory.

Proof. Suppose that I is satisfactory, so there exists a perfect stable matching Mc over

I. Then, Mc is also hub-stable over I.

Conversely, suppose that there exists a perfect hub-stable matching over I. By
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proposition 4.16, every hub-stable matching over I is perfect. Since every stable match-

ing is also hub-stable, I is satisfactory by corollary 2.5.

We can identify further properties of satisfactory instances with the following the-

orem. For any k ∈ N, we define a matching to be k-stable over I if it is ψkI (∅)-stable.

(In particular, we note that every matching is 0-stable, and the 1-stable matchings over

I are the stable matchings over I.)

Theorem 4.18. For all k ≥ 1, every k-stable matching covers the same set of vertices.

Proof. For all k ≥ 1, ψk(∅) ⊇ ψ2(∅), by theorem 4.9. ψ2(∅) is the union of all stable

matchings, and so ⊇ M0 for some stable matching. By corollary 3.5, this implies that

every ψk(∅)-stable matching covers the same set of vertices as M0.

Corollary 4.19. Let I be a satisfactory instance. Then, for all k ≥ 1, every k-stable

matching is a perfect matching.

Proof. Consider any stable matching M0. Since I is satisfactory, M0 must be a perfect

matching. In addition, M0 is ψkI (∅)-stable (by virtue of being stable), so every k-stable

matching must cover the same set of vertices as M0 - i.e. every vertex in I.

4.2.1 Instances with Unique Top Choices

[QUESTION: GOOD PLACE? NEED TO BE BETWEEN 4.1 AND 4.5] An

interesting special case of satisfactory instance is one where every vertex has a distinct

top choice. (In such an instance, the man-optimal stable matching has every man paired

with his top choice, and the woman-optimal stable matching has every woman paired

with her top choice.) We will show that, for these instances, the hub is in fact the set

of all edge that appear in a stable matching. The following theorem was implicitly used

in [Wak10] for the construction of the vNM-stable set of matchings (Lemma 6.2).

Theorem 4.20. Let I be an instance such that the man-optimal and woman-optimal

stable matchings are the man-optimal and woman-optimal hub-stable matchings respec-

tively. Then, ψ2
I (∅) is the unique hub of I. (In other words, the hub of I is the union

of all stable matchings over I.)
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Proof. By theorem 4.15, Ls is a cover-preserving sublattice of Lh. There exists a

maximal chain C in Ls; by the fact that Ls is a cover-preserving sublattice of Lh with the

same greatest and least elements, C is a maximal chain in Lh as well. By corollary 2.15,

the edges that appear in a stable matching over I are exactly the edges that appear in

an element of C. Similarly, since I[ψ∞I ] is the instance created by restricting I to ψ∞I ,

the edges that appear in a stable matching over I[ψ∞I ] (i.e. a hub-stable matching over

I) are exactly the edges that appear in an element of C; however, by the definition of

a hub, these are also the edges in ψ∞I , and so ψ∞I = ∪M∈CM = ∪M∈LsM .

Corollary 4.21. Let I be an instance such that the man-optimal stable matching has

every man partnered with his top choice, and the woman-optimal stable matching has

every woman partnered with her top choice. Then, ψ2
I (∅) is the unique hub of I. (In

other words, the hub of I is the union of all stable matchings over I.)

Proof. In such an instance, the man-optimal and woman-optimal stable matchings are

trivially the man-optimal and woman-optimal hub-stable matchings as well (since no

vertex of the relevant gender can find a better partner). By theorem 4.20, we are

done.

4.3 Making Arbitrary Instances Complete

Over the rest of this chapter, we will look at a number of algorithms that act on

stable marriage instances; many of these algorithms require the input instance to be

satisfactory (which implies that for all k ≥ 1, all k-stable matchings are perfect).

However, these results can ultimately all be extended to nonsatisfactory instances.

In this section, we will discuss how, given a arbitrary instance I, we can construct

a complete instance I ′ that preserves the operation of ψ, in the sense that for any

S ⊆ E(G(I ′)), ψI(S ∩ E(G(I))) = ψI′(S) ∩ E(G(I)).

Conside any instance I with Vm(I) = {m1,m2, . . . ,mn1} and Vw(I) = {w1, w2, . . . , wn2}

(where n1 and n2 are not necessarily equal). Each vertex v has a preference list Pv of

vertices of the opposite gender; since this instance is not necessarily complete, Pv need

not contain every vertex of the opposite gender. We define I ′ from I as follows:
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• V (I ′) has its set of men as {m1,m2, . . . ,mn} and its set of women as {w1, w2, . . . , wn},

where n = max(n1, n2).

• For every mi such that i ≤ n1, mi’s preference list P ′mi
consists of Pmi , followed

by every woman not in Pmi in order of increasing index. For every mi such that

i > n1, its preference list is every woman listed in order of increasing index.

• For every wi such that i ≤ n2, wi’s preference list P ′wi
consists of Pwi , followed by

every man not in Pwi in order of increasing index. For every wi such that i > n1,

its preference list is every man listed in order of increasing index.

We refer to I ′ created this way as the completion of I. The key property of the

completion of an instance is as follows.

Proposition 4.22. Let I be any instance, and I ′ be the completion of I. Then, for

any set of edges S ⊆ G(I ′), ψI(S ∩G(I)) = ψI′(S) ∩G(I).

Proof. We show this equality in two parts, that ψI(S ∩ G(I)) ⊇ ψI′(S) ∩ G(I), and

ψI(S ∩G(I)) ⊆ ψI′(S) ∩G(I).

For the former inequality, we may prove this by showing that, for every S-stable

matching M in I ′, M ∩G(I) is (S ∩G(I))-stable in I. For every edge e ∈ S ∩G(I), this

edge is also in S, and so M is e-stable in I ′. This implies that at least one of me and we

is partnered with someone that they prefer to the other. (Let us refer to such a vertex

as ve, and the other vertex as v′e.) Since pM (ve) appears earlier in P ′ve than v′e - which,

by virtue of e being in G(I), must appear in Pve - pM (ve) must appear in Pve , and

specifically earlier than v′e. This implies that in I, ve remains partnered to pM (ve) in

M∩G(I), and continues to rank their partner higher than v′e. Consequentially, M∩G(I)

is e-stable, and since this is true for all e ∈ S ∩G(I), M ∩G(I) is (S ∩G(I))-stable in

I.

For the latter, we can show that any (S ∩ G(I))-stable matching M0 in I can be

extended to an S-stable matching in I ′, thereby implying that ψI(S ∩G(I)) ⊆ ψI′(S);

since ψI(S ∩ G(I)) ⊆ G(I), this proves the desired inequality. Given M0, we perfom

the following algorithm to produce a perfect matching M :
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1. Set i = 0.

2. If Mi is a perfect matching, set M = Mi and return. Otherwise, define Mi+1 =

Mi∪{(ma(i), wb(i))}, where a(i) and b(i) are defined such that ma(i) and wb(i) are,

respectively, the lowest-index man and woman that are unmatched in Mi.

3. Set i = i+ 1 and go to step 2.

Since the iteration in step 2 preserves the property of being a matching and adds a

new edge, this algorithm terminates with a perfect matching in at most n cycles. In

addition, the indices a and b strictly increase as i increases. We now show that M is

S-stable in I ′.

Consider any edge (m,w) ∈ S that is not in M0.

• If (m,w) ∈ G(I), then either pM0(m) 6= m and m prefers her to w, or pM0(w) 6= w

and w prefers him to m. In the former case, m has the same partner in M , and

since (m, pM0(m)) ∈ G(I), m still prefers pM0(m) to w in I ′, so M is (m,w)-stable.

In the latter case, w has the same partner in M , and since (w, pM0(w)) ∈ G(I),

w still prefers pM0(w) to m in I ′, so M is (m,w)- stable.

• If (m,w) /∈ G(I) and pM0(m) 6= m, then m has the same partner in M as in

M0. Since (m, pM0(m)) ∈ G(I) and (m,w) /∈ G(I), we know that w was added to

m’s preference list after any w′ such that (m,w′) ∈ G(I); as a result, m prefers

pM0(m) to w in I ′, and M is (m,w)-stable.

• If (m,w) /∈ G(I) and pM0(w) 6= w, then w has the same partner in M as in M0.

Since (w, pM0(w)) ∈ G(I) and (m,w) /∈ G(I), w prefers pM0(w) to m in I ′, so M

is (m,w)-stable.

• If (m,w) /∈ G(I) and both m and w are unpaired by M0, then m = ma(i1) and

w = wb(i2) for some i1, i2 ∈ N. If i1 < i2, then pM (m) = wa(i1) has a smaller index

than w; since (m,w) /∈ G(I), this means that m prefers pM (m) to w, and M is

(m,w)-stable. Otherwise (since (m,w) /∈ M), i1 > i2, so pM (w) = ma(i2) has a

smaller index than m; since (m,w) /∈ G(I), this means that w prefers pM (w) to

m, and M is (m,w)-stable.
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As a result, M is (m,w)-stable for every (m,w) ∈ S −M ; M is also vacuously (m,w)-

stable for every (m,w) ∈M . Therefore, M is S-stable.

We note two important consequences of proposition 4.22.

Corollary 4.23. Let I be any instance, and I ′ be any completion of I. Then, for all

k ∈ N, ψkI (∅) = ψkI′(∅) ∩G(I).

Proof. We prove this result by induction on k. For our base case, when k = 0, ψ0
I (∅) =

∅ = ∅ ∩G(I) = ψI′(∅) ∩G(I).

Now, for our inductive step, assume, for some arbitrary k ∈ N, that ψkI (∅) =

ψkI′(∅) ∩G(I); we look to show that ψk+1
I (∅) = ψk+1

I′ (∅) ∩G(I). Let S ≡ ψkI′(∅); by our

inductive assumption, ψkI (∅) = S ∩ G(I). As a result, ψk+1
I (∅) = ψI(ψ

k
I (∅)) = ψI(S ∩

G(I)) = ψI′(S) ∩G(I) by proposition 4.22. However, ψI′(S) = ψI′(ψ
k
I′(∅)) = ψk+1

I′ (∅),

so ψk+1
I (∅) = ψk+1

I′ (∅) ∩G(I).

By induction, ψkI (∅) = ψkI′(∅) ∩G(I) for all k ∈ N.

Corollary 4.24. Let I be any instance, and I ′ be any completion of I. Then, ψ∞I =

ψ∞I′ ∩G(I).

Proof. Let S ≡ ψ∞I′ . By proposition 4.22, ψI(S ∩ G(I)) = ψI′(S) ∩ G(I). Since S is a

hub of I ′, ψI′(S) = S, so ψI(S ∩ G(I)) = S ∩ G(I), and S capG(I) is a hub of I. By

theorem 4.12, this means that ψ∞I = S ∩G(I) = ψ∞I′ ∩G(I).

4.4 The Behavior of ψ on Restrictions

In this section, we investigate the relationship of the operators ψI and ψI′ , where I ′ is

a restriction on I. As we recall, a restriction I[S] on I is an instance on the same set

of men and women such that G(I[S]) = S ⊆ G(I) and, for all v, v1, v2 ∈ V (G(I)) such

that (v, v1), (v, v2) ∈ G(I ′), v’s preference ordering of v1 and v2 is the same in I and

I[S].

Proposition 4.25. Let I be any instance, and I ′ be any restriction of I. Then, for all

S ⊆ G(I ′), ψI′(S) ⊆ ψI(S).
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Proof. By its definition, ψI′(S) is the union of every S-stable matching M over I ′. For

every such M , M is also a matching over I, and is S-stable there as well; consequentially,

the set of S-stable matchings over I contains every such M , and so ψI(S) ⊇ ψI′(S).

Note that ψI′(S) is not necessarily equal to ψI(S) under such conditions - for ex-

ample, if I is any instance, I ′ is any restriction of I with G(I ′) 6= G(I), and S = ∅. In

this way, we see how properties of ψI′ are modified in ψI . Furthermore, we note that

the domain of ψI′ is a subset of the domain of ψI - namely, if S contains any edge in

G(I)−G(I ′), then ψI(S) is defined, but ψI′(S) is not. For an instance I ′ and a set of

edges S, we may consider ψI′(S) ≡ ψI′(S ∩G(I ′)).

Proposition 4.26. Let I be any instance, and I ′ be any restriction of I. Then, for all

S ⊆ G(I) such that ψI(S) ⊆ G(I ′), ψI′(S) ⊇ ψI(S).

Proof. By its definition, ψI(S) is the union of every S-stable matching M over I. For

every such M , M is also a matching over I ′ (since M ⊆ ψI(S) ⊆ G(I ′)), and is S-stable

there as well; consequentially, the set of S-stable matchings over I ′ contains every such

M , and so ψI(S) ⊆ ψI′(S).

The two above propositions give us the following result:

Theorem 4.27. Let I be any instance, and I ′ be any restriction of I. Then, for all

S ⊆ G(I ′) such that ψI(S) ⊆ G(I ′), ψI′(S) = ψI(S).

Corollary 4.28. Let I be any instance, and I ′ be any restriction of I such that ψ∞I ⊆

G(I ′). Then, ψ∞I′ = ψ∞I .

Proof. Let S = ψ∞I . Since S ⊆ G(I ′), and ψI(S) = S ⊆ G(I ′), ψI′(S) = ψI(S) = S by

theorem 4.27. However, by the definition of the hub, this implies that S is a hub of I ′

- and by theorem 4.1, is the unique hub of I ′.

We may hope that this preservation of the operation of ψ on restrictions holds

for general S; however, as seen below, it is possible to find I, I ′, and S such that

ψI(S) and ψI′(S) differ dramatically. The reason why, from an intuitive perspective,

is because the most ”appealing” edges in G(I), which have a very large impact on
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what matchings aren’t stable, are not present in G(I ′). However, truncations, which

we recall are restrictions created by iteratively removing a vertex from the bottom of

another vertex’s preference list, specifically avoid removing these ”appealing” edges,

and so we can conclude much stronger results on how ψI(S) influences ψI′(S) when I ′

is a truncation of I.

For the remainder of this section, we will focus on truncations of the form I(M1,M2),

where M1 and M2 are matchings. We refer to such truncations as subinstances. In

the following theorem, we note that, for any S ⊆ E(G(I)), when the men truncate their

preference lists to a matching that is ⊆ S and S-stable, the behavior of S under the ψ

operation is preserved on the new subinstance.

Theorem 4.29. Let M be any matching over an instance I, and I ′ = I(∅,M). Then,

for any S ⊆ G(I) such that M ⊆ S is S-stable and ψI(S)-stable, ψI′(S ∩ G(I ′)) =

ψI(S) ∩G(I ′).

Proof. We prove this result by showing, for any edge e ∈ G(I ′), if e appears in one of
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ψI(S) ∩G(I ′) and ψI′(S ∩G(I ′)), then it appears in the other.

Suppose that e ∈ ψI′(S ∩G(I ′)). To show that e ∈ ψI(S), let M ′ be an S ∩G(I ′)-

stable matching over I ′ that contains e; we will claim that M ′ is also ψI(S)-stable. To

do this, we first note that M ′ is also a (S∩G(I ′))-stable matching over I (as the relative

preference orderings through edges in M ′ and S ∩ G(I ′) is preserved). Furthermore,

if m ∈ Vm(I), then m weakly prefers pM ′(m) to pM (m), and prefers pM (m) to any

woman w such that (m,w) /∈ G(I ′) (by the definition of I ′). Consequentially, M ′ is

also (G(I) − G(I ′))-stable; as a result, M ′ is {eS}-stable for every eS ∈ S, and so is

S-stable over I. Since e ∈M ′, e ∈ ψI(S), so e ∈ ψI(S) ∩G(I ′).

Now, suppose that e ∈ ψI(S) ∩ G(I ′); then, there exists an S-stable matching

M∗ over I that contains e. Since M ⊆ S, M∗ is also M -stable; in addition, since

M∗ ⊆ ψI(S), M is M∗-stable. As a result, M and M∗ are costable, and so their meet

M ′ ≡M ∨M∗ is a matching by ??. We note the following properties of M ′:

• M ′ consists only of edges (m,w) where m weakly prefers w to pM (m), implying

M ′ ⊆ G(I ′). As a result, we see that M ′ also exists as a matching over I ′.

• If e = (me, we), then me weakly prefers pM∗(me) = we to pM (me) (as e ∈ G(I ′)),

so e ∈M ′.

• Since M and M∗ are both S-stable, M ′ is as well, and so is (S ∩ G(I ′))-stable.

This property is preserved over I ′.

As a result, M ′ is an (S∩G(I ′))-stable matching over I ′ that contains e, thereby proving

that e ∈ ψI′(S ∩G(I ′)).

We note that this preservation of the behavior of S under ψ also occurs when the

women truncated their preference lists to such a matching, or when the men truncate

their preference lists to one matching and the women to another.

Corollary 4.30. Let M be any matching over an instance I, and I ′ = I(M,∅) be the

instance created by restricting I to edges (m,w) such that w weakly prefers m to pM (w).

Then, for any S ⊆ G(I) such that M ⊆ S is S-stable and ψI(S)-stable, ψI′(S∩G(I ′)) =

ψI(S) ∩G(I ′).
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Corollary 4.31. Let M1 �M2 be any two costable matchings over an instance I, and

I ′ = I(M1,M2). Then, for any S ⊆ G(I) such that M1 and M2 are both subsets of S,

S-stable and ψI(S)-stable, ψI′(S ∩G(I ′)) = ψI(S) ∩G(I ′).

Proof. By theorem 4.29, the instance I ′′ = I(∅,M2) preserves the operation of ψ on S -

i.e. ψI′′(S ∩ G(I ′′)) = ψI(S) ∩ G(I ′′). In I ′′, M1 remains both a subset of S ∩ G(I ′′)

and S ∩G(I ′′)-stable over I ′′, and since ψI′′(S ∩G(I ′′) = ψI(S) ∩G(I ′′) ⊆ ψI(S), it is

ψI′′(S ∩ G(I ′′))-stable as well. Since I ′ = I ′′(M1,∅), by corollary 4.30, ψI′(S ∩ G(I ′)) =

ψI(S) ∩G(I ′).

There are two particular consequences of note for this theorem - each consequence

is respectively presented here in the form of a theorem and two corollaries.

Theorem 4.32. Let M be any stable matching over an instance I, and I ′ = I(∅,M).

Then, for any k ∈ N, ψkI′(∅) = ψkI (∅) ∩G(I ′).

Proof. We prove this result by induction on k. For our base case, when k = 1, ψI′(∅) =

G(I ′), while ψI(∅) ∩G(I ′) = G(I) ∩G(I ′) = G(I ′).

For our inductive step, assume the statement is true for k = k0 for some k0 ∈ N; we

will prove that it is true for k = k0 + 1. Let S ≡ ψk0I (∅); by our inductive assumption,

ψk0I′ (∅) = S ∩ G(I ′). As a result, ψk0+1
I′ (∅) = ψI′(ψ

k0
I′ (∅)) = ψI′(S ∩ G(I ′)); similarly,

ψk0+1
I (∅)∩G(I ′) = ψI(ψ

k0
I (∅))∩G(I ′) = ψI(S)∩G(I ′). Furthermore, since M ⊆ ψ2

I (∅) ⊆

ψk0I (∅) (given that k0 ≥ 1), M ⊆ S; it is also trivial to see that, since M is stable, it is

also S-stable and ψ(S)-stable. By theorem 4.29, ψI′(S ∩G(I ′)) = ψI(S) ∩G(I ′), so by

substitution, ψk0+1
I′ (∅) = ψk0+1

I (∅) ∩G(I ′).

By induction, we see that ψkI′(∅) = ψkI (∅) ∩G(I ′) for all k ∈ N.

Corollary 4.33. Let M be any stable matching over an instance I, and I ′ = I(M,∅).

Then, for any k ∈ N, ψkI′(∅) = ψkI (∅) ∩G(I ′).

Corollary 4.34. Let M1,M2 be two stable matchings over an instance I such that M1

dominates M2, and I ′ = I(M1,M2). Then, for any k ∈ N, ψkI′(∅) = ψkI (∅) ∩G(I ′).
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Proof. Let I ′′ = I(∅,M2), so ψkI′′(∅) = ψkI (∅) ∩ G(I ′′) by theorem 4.32. We note that

I ′ = I ′′(M1,∅), so by corollary 4.33, ψkI′(∅) = ψkI′′(∅) ∩ G(I ′) = ψkI (∅) ∩ G(I ′′) ∩ G(I ′) =

ψkI (∅) ∩G(I ′).

Theorem 4.35. Let M be any hub-stable matching over an instance I, and I ′ = I(∅,M).

Then, ψ∞I′ = ψ∞I ∩G(I ′).

Proof. Let S = ψ∞I Since M is hub-stable, it is both a subset of S and S-stable; in

addition, ψ(S) = S, so M is also ψ(S)-stable. By theorem 4.29, ψI′(S ∩ G(I ′)) =

ψI(S) ∩ G(I ′) = S ∩ G(I ′). Therefore, S ∩ G(I ′) is the unique hub over I ′, and so

ψ∞I′ = S ∩G(I ′) = ψ∞I ∩G(I ′).

Corollary 4.36. Let M be any hub-stable matching over an instance I, and I ′ = I(M,∅).

Then, ψ∞I′ (∅) = ψ∞I (∅) ∩G(I ′).

Corollary 4.37. Let M1,M2 be two stable matchings over an instance I such that M1

dominates M2, and I ′ = I(M1,M2). Then, ψ∞I′ (∅) = ψ∞I (∅) ∩G(I ′).

Proof. Let I ′′ = I(∅,M2), so ψ∞I′′(∅) = ψ∞I (∅) ∩ G(I ′′) by theorem 4.35. We note that

I ′ = I ′′(M1,∅), so by corollary 4.36, ψ∞I′ (∅) = ψ∞I′′(∅) ∩G(I ′) = ψ∞I (∅) ∩G(I ′′) ∩G(I ′) =

ψ∞I (∅) ∩G(I ′).

4.5 Computing Important ψ(S)

We consider the computational problem: Given an n× n instance I and S ⊆ E(G(I)),

find ψ(S). The definition of ψ(S) as the union of all S-stable matchings gives a natural

algorithm: generate all S-stable matchings and find their union. This naive algorithm

has a worst-case running time that is exponential in n, since the number of S-stable

matchings can be exponential in n. We do not know a polynomial time algorithm for

computing ψ(S) for general S. In this section, we provide polynomial time algorithms

that compute ψ(S) when S meets certain natural conditions.

For the rest of this paper, whenever we say that an algorithm pertaining to an n1×n2

instance runs in polynomial time, we mean that it runs in time that is polynomial in

terms of n ≡ max(n1, n2).
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One such case is outlined by proposition 4.2 - namely, if S = ∅, then ψ(S) = G(I).

Another specific value of S for which ψ(S) is easily computable is S = G(I) - in this

case, the lattice of stable matching can be constructed in O(n2) time, as noted in

corollary 2.20, and the edges that appear in ψ(S) are precisely those that appear in

some rotation over I. This strategy can be extended to generate ψ(S) whenever S is

stable cloased. (Recall that S is stable-closed when every S-stable matching over I is

⊆ S - it is trivial to see that this is equivalent to saying that ψI(S) ⊆ S.

Theorem 4.38. If S ⊆ E(G(I)) is stable-closed over I, then we may construct ψ(S)

in O(n2) time.

Proof. By theorem 3.9, the set of S-stable matchings over I is precisely the set of stable

matchings over I[S]. Over this restricted n1×n2 instance, we may apply corollary 2.20

to find ψ(S) in O(n2) time.

Since we have an algorithm for computing ψ(S) when S ⊇ ψ(S), we may consider

whether a similar algorithm exists when S ⊆ ψ(S). While we don’t know such an

algorithm, we do have an algorithm that works if S satisfies a somewhat more restrictive

condition.

Theorem 4.39. Let S ⊆ E(G(I)) be a stable-closed set such that ψ2(S) ⊆ S. Then,

we may construct ψ2(S) in O(n2) time.

We prove this via the following:

Lemma 4.40. Let I be a satisfactory instance. Then, given ψ2
I (∅), we may construct

ψ3
I (∅) in O(n2) time.

We will hold off on proving this lemma; however, we may immediately note this

consequence.

Corollary 4.41. Let I be any instance. Then, given ψ2
I (∅), we may construct ψ3

I (∅) in

O(n2) time.
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Proof. Let I∗ be the completion of I. By theorem 2.6, I∗ is satisfactory, and so we

can construct ψ3
I∗(∅) in O(n2) time. Furthermore, by corollary 4.23, ψ3

I (∅) = ψ3
I∗(∅) ∩

E(G(I)), and so we can easily construct ψ3
I (∅) in O(n2) time.

We now prove theorem 4.39.

Proof. Let I ′ ≡ I[S]. Since ψ(S), ψ2(S) ⊆ G(I ′), we see by theorem 4.27 that ψI′(S) =

ψI(S); S = G(I ′) = ψI′(∅), so ψI′(S) = ψ2
I′(∅). Using corollary 4.41, we can construct

ψ2
I′(S) = ψ3

I′(∅) in O(n5) time. However, since S, ψI(S) ⊆ G(I ′) by the inital conditions

on S, ψ2
I (S) = ψ2

I′(S), so we have constructed ψ2
I (S).

Together, theorem 4.38 and theorem 4.39 give us a mechanism to construct the

sequence:

{∅, ψ(∅), ψ2(∅), . . . , ψk(∅)}

in O(kn2) time for any instance I. The first two elements are constructed trivially - ∅

is explicitly given, whereas ψ(∅) = G(I). The subsequent elements can be determined

by an inductive argument.

Theorem 4.42. For any non-negative i ∈ N, given ψiI(∅) (and ψi−1
I (∅), if i > 0), we

may construct ψi+1
I (∅) in O(n2) time.

Proof. Let S ≡ ψiI(∅). If i is odd, then by theorem 4.9, ψi+1
I (∅) ⊆ ψiI(∅); we can

therefore use theorem 4.38 to construct ψi+1
I (∅) in O(n2) time. On the other hand, if i

is odd, then ψiI(∅) ⊆ ψ
i+1
I (∅) ⊆ ψi−1

I (∅) by theorem 4.9; by applying theorem 4.39 with

T = ψi−1
I (∅), we may construct ψi+1

I (∅) in O(n2) time.

By induction, we see that the entire sequence is generated in O(kn2) time.

4.5.1 Proof of lemma 4.40

In this section, we provide a proof for lemma 4.40. Recall that, for k ∈ N, a matching

is k-stable if it is ψkI (∅)-stable.
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Since ψ2(∅) ⊆ ψ3(∅) by theorem 4.9, in order to find ψ3(∅), we only need to de-

termine, for every e ∈ G(I) − ψ2(∅), if e ∈ ψ3(∅). To that end, consider the man-

optimal and woman -optimal stable matchings, M0 and M1 respectively. Let M be

any 2-stable matching. Since M0 and M1 are stable, they are also M -stable; similarly,

M0,M1 ⊆ ψ2(∅), so M is M0-stable and M1-stable. As a result, M is costable with M0

and M1, so by theorem 3.1, any combination of joins and meets of these elements will

result in a ψ2(∅)-stable matching (since M0 and M1 are trivially ψ2(∅)-stable).

Now, consider any edge e ∈ G(I)−ψ2(∅). By corollary 3.5, every 2-stable matching

covers the same vertices as any stable matching; therefore, any edge that covers a

vertex that M0 does not cover cannot be in a 2-stable matching, and so isn’t in ψ3(∅).

In addition, if, for any i ∈ [0, 1], me prefers we to pMi(me) and we prefers me to pMi(we),

then any matching that contains e cannot be costable with Mi by proposition 3.6; as

a result, any such matching cannot be 2-stable, and so e /∈ ψ3(∅). Similarly, if, for any

i ∈ [0, 1], me prefers pMi(me) to we and we prefers pMi(we) to me, then any matching

that contains e cannot be costable with Mi by proposition 3.6; as a result, any such

matching cannot be 2-stable, and so e /∈ ψ3(∅). As a result, every edge e ∈ ψ3(∅) must

fit in one of the following categories:

1. me prefers pM0(me) to we to pM1(me), and we prefers pM1(we) to me to pM0(we).

2. me prefers we to pM0(me), and we prefers pM0(we) to me.

3. me prefers pM1(me) to we, and we prefers me to pM1(we).

Let E be the set of all edges that fulfill the second set of conditions, and E∗ be the

set of all edges that fulfill the third set of conditions. For each type of edge, we look at

the set of all edges in G(I) of that type, and consider which appear in ψ3
I (∅).

Lemma 4.43. Let e ∈ ψ3
I (∅) such that me prefers pM0(me) to we to pM1(me), and we

prefers pM1(we) to me to pM0(we). Then, e ∈ ψ2
I (∅).

Proof. Every such e appears in the subinstance I3 ≡ I(M0,M1). In this subinstance, we

observe that M0 is a stable matching where each man is paired with his top partner,

and M1 is a stable matching where each woman is paired with her top partner; by
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corollary 4.21, ψ2
I3

(∅) is the hub of I3, and so ψ3
I3

(∅) = ψ2
I3

(∅). Since M0 and M1

are stable over I, this implies that ψ3
I (∅) ∩ G(I3) = ψ2

I (∅) ∩ G(I3) by corollary 4.34.

Consequentially, every such e ∈ ψ3
I (∅) also appear in ψ2

I (∅).

Lemma 4.44. ψ3
I (∅) ∩ E is the union of all perfect matchings over E.

Proof. We note that E = E(G(I(∅,M0))); set I ′ ≡ I(∅,M0). By theorem 4.32, ψ3
I′(∅) =

E ∩ ψ3
I (∅), so any edge e ∈ E is in ψ3

I (∅) iff it is in ψ3
I′(∅).

Since ψ2
I′(∅) = E ∩ ψ2

I (∅) = M0, any 2-stable matching over I ′ must be perfect by

corollary 3.5. Conversely, for any edge e ∈ ψ2
I′(∅) = M0, me prefers his partner in such

a perfect matching to we, his partner in M0 (by the definition of E); consequentially,

every perfect matching over E is 2-stable over I ′. Thus, ψ3
I′(∅) = E∩ψ3

I (∅) is the union

of all perfect matchings in E. We also know that E contains the perfect matching M0

over the vertices of that are matched in any 2-stable matching over I.

Corollary 4.45. ψ3
I (∅) ∩ E∗ is the union of all perfect matchings over E∗.

Applying the above three results to the classification of the three types of edges in

ψ3
I (∅) shows us the following.

Theorem 4.46. ψ3
I (∅) = ψ2

I (∅)∪P ∪P ∗, where P and P ∗ are the unions of all perfect

matchings over E and E∗ respectively.

Consequentially, in order to construct ψ3
I (∅), we need only to find ψ2

I (∅), P , and P ∗.

ψ2
I (∅) can be constructed in O(n2) time, so we are only left with the task of constructing

P and P ∗. However, each of P and P ∗ is the union of all perfect matchings over a

specific subgraph of G(I); this allows us to apply the following result, discovered by

Tamir Tassa.

Theorem 4.47. Let G be any bipartite graph with n vertices and k edges, such that

there exists a perfect matching over G. Then, there exists an algorithm that inputs

G, and outputs the union of all perfect matchings over G in O(n + k) time. ([Tas12],

Algorithm 2)
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We may now prove lemma 4.40 by showing that each of ψ2
I (∅), P , and P ∗ can be

constructed in O(n2) time.

Proof. By corollary 2.20, we can construct ψ2
I (∅) in O(n2) time. We note that since I

is satisfactory, the man-optimal stable matching M0 is a perfect matching over E. We

also note that, since I is an n×n instance, |V (E)| ≤ 2n and |E| ≤ n2. Consequentially,

we see that we can find P in O(2 ∗ n + n2) = O(n2) time. Similarly, we can find P ∗

in O(n2) time (the woman-optimal stable matching M1 is also found in the process of

finding ψ2
I (∅), and is a perfect matching over E∗). As a result, by theorem 4.46, we can

find ψ3
I (∅) in O(n2) +O(n2) +O(n2) = O(n2) time.

4.6 Analysis of the Convergence Rate of ψ

We recall that the evolution of the sequence {∅, ψ(∅), ψ2(∅), . . .} corresponds to the al-

gorithm for finding the vNM-stable matchings for a given instance described in [Wak08].

However, it was previously unknown how many iterations are needed for the sequence

to converge. For a given n×n instance I, we recall that ξ(I) is the minimum r ∈ N such

that ψsI(∅) = ψ∞I for all s ≥ r. (As a consequence of theorem 4.12, ψrI (S) = ψ∞I for all

S ⊆ G(I) and r ≥ ξ(I).) For all n ∈ N, we may also define Ξ(n) to be the maximum

value of ξ(I) over all n×n instances I; the similar Ξ∗(n) is the maximum value of ξ(I)

over all satisfactory n×n instances I. In this section, we determine the values of Ξ∗(n)

and Ξ(n) for all n ∈ N (see theorem 4.50 and theorem 4.51 respectively).

When n = 1 or 2, the number of possible instances is very small, and so it can

easily be confirmed by hand that Ξ(n) = Ξ∗(n) = n for such values of n. However, for

larger values of n, the number of instances becomes far larger than can be listed out

by hand. Our previous arguments allow us to make some observations on ξ(I) for a

general instance I.

Proposition 4.48. For an instance I such that |E(G(I))| = k and every stable match-

ing has q edges, ξ(I) ≤ k − q + 1.

Proof. By theorem 4.9, ψ2
I (∅) ( ψ4

I (∅) ( . . . ( ψ
ξ(I)
I (∅) ( . . . ( ψ3

I (∅) ( ψI(∅), so each
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element in the sequence has a different number of edges in it. However, each of the

ξ(I) + 1 elements has at least 0 edges and at most k, so the number of distinct sets of

edges in the sequence can be at most k+1 by the pigeonhole principle. Consequentially,

ξ(I) ≤ k.

Corollary 4.49. For an n× n instance I, ξ(I) ≤ n2 − n+ 1 (i.e. Ξ(n) ≤ n2 − n+ 1).

That said, the above bound is far from tight. In this section, we find an exact value

of Ξ(n), thereby finding a tight upper bound on ξ(I) for an n× n instance.

Theorem 4.50. For all n ≥ 3, Ξ∗(n) = 2n− 3.

Theorem 4.51. For all n ≥ 3, Ξ(n) = 2n− 3.

The proof of theorem 4.50 will be postponed to Subsections 4.6.1 and 4.6.2, where we

prove lemma 4.54 and lemma 4.56 respeectively. For the remainder of this section, we

will show how to deduce theorem 4.51 from theorem 4.50. We begin with the following

lemma:

Lemma 4.52. Let I ′ be a completion of I. Then, ξ(I) ≤ ξ(I ′).

Proof. Let k be the least element of N such that ψkI′(∅) = ψ∞I′ ; by the definition of ξ,

ξ(I ′). By corollary 4.24, this means that ψ∞I = ψ∞I′ ∩G(I) = ψkI′(∅)∩G(I); however, by

corollary 4.23, ψkI′(∅) ∩G(I) = ψkI (∅). Therefore, ψkI (∅) = ψ∞I , so ξ(I) ≤ k = ξ(I ′).

We now can prove theorem 4.51.

Proof. Since 2n − 3 = Ξ∗(n) by theorem 4.50, this statement can be considered in

two parts - namely, Ξ(n) ≥ Ξ∗(n), and Ξ(n) ≤ Ξ∗(n). To show that Ξ(n) ≥ Ξ∗(n),

we note that Ξ(n) is the maximum of ξ(I) over all n × n instances I, whereas Ξ∗(n)

is the maximum of ξ(I) over only the satisfactory n × n instances; consequentially,

Ξ(n) ≥ Ξ∗(n).

To show that Ξ(n) ≤ Ξ∗(n), we consider any n×n instance I. By lemma 4.52, there

exists a complete n × n instance I ′ such that ξ(I) ≤ ξ(I ′). Since I ′ is complete - and

thereby satisfactory - ξ(I ′) ≤ Ξ∗(n). Ξ(n) is the maximum of ξ(I) over all such I, so

Ξ(n) ≤ Ξ∗(n).
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Recall from Section 2.4 that [Wak10] gave an algorithm that, given an n×n instance

I, finds the hub ψ∞I in O(n3). theorem 4.51 allows us to give an alternative algorithm

for this:

Theorem 4.53. Given an n × n instance I, we may find (∅, ψ(∅), ψ2(∅), . . . , ψ∞) in

O(n3) time.

Proof. The first two terms of the sequence are trivially ∅ and E(G(I)). By theorem 4.42,

for k ≥ 2, we can use ψk−2(∅) and ψk−1(∅) to construct ψk(∅) in O(n2) time; therefore,

the sequence (∅, ψ(∅), ψ2(∅), . . . , ψ2n−3(∅)) can be constructed in (2n − 3) ∗ O(n2) =

O(n3) time. By theorem 4.51, the final term in the sequence is ψ∞I .

4.6.1 Finding a Lower Bound for Ξ∗

Since Ξ∗(n) is the maximum of ξ(I) over all satisfactory n×n instances I, we can show

that Ξ∗(n) ≥ 2n − 3 by finding a family of satisfactory instances {In : n ∈ {3, 4, . . .}}

such that for each n ∈ N, In is an n× n satisfactory instance with ξ(In) = 2n− 3.

Lemma 4.54. There exists a family of satisfactory instances {In : n ∈ {3, 4, . . .}} such

that for each n ∈ N, In is an n× n instance with ξ(In) = 2n− 3.

Proof. We define each In as follows:

• The set of men is {m1,m2, . . . ,mn} and the set of women is {w1, w2, . . . , wn}.

• The preference list of m1 is [w1].

• For all i ∈ {2, 3}, the preference list of mi is [wi, wi−1, wi+1].

• For all i ∈ {4, 5, . . . , n− 1}, the preference list of mi is [wi, wi−1, w2, wi+1].

• The preference list of mn is [wn, wn−1, w2].

• The preference list of w1 is [m2,m1].

• The preference list of w2 is [mn,mn−1, . . . ,m2].

• For all i ∈ {3, 4, . . . , n− 1}, the preference list of wi is [mi+1,mi−1,mi].
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• The preference list of wn is [mn−1,mn].

Trivially, ψIn(∅) = G(In); by using the Gale-Shapley algorithm in [GS62], we see

that the man-optimal and woman optimal stable matchings over In are both {(mi, wi) :

i ∈ [n]}, so this is the only stable matching over In and ψ2
In

(∅) = {(mi, wi) : i ∈ [n]}.

We can further find via induction the structure of ψkIn(∅) for all k ≥ 1. For k ≥ 2, we

define Ek, E
′
k ⊆ E(G(In)) as follows:

Ek = {(mi, wi) : i ∈ [n]} ∪ {(mi, w2) : i ∈ {3, . . . , k}} ∪ {(mi−1, wi) : i ∈ {3, . . . , k}};

E′k = En ∪ {(mi, wi−1) : i ∈ {k, . . . , n}}.

Lemma 4.55. For all k ∈ {2, . . . , n}, ψ2k−3
In

(∅) = E′k and ψ2k−2
In

(∅) = Ek. Furthermore,

the man-optimal (2k−3)-stable matching is {(mi, wi) : i ∈ [n]}, and the woman-optimal

(2k − 3)-stable matching is:

{(m1, w1), (m2, w3), . . . , (mk−1, wk), (mk, w2), (mk+1, wk+1), . . . , (mn, wn)}.

Proof. We prove this result by induction on k. For the base case, when k = 2, we

note that ψIn(∅) = E(G(In)) = E′2 trivially. In addition, by applying the Gale-Shapley

algorithm to In, we see that the man-optimal and woman-optimal 1-stable matching is

{(mi, wi) : i ∈ [n]}. As a consequence, this is the only 1-stable matching over In, and

so ψ2
In

(∅) = {(mi, wi) : i ∈ [n]} = E2.

Now, for the inductive step, assume that for some k ∈ {2, . . . , n−1}, ψ2k−2
In

(∅) = Ek,

the man-optimal (2k−3)-stable matching is {(mi, wi) : i ∈ [n]}, and the woman-optimal

(2k − 3)-stable matching M1 is:

{(m1, w1), (m2, w3), . . . , (mk−1, wk), (mk, w2), (mk+1, wk+1), . . . , (mn, wn)}.

In particular, we note that by theorem 4.9, ψ2k−3
In

(∅) ⊇ ψ2k−1
In

(∅) ⊇ ψ2k−2
In

(∅), so by

the proofs of theorem 4.38 and theorem 4.39, we see that if I ′ = I[ψ2k−3(∅)], then

ψ2k−2
In

(∅) = ψ2
I′(∅) and ψ2k−1

In
(∅) = ψ3

I′(∅). By applying theorem 4.46 to I ′, we see that

ψ2k−1(∅) = ψ2k−2(∅) ∪ P ∪ P ∗, where P is the union of all perfect matchings over E

(the edges (mi, wj) where mi prefers pM1(mi) to wj and wj prefers mi to pM1(wj)), and

P ∗ is the union of all perfect matchings over E∗ (the edges (mi, wj) where mi prefers
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wj to wi and wj prefers mj to mi). We note that P ∗ = E∗ = {(m1, w1), . . . , (mn, wn)}

trivially. In addition, it is straightforward to see that E = {(m1, w1)} ∪ {(mi, w2) :

i ∈ {k, . . . , n}} ∪ {(mi−1, wi) : i ∈ {3, . . . , n}} ∪ {(mi, wi−1) : i ∈ {k + 1, . . . , n}},

with the additional edge (m2, w1) if k = 2; as a result, P = {(m1, w1)} ∪ {(mi, w2) :

i ∈ {k, . . . , n}} ∪ {(mi−1, wi) : i ∈ {3, . . . , n}} ∪ {(mi, wi−1) : i ∈ {k + 1, . . . , n}}.

(Any perfect matching over E must have m1 partnered with w1, since w1 is m1’s only

available partner.) Therefore, ψ2(k+1)−3(∅) = ψ2k−2(∅) ∪ P ∪ P ∗ = Ek ∪ {(mi, w2) : i ∈

{k+ 1, . . . , n}}∪{(mi−1, wi) : i ∈ {k+ 1, . . . , n}}∪{(mi, wi−1) : i ∈ {k+ 1, . . . , n}} (by

the inductive assumption) = E′k+1.

By theorem 4.38, ψ2k
In

(∅) = ψ2
In[E′k+1](∅). We may then apply the algorithm for find-

ing the set of stable matchings over an instance from [GS85] in order to see that the man-

optimal 2k− 3-stable matching is {(mi, wi) : i ∈ [n]}, the woman-optimal 2k− 3-stable

matching is {(m1, w1), (m2, w3), . . . , (mk−1, wk), (mk, w2), (mk+1, wk+1), . . . , (mn, wn)},

and ψ
2(k+1)−2
In

(∅) = ψ2k
In

(∅) = Ek+1. By induction, we are done.

As seen by the above lemma, ψ2n−4
In

(∅) 6= ψ2n−3
In

(∅) = ψ2n−2
In

(∅). By theorem 4.1

ψIn(S) = S iff S = ψ∞In , so ξ(In) = 2n− 3 by the definition of ξ.

4.6.2 The Upper Bound of Ξ∗

Since we have shown in the previous section that Ξ∗(n) ≥ 2n− 3 for all n ≥ 3, to prove

theorem 4.50, we only need to show that the following lemma is true:

Lemma 4.56. For all n ≥ 3, Ξ∗(n) ≤ 2n− 3.

We will ultimately prove lemma 4.56 by induction on n, so we initially consider the

base case for such an induction argument.

Lemma 4.57. Ξ∗(3) = 3.

Proof. We use a Maple program to compute ξ(I ′) for every complete 3× 3 instance I ′,

and confirm that the maximum value of ξ(I ′) for such instances is 3. However, every

satisfactory 3 × 3 instance I can be extended to a completion I ′ with ξ(I ′) ≥ ξ(I) by
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lemma 4.52; as a result of this and theorem 2.6, we see that Ξ∗(3) is the maximum of

ξ(I)′ over all complete 3× 3 instances - i.e. 3.

We now consider some lemmas that we can use to construct an inductive argument.

For such purposes, we note the following results.

Proposition 4.58. Let I be any instance, and I ′ = I[ψ3
I (∅)]. Then, for all positive

k ∈ N, ψkI′(∅) = ψk+2
I (∅).

Proof. We prove this by induction on k. For our base case, when k = 1, ψI′(∅) =

G(I ′) = ψ3
I (∅).

Now, for any k0 ∈ N, assume that ψk0I′ (∅) = ψk0+2
I (∅); we aim to show that

ψk0+1
I′ (∅) = ψk0+3

I (∅). Since k0 ≥ 1, ψk0+3
I (∅) ⊆ ψ3

I (∅) = G(I ′). Meanwhile, ψk0+1
I′ (∅) ⊆

G(I ′) ⊆ G(I), so we only need to show that any given edge in G(I ′) is in ψk0+1
I′ (∅) iff

it is in ψk0+3
I (∅).

Let e ∈ G(I ′). If e ∈ ψk0+1
I′ (∅), there exists a ψk0I′ (∅)-stable matching M over I ′.

This matching remains ψk0I′ (∅)-stable over I, and so by substitution is ψk0+2
I (∅)-stable;

by the definition of ψI , e ∈ ψk0+3
I (∅). Conversely, if e ∈ ψk0+3

I (∅), there exists a

ψk0+2
I (∅)-stable matching M over I ′; by substitution, M is ψk0I′ (∅)-stable over I. Since

M ⊆ ψk0+3
I (∅) ⊆ ψ3

I (∅) = G(I ′), it consists only of edges in I ′; consequentially, M is

a matching over I ′, and preserves the property of being ψk0I′ (∅)-stable over I ′. By the

definition of ψI′ , this means that e ∈ ψk0+1
I′ (∅).

As a result, ψk0+1
I′ (∅) = ψk0+3

I (∅), and we have shown our inductive step. By

induction, ψkI′(∅) = ψk+2
I (∅) for all positive k ∈ N.

Corollary 4.59. Let I be any instance such that ξ(I) ≥ 3, and I ′ = I[ψ3
I (∅)]. Then,

ξ(I) = ξ(I ′) + 2.

We also need the following lemma, which we prove in Subsection 4.6.3.

Lemma 4.60. Let I1 and I2 be two instances on disjoint sets of vertices, and I be the

instance with vertex set V (I1) ∪ V (I2), where each vertex from I1 and I2 has the same

preference list as in I1 and I2 respectively. Then, ξ(I) = max{ξ(I1), ξ(I2)}.
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We now proceed to the proof of lemma 4.56. We recall that a matching is k-stable

over I if it is ψkI (∅)-stable.

Proof. We prove this result by induction on n. For our base case, when n = 3, the

statement is equivalent to lemma 4.57.

Now, for our inductive step, suppose that, for a given n ≥ 3, Ξ∗(n) ≤ 2n − 3; we

need to show that Ξ(n+1) ≤ 2n−1. Let I be an arbitrary satisfactory (n+1)× (n+1)

instance, with M1 and M2 as the man-optimal and woman-optimal stable matchings

respectively. It is sufficient to show that ξ(I) ≤ 2n− 1.

We may consider the following subinstances: I1 ≡ I(∅,M1), I2 ≡ I(M2,∅), and I3 ≡

I(M1,M2). (Note that these subinstances are still satisfactory - M1 is a perfect matching

that is stable over I1 and I3, and M2 is a perfect matching that is stable over I2.) We

note that ψkI′(∅) = ψkI (∅) ∩ G(I ′) for any k ∈ N and I ′ ∈ {I1, I2, I3} by theorem 4.32,

corollary 4.33, and corollary 4.34 respectively. In addition, every edge e ∈ G(I) that

doesn’t appear in G(I1), G(I2), or G(I3) must fit into one of four categories:

1. me prefers pM1(me) to we and we prefers pM1(we) to me.

2. me prefers we to pM1(me) and we prefers me to pM1(we).

3. me prefers pM2(me) to we and we prefers pM2(we) to me.

4. me prefers we to pM2(me) and we prefers me to pM2(we).

Any edge in category 2 or 4 would destabilize M1 or M2 respectively, so no such edge

can exist. There can exist edges that appear in category 1 or 3; however, we can make

the following observation about them.

Lemma 4.61. Let I be any instance, and S be the set of all edges (m,w) with the

property that there exists a stable matching M over I such that m strictly prefers pM (m)

to w and w strictly prefers pM (w) to m. Then, for every set of edges E such that

ψ2(∅) ⊆ E ⊆ G(I), S ∩ ψ(E) = ∅.

Proof. We first show that ψ3(∅) contains no element of E by contradiction. Assume

that there exists some e ∈ E such that e ∈ ψ3(∅); then, there must be a 2-stable
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matching Me that contains E. Since M ⊆ ψ2(∅), Me is also M -stable. M is a stable

matching, so it is Me-stable, implying that M and Me are costable; this means that

me prefers pMe(me) = we to pM (me) iff we prefers pM (we) to pMe(we) = me. This

contradicts the fact that me and we prefer their respective partners in M to each other,

so no such e can exist.

For any E ⊇ ψ2(∅), ψ(E) ⊆ ψ3(∅), by theorem 4.9, so S∩ψ(E) ⊆ S∩ψ3(∅) = ∅.

As a result, no edge in category 1 or 3 appears in ψ(E) for any E ⊇ ψ2(∅); however,

ψi(∅) ⊇ ψ2(∅) for all i ≥ 1, implying that no such edge appears in ψk(∅) for all

k ≥ 2. As such, either ξ(I) ≤ 1, or ξ(I) = max{ξ(I1), ξ(I2), ξ(I3)}. We will show that

ξ(I ′) ≤ 2n− 1 for all I ′ ∈ {I1, I2, I3}.

To show that ξ(I1) ≤ 2i− 1, we note that GI1 contains exactly the edges in I over

which a proposal is made during the man-optimal Gale-Shapley algorithm; therefore,

performing the man-optimal Gale-Shapley algorithm proceeds in exactly the same way

in I1 as in I, and the resulting man-optimal stable matching M1 has every woman

partnered with her top partner. As a result, M1 is also the woman-optimal (and

therefore only) stable matching, and so ψ2
I1

(∅) = M1. Let w0 be any woman that

is proposed to last in some procedure of the man-optimal Gale-Shapley algorithm.

Lemma 4.62. (pM1(w0), w0) ∈ ψ3
I1

(∅), and no other edge ∈ ψ3
I1

(∅) is incident with w0

or pM1(w0).

Proof. In the aforementioned procedure of the Gale-Shapley algorithm, w0 does not

reject a previous suitor in response to the final proposal - otherwise, the rejected suitor

would make a new proposal right after, since the Gale-Shapley algorithm only termi-

nates on a satisfactory instance when every vertex has a partner. As a result, w0 has

only one possible partner in I1, and since M1 is a perfect matching, this partner is

pM1(w0).

Since M1 is a perfect matching, every 2-stable matching over I1 is perfect by theo-

rem 4.18. As a result, every such matching contains (pM1(w0), w0) as an edge, and so

this is the only edge in ψ3
I1

(∅) that contains either of pM1(w0) and w0.
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As a result, ψ3
I1

(∅) is the vertex-disjoint union of {(pM1(w0), w0)} and G′ ≡ ψ3
I1

(∅)−

{(pM1(w0), w0)}. If I ′ = I1[ψ3
I1

(∅)], then, by corollary 4.59, ξ(I ′) = max{ξ(I ′[{(pM1(w0), w0)}]), ξ(I ′[G′])}.

However, both of these instances are satisfactory; Iw0 is a 1 × 1 instance and IG′ is a

n × n instance, so ξ(Iw0) = 1 and ξ(IG′) ≤ 2n − 3 by our inductive assumption. This

implies that ξ(I ′) ≤ 2n − 3; by lemma 4.60, either ξ(I1) ≤ 2 ≤ 2n − 1 (as n ≥ 3), or

ξ(I1) = ξ(I ′) + 2 ≤ 2n− 1. In either case, ξ(I1) ≤ 2n− 1.

By a similar argument, we may show that ξ(I2) ≤ 2n− 1. Finally, I3 is an instance

where the man-optimal matching has every man partnered with his top preference, and

the woman-optimal matching has every woman partnered with her top preference. By

corollary 4.21, ξ(I3) ≤ 2 ≤ 2n − 1 (since n ≥ 3). As such, ξ(I) ≤ max{2n − 1, 2n −

1, 2n− 1} = 2n− 1; however, I is an arbitrary satisfactory (n+ 1)× (n+ 1) instance,

so Ξ∗(n+ 1) ≤ 2n− 1.

Thus, we have shown that Ξ∗(3) = 3 = 2 ∗ 3 − 3, and that Ξ∗(n) ≤ 2n − 3 ⇒

Ξ∗(n + 1) ≤ 2n− 1 = 2(n + 1) − 3 for all n ≥ 3. By induction, Ξ∗(n) ≤ 2n− 3 for all

n ≥ 3.

4.6.3 A Proof of lemma 4.60

As noted previously, our proof of lemma 4.56 requires lemma 4.60. In this subsection,

we prove this lemma.

Proposition 4.63. Let I1 and I2 be two instances on disjoint sets of vertices, and I

be the instance with vertex set V (I1) ∪ V (I2), where each vertex from I1 and I2 has

the same preference list as in I1 and I2 respectively. Then, for all S1 ⊆ G(I1) and

S2 ⊆ G(I2), ψI(S1 ∪ S2) = ψI1(S1) ∪ ψI2(S2).

Proof. We prove this by showing that the set of S1 ∪ S2-stable matchings over I is the

set of every union of an S1-stable matching over I1 and an S2-stable matching over I2.

If M1 is an S1-stable matching over I1 and M2 is an S2-stable matching over I2, then

these matchings are S1-stable and S2-stable over I, respectively. Since M1 and M2 are

vertex-disjoint, their union is a matching and partners each vertex with its preferred

partner over M1 and M2; consequentially, an edge can only destabilize M1 ∪ M2 if
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it destabilizes both M1 and M2. No edge in S1 destabilizes M1, and no edge in S2

destabilizes M2, so M1 ∪ M2 is S1 ∪ S2-stable. As such, any union of an S1-stable

matching over I1 and an S2-stable matching over I2 is an S-stable matching over I.

Now, let M be any S1 ∪S2-stable matching over I. We define M1 ≡M ∩G(I1) and

M2 ≡M ∩G(I2); since G(I) is the disjoint union of G(I1) and G(I2), M is the disjoint

union of M1 and M2. For every e ∈ S1, (me, pM (me)), (pM (we), we) ∈ G(I1) (as I1 and

I2 are vertex-disjoint); furthermore, by the fact that M is S1-stable, at least one of me

and we prefers their partner in M to the other. These partners are preserved in M1, so

M1 remains e-stable. Since E is any edge in S1, M1 is S1-stable over I, and therefore

S1-stable over I1. Similary, M2 is S2-stable over I2, and so M must be a union of an

S1-stable matching over I1 and an S2-stable matching over I2.

As a result, the set of S1 ∪ S2-stable matchings over I is the set of every union of

an S1-stable matching over I1 and an S2-stable matching over I2. This implies that

ψI(S1 ∪ S2) = ψI1(S1) ∪ ψI2(S2).

We may now prove lemma 4.60.

Proof. We consider the values k ∈ N such that ψkI (∅) is a hub. We set S1 ≡ ψkI (∅)∩G(I1)

and S2 ≡ ψkI (∅) ∩ G(I2); by proposition 4.63, ψI(ψ
k
I (∅)) = ψI1(S1) ∪ ψI2(S2). Since

ψI1(S1) ⊆ G(I1) and ψI2(S2) ⊆ G(I2), this equals ψkI (∅) iff ψI1(S1) = ψkI (∅)∩G(I1) = S1

and ψI2(S2) = ψkI (∅) ∩G(I2) = S2. This happens iff k is greater than or equal to both

ξ(I1) and ξ(I2), so the minimum such k - i.e. ξ(I) - is max{ξ(I1), ξ(I2)}.

4.7 An Improvement to theorem 4.51 for Nonsatisfactory Instances

In the previous section, we showed that if I is an n × n instance with n ≥ 3, then

ξ(I) ≤ 2n − 3; furthermore, this upper bound is tight. However, if I is very far from

complete, then we may be able to show that ξ(I) is significantly smaller than 2n−3. In

this section, we will show that if I is not satisfactory, then we can improve our upper

bound on ξ(I). Similarly, in the next section, we will show that if G(I) is sparce, then

we can make alternate improvements to our upper bound on ξ(I).
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Theorem 4.64. If a vertex v has degree 0 in ψ2(∅), then it has degree 0 in ψk(∅) for

all k ≥ 2.

Proof. For every k ≥ 2, ψk(∅) is the union of all k−1-stable matchings. Since k−1 ≥ 1,

every k − 1-stable matching covers the same vertices as the 1-stable matchings by

theorem 4.18. As a result, ψk(∅) includes no edge in v iff no stable matching covers v -

which occurs iff no edge covers v in ψ2(∅).

As a result, we see that if every stable matching over I has k edges, then I[ψ3(∅)] is

a k × k instance with some number of isolated vertices (by theorem 2.4, we know that

every stable matching covers the same k men and k women). This intuition on I[ψ3(∅)]

can be leveraged to say something about I using corollary 4.59.

Theorem 4.65. Let I be any instance, and M be any stable matching over I. Then,

if |M | ≥ 2, ξ(I) ≤ 2|M | − 1.

Proof. If |M | = 2, we may assume WLOG that I has men {m1,m2, . . . ,mn1} and

women {w1, w2, . . . , wn2}, and M = {(m1, w1), (m2, w2)} is a stable matching. We note

that {(m1, w2), (m2, w1)} is the only other possible perfect matching on men {m1,m2}

and women {w1, w2}. In addition, all of ψ2
I (∅), ψ3

I (∅), and ψ∞I are unions of such perfect

matchings by theorem 4.18, and must contain the stable matching {(m1, w2), (m2, w2)};

this means that the only possibilities for these sets are:

• {(m1, w2), (m2, w2)}

• {(m1, w2), (m1, w2), (m2, w1), (m2, w2)}

By the pigeonhole principle, some pair of ψ2
I (∅), ψ3

I (∅), and ψ∞I are equal. However, if

ψ3
I (∅) 6= ψ∞I , then ψ2

I (∅) must be distinct from both of them, creating a contradiction.

Since ψ3
I (∅) = ψ∞I thereby, ξ(I) ≤ 3 = 2|M | − 1.

Now, let us consider the case when |M | ≥ 3. If ξ(I) ≤ 3, then the statement holds

vacuously. Otherwise, we define the instance I∗ to be the restriction of I such that

G(I∗) = ψ3
I (∅). As is shown in theorem 4.64, I∗ is the union of an |M | × |M | instance

I ′ with the same vertex set as M , and some number of isolated vertices with empty



54

preference lists; as a consequence of proposition 4.63, ξ(I∗) = ξ(I ′). By theorem 4.51,

ξ(I ′) ≤ 2|M |−3 (since |M | ≥ 3). This implies by corollary 4.59 that ξ(I) = ξ(I∗)+2 =

ξ(I ′) + 2 ≤ 2|M | − 1.

4.8 The Convergence Rate of ψ for Sparse Instances

By proposition 4.48, for an instance I such that E(G(I)) = k and every stable matching

has size q, ξ(I) ≤ k − q + 1. Here, we will improve on this upper bound for the case

when k < 4q − 5; this will allow us to improve on theorem 4.51 and theorem 4.65 for

any instance I where G(I) is sufficiently sparce.

Theorem 4.66. If the lattice of hub-stable matchings Lh has r join-irreducible ele-

ments, then |ψ∞I | ≥ q + 2(r − 1).

Proof. Since the lattice of hub-stable matchings is a distributive lattice with r join-

irreducible elements, we can find a chain of length r in the lattice. The least element

of this chain - the man-optimal hub-stable matching - contains q edges, and each sub-

sequent element contains at least 2 edges that were not in any previous term (since

it differs from the next-most woman-optimal matching by performing a rotation that

matches at least 2 women with strictly more desired partners). Each edge in such a

matching must appear in K, so |K| ≥ n+ 2(r − 1).

Now, we can consider the lattices {Lψ(∅),Lψ3(∅), . . . ,Lψ2i+1(∅), . . .}. Since these lat-

tices are the lattices of S-stable matchings, where S decreases as the sequence goes on,

each element of the sequence is a sublattice of the previous; as such, each lattice in the

sequence has at least as many join- irreducible elements as the previous lattice.

Lemma 4.67. If Lψ2i−1(∅) and Lψ2i+1(∅) both have r join-irreducible elements, then

ψ2i(∅) = ψ∞.

Proof. Since Lψ2i−1(∅) is a distributive lattice with r join-irreducible elements, we can

find a length r+ 1 maximal chain in it; since Lψ2i−1(∅) ⊆ Lψ2i+1(∅), this chain must also

exist in Lψ2i+1(∅). However, since it is a chain of length r+1 in a distributive lattice with

r join-irreducible elements, it must also be maximal in Lψ2i+1(∅). By theorem 3.9 and
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??, the elements of this chain contain every edge that appears in at least one element

of Lψ2i+1(∅). Each element in the chain also appears in Lψ2i−1(∅), so, by the definition

of ψ, ψ2i(∅) ⊇ ψ2i+2(∅).

However, since {ψ2j(∅) : j ∈ N} is an increasing sequence, ψ2i(∅) ⊆ ψ2i+2(∅);

therefore, ψ2i(∅) = ψ2i+2(∅). By theorem 4.1, this implies that ψ2i(∅) = ψ∞I .

Corollary 4.68. If Lh has at most r join-irreducible elements, then ξ(I) ≤ 2r.

Proof. For all i, Lψ2i+1(∅) ⊆ LK , so each such lattice has at most r join-irreducible

elements. (Since they are all nonempty, they also contain at least 1.) If ψ2r(∅) was not

self-generating, this would imply that Lψ(∅),Lψ3(∅), . . . ,Lψ2r+1(∅) all have a different

number of join-irreducible elements; however, this gives r + 1 different lattices, each

with a number of join-irreducible elements in [r]. By the pigeonhole principle, we have

a contradiction, so ψ2r(∅) is a hub, and ξ(I) ≤ 2r by theorem 4.1.

Theorem 4.69. For an instance I such that every stable matching over I has k edges

and |E(G(I))| = b, ξ(I) ≤ 2
3(b− k + 2).

Proof. Setting r = d ξ(I)2 e gives us that ψ2(r−1)(∅) 6= ψ∞. By the contrapositive of

corollary 4.68, Lh has at least r join-irreducible elements, which means that ψ∞ has at

least k+ 2(r− 1) edges. However, for each i ∈ [b ξ(I)2 c], ψ
2i−1(∅) has a different number

of edges, each of which is greater than the number in ψ∞; consequentially, the largest

of them has at least k + 2r − 2 + b ξ(I)2 c edges, and so b ≥ k − 2 + d3ξ(I)
2 e. As a result,

3ξ(I)
2 ≤ d3ξ(I)

2 e ≤ b− k + 2, so ξ(I) ≤ 2
3(b− k + 2).

Combining this result with theorem 4.50 and theorem 4.65, we see that for an n×n

instance I such that G(I) has b edges and any stable matching M over I has k edges,

ξ(I) ≤ min(2n−3, 2k−1, b2
3(b−k+2)c). In our final result, we show an instance where

this is tight on all three measurements.

Example 4.70. For any integer n ≥ 3, we define I ′n as follows:

• Vm(I ′n) = {m1,m2, . . . ,mn} and Vw(I ′n) = {w1, w2, . . . , wn}.

• The preference list of m1 is empty.
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• For all i ∈ {2, 3}, the preference list of mi is [wi, wi−1, wi+1].

• For all i ∈ {4, 5, . . . , n− 1}, the preference list of mi is [wi, wi−1, w2, wi+1].

• The preference list of mn is [wn, wn−1, w2].

• The preference list of w1 is [m2].

• The preference list of w2 is [mn,mn−1, . . . ,m2].

• For all i ∈ {3, 4, . . . , n− 1}, the preference list of wi is [mi+1,mi−1,mi].

• The preference list of wn is [mn−1,mn].

We note that I ′n is the same as In from lemma 4.54, with the edge (m1, w1) removed;

it is straightforward to see that ξ(I ′n) = ξ(In), and so ξ(In) = 2n − 3. Furthermore,

b = |G(I)| = 4n − 7 and the stable matching {(m2, w2), . . . , (mn, wn)} has k = n − 1

edges, so 2k − 1 = 2(n− 1)− 1 = 2n− 3 = ξ(In), and b2
3(b− k + 2)c = b2

3(3n− 4)c =

2n− 3 = ξ(In).
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Chapter 5

Representations of Lattice Flags

Given a stable marriage instance I, there are a number of ways that we can associate

I with a distributive lattice L. The standard way is to associate I with Ls(I), the

lattice of stable matchings over I; another way is by associating I with Lh(I), the

lattice of hub-stable matchings. Furthermore, every distributive lattice is isomorphic

to Ls(I) for some (non-unique) instance I, and Lh(I ′) for some (non-unique) instance

I ′. However, for a single instance, Ls(I) and Lh(I) are not independent structures, as

noted by theorem 4.15.

We define a lattice flag to be a pair (L0,L1) of distributive lattices such that

L0 is a sublattice of L1; more generally, we define a lattice z-flag to be a sequence

(L0,L1, . . . ,Lz) of distributive lattices such that Lr−1 ⊆ Lr for all r ∈ [z]. (In particu-

lar, a lattice flag is a lattice 1-flag.) We also define a lattice z-flag to be covering if Lr−1

is a cover-preserving sublattice of Lr for all r ∈ [z]. Two lattice z-flags (L0, . . . ,Lz) and

(L′0, . . . ,L′z) are isomorphic if there exists an order-preserving bijection ζ : Lz → L′z

such that ζ(Li) = L′i for all i ∈ {0, . . . , i− 1}.

It is natural to ask for what lattice flags (Ls,Lh) we can find an instance I such that

(Ls,Lh) is isomorphic to (Ls(I),Lh(I)). By theorem 4.15, (Ls(I),Lh(I)) is a covering

lattice flag. In this chapter, we will show that this is the only constraint on the structure

of this lattice flag.

Theorem 5.1. Let (Ls,Lh) be any covering lattice flag. Then, there exists an instance

I such that (Ls(I),Lh(I)) is isomorphic to (Ls,Lh).

There are other ways to associate lattice flags to a stable marriage instance, which

give rise to similar representation questions which will also be considered in this chapter.
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5.1 Representation Theorems for Lattice Flags

In preparation for proving theorem 5.1, we review representation theorems for lattice

flags that are analogous to the Birkhoff Representation Theorem ([Sig14], [RS]). We

define a pointed order (P,≤) as a poset with a minimum element 0̂P and a maximum

element 1̂P - in other words, P is a finite set of elements (including 0̂P and 1̂P ) and ≤

is a binary relation that obeys the reflexive, antisymmetric, and transitive properties

such that for all p ∈ P , 0̂P ≤ p ≤ 1̂P . (In cases where P is implied, we shorten 0̂P to 0̂

and 1̂P to 1̂.) 1

A pointed quasi-order (P,≤∗) is defined in the same way, except that we no longer

require that the binary relation be antisymmetric (i.e. we can have distinct p1, p2 ∈ P

such that p1 ≤ p2 and p2 ≤ p1). The elements of a quasi-order split into equivalence

classes, where each equivalence class consists of some p ∈ P and all p′ ∈ P such that

p ≤∗ p′ and p′ ≤∗ p; we note that ≤∗ induces a pointed order on the equivalence classes.

(In particular, a pointed order is a pointed quasi-order where every equivalence class

has one element.) An extension (P,≤∗∗) of (P,≤∗) is a pointed quasi-order where ≤∗∗

is at least as strong as ≤∗ - i.e. if p1, p2 ∈ P and p1 ≤∗ p2, then p1 ≤∗∗ p2.

Proposition 5.2. Given a sequence of pointed quasi-orders (P,≤0), . . . , (P,≤z) such

that for all i ∈ [z], (P,≤i−1) is an extension of (P,≤i), we can label the elements of P

as p0, . . . , p|P |−1 such that for all i ∈ [z] and j, j′ ∈ {0, . . . , |P | − 1} such that j < j′,

either pj �i pj′ or pj and pj′ are in the same equivalence class of (P,≤i).

Proof. For each i ∈ {0, . . . , z}, we define (P,≤∗i) to be the relation such that p ≤∗i p′

iff p ≤i p′ and p′ �∗i p; it is straightforward to see that ≤∗i upholds the transitive

and assymetry property necessary to be a partial order. We further define (P,≤)

to be the relation such that p ≤ p′ iff p ≤∗i p′ for some i ∈ {0, . . . , z}. This also

upholds the transitive property (since if j ≤ i, then p ≤∗i p′ ≤∗j p′′ ⇒ p ≤∗j p′′, and

p ≤∗j p′ ≤∗i p′′ ⇒ p ≤∗j p′′), so it is a partial order as well; hence we may extend (P,≤)

to a total ordering (P,≤′). Let [p1, . . . , p|P |] be the elements of P ordered in terms of

1Since a distributive lattice L is also a pointed order, we can use the same notation for the least and
greatest element of L.
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≤′. By the definition of (P,≤), we note that for all i ∈ [z] and j, j′ ∈ {0, . . . , |P | − 1}

such that j < j′, either pj �i pj′ or pj and pj′ are in the same equivalence class of

(P,≤i).

We refer to any total ordering of P as given by proposition 5.2 as a reference

ordering of P . (Note that for any reference ordering of P , if (P,≤0) is an order, then

0̂(P,≤0 = p0 and 1̂(P,≤0) = p|P |−1.)

Given any pointed quasi-order (P,≤∗), we define D(P,≤∗) as the collection of

downsets of P that contain 0̂ and not 1̂. We can restate the Birkhoff Representation

Theorem as follows:

Theorem 5.3. Given a distributive lattice L, there exists a pointed order (P,≤) such

that D(P,≤) is isomorphic to L.

In this case, we identify an isomorphism of L withD(P,≤), the collection of downsets

in the pointed order (P,≤). In particular, we note that (P −{0̂, 1̂},≤) is isomorphic to

the poset of join-irreducible elements of Lh, which is in turn isomorphic to Π(I).

Proposition 5.4. Let I be an instance, and (P,≤) be a pointed order such that D(P,≤)

is isomorphic to Ls(I). Then, there exists a bijection µ from P − {0, 1} to Π(I) such

that p1 ≤ p2 iff µ(p1) ≤ µ(p2) in Π(I).

Mark Siggers show that there is a correspondence between the distributive sublat-

tices of Lh(I) and the extensions of (P,≤):

Theorem 5.5. Given a distributive lattice L1, let (P,≤) be a pointed quasi-order such

that Lh = D(P,≤). Then, there exists a bijection Γ from the set of all distributive

sublattices L0 of L1 to the extensions (P,≤∗) of (P,≤) such that Γ(L1)) = (P,≤), and

the lattice flag (D(Γ(L0)),D(Γ(L1))) is isomorphic to (L0,L1). ([Sig14] Corollary 4.2)

Corollary 5.6. Given a lattice z-flag (L0, . . . ,Lz), there exists a pointed order (P,≤z)

and a sequence of extensions (P,≤z−1), . . . , (P,≤0) with the property that (P,≤i−1) is

a extension of (P,≤i) for all i ∈ [z], such that (D(P,≤0), . . . ,D(P,≤z)) is isomorphic

to (L0, . . . ,Lz).
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We note that theorem 5.5 allows us to represent Lh(I) and Ls(I) for a given instance

I as respectively representing downsets of the same set of elements under different quasi-

orders. However, not every extension of D(P,≤) can result in a potential Ls(I) - as

noted by theorem 4.15, Ls(I) is a cover-preserving sublattice of Lh(I), so (Ls(I),Lh(I))

is a covering lattice flag. This observation allows us to leverage the following theorem,

found by Vladimir Retakh and Michael Saks. We define a pointed quasi-order to be

separated if every equivalence class other than the equivalence classes containing 0̂

and 1̂ contains exactly one element.

Theorem 5.7. Given a distributive lattice L1, let (P,≤) be a separated quasi-order

such that Lh = D(P,≤), and Γ be defined as in theorem 5.5. Then, Γ maps the set

of all cover-preserving sublattices of L1 to the set of all separated extensions (P,≤∗) of

(P,≤). ([RS], Theorem 4.2)

Corollary 5.8. Given a covering lattice z-flag (L0, . . . ,Lz), there exists a pointed

order (P,≤z) and a sequence of extensions (P,≤z−1), . . . , (P,≤0) with the property

that (P,≤i−1) is a separated extension of (P,≤i) for all i ∈ [z], such that (D(P,≤0

), . . . ,D(P,≤z) is isomorphic to (L0, . . . ,Lz).

Proof. By theorem 5.3, there exists a pointed order (P,≤z) such that D(P,≤z) is iso-

morphic to Lz; let γ : D(P,≤z)→ Lz be the order-preserving bijection.

Now, we will show that for all i ∈ [z], there exists a separated extension (P,≤z−i)

of (P,≤z) such that (P,≤z−i) is a separated extension of (P,≤z−i+1), and γ maps

D(P,≤z−i) to Lz−i; we do this by induction on i. For our base case, when i = 1, such

an extension exists by theorem 5.7.

For our inductive step, for any given i ∈ [z], assume that we have a separated

extension (P,≤z−i+1) of (P,≤z) such that γ maps D(P,≤z−i+1) to Lz−i+1. Then, by

theorem 5.7, there exists a separated extension (P,≤z−i) of (P,≤z−i+1) such that γ

maps D(P,≤z−i) to Lz−i. Since every equivalence class of (P,≤i−1) other than those

containing 0̂ and 1̂ has one element, (P,≤i−1) is also a separated extension of (P,≤z).

Thus, we have completed the inductive step, and by induction, we see that γ maps

the lattice z-flag (D(P,≤0), . . . ,D(P,≤z) to (L0, . . . ,Lz), and (P,≤i−1) is a separated
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extension of (P,≤i) for all i ∈ [z].

Proposition 5.9. Let (P,≤) be a pointed order and (P,≤∗) be a separated extension

of (P,≤). Then, 0̂D(P,≤∗) is the set of p ∈ P in the equivalence class of 0̂ in ≤∗, and

1̂D(P,≤∗) is the set of p ∈ P not in the equivalence class of 1̂ in ≤∗.

5.1.1 The Rotations as a Pointed Order

We will apply the above representation theorems - especially corollary 5.8 - in the

context of the lattice of stable (or hub-stable) matchings. If Lz is isomorphic to the

lattice of stable matchings for a given instance I, we recall that by theorem 2.18, Lz

is isomorphic to the lattice of all downsets of the rotation poset of I. Combining this

with theorem 5.3, we see the following:

Proposition 5.10. Let I be a stable marriage instance, and P be a pointed order such

that Lz is isomorphic to D(P,≤z). Then, P −{0̂, 1̂} is isomorphic to the rotation poset

of I.

5.2 Background on the Construction of the Representative Instance

In [Bla84], Charles Blair gave an algorithm to construct an instance such that the lattice

of stable matchings is isomorphic to a given distributive lattice L. An improvement on

this result appears in [GILS87], which provides an algorithm that, for any distributive

lattice L with O as its poset of join-irreducible elements, gives an instance I0 of relatively

small size such that Ls(I) = L. The algorithms that we use here will use the algorithm

in [GILS87] as a foundation, and so we review the algorithm here.

One tool that the construction uses is the Hasse diagram of a poset P . The Hasse

diagram of P is the digraph H(P ) with vertex set P such that e = (p1, p2) is an edge

in H(P ) iff p1 covers p2; in such a case, we say that e is incident with p1 from below,

and incident with p2 from above. (In pictures of the Hasse diagram, we generally don’t

show directed edges as having an arrow, and instead position the vertices such that if

p1 ≥ p2, then p1 appears higher in the picture than p2.)

[QUESTION: INSERT FIGURE OF EXAMPLE HASSE DIAGRAM?]



62

Algorithm 5.11. Let (P,≤) be a pointed order; we construct a set of men Vm and a

set of women Vw with preference lists of the opposite gender as follow:

1. Let k = |P | − 2, and P = {p0, . . . , pk+1} be any reference ordering of P . (Note

that 0̂P = p0 and 1̂ = pk+1.)

2. Let H(P ) be the Hasse diagram of P , and E = E(H(P )). The instance I0 will

have Vm = {me : e ∈ E} and Vw = {we : e ∈ E}.

3. In this step and the next one, we construct preference lists for each man me and

each woman we for e ∈ E. For each e ∈ E, initialize the list of me by placing we

on his preference list, and initialize the list of we by placing me on her preference

list.

4. For i from 1 to k, iterate the following: Let Ai = {ai(1), . . . , ai(r)} be an arbitrary

ordering of the edges incident with node i in H(P ). Let Bi = {bi(1), . . . , bi(r)}

such that for all j ∈ [r], wbi(j) be the last choice on mai(j)’s current preference

list. Then, for all j ∈ [r], place wbi(j+1) at the bottom of mai(j)’s preference list

and mai(j) at the top of wbi(j+1)’s preference list, where j + 1 is taken mod r.

Theorem 5.12. Let L be a distributive lattice, and (P,≤) be a pointed order such

that D(P,≤) is isomorphic to L. Then, the set of preference lists I0 constructed from

(P,≤) by algorithm 5.11 is a stable marriage instance, and L is isomorphic to Ls(I0).

[GILS87]

In later sections we will adapt the algorithm and theorem to other contexts involving

lattice flags. It is therefore useful to review the details of the proof.

For all i ∈ [k], we define ρm(i) = {(mai(j), wbi(j)) : j ∈ [r]} and ρw(i) = {(mai(j), wbi(j+1)) :

j ∈ [r− 1]}∪{mai(r), wbi(1))}. (We will show in theorem 5.19 that ρ(i) = (ρm(i), ρw(i))

is a rotation over I0, as defined in Section 2.3.) Furthermore, for i ∈ {0, . . . , k}, we

define Mi be the set of all edges (m,w) such that w appears last on m’s preference list

after the ith iteration of step 4. (For M0, this is the set of edges such that w appears

last on m’s preference list after step 3.)
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Proposition 5.13. For all i ∈ {0, . . . , k}, Mi is a perfect matching, and for all w ∈

Vw(I0), pMi(w) appears first on w’s preference list after the ith iteration of step 4.

Proof. We prove this result by induction on i. For the base case, when i = 0, the

statement is trivial. For the inductive step, assume for i ≥ 0 that Mi is a perfect

matching such that, for all w ∈ Vw(I0), pMi(w) appears first on w’s preference list after

the ith iteration of step 4. Then, since the (i+ 1)th iteration of step 4 adds exactly one

woman to the bottom of the preference lists of each m ∈ {ma : a ∈ Ai+1}, we see that

Mi+1 = Mi∪ρw(i+1)−ρm(i+1). We note that for all b ∈ Bi+1}, Mi+1 matches wb with

a different element of {ma : a ∈ Ai+1}, and that element was added to the top of wb’s

preference list in the (i+ 1)th iteration of step 4. For all w ∈ Vw(I0)−{wb : b ∈ Bi+1},

Mi+1 matches w to the same element of Vw(I0)−{ma : a ∈ Ai+1} as Mi - all of which,

by the inductive assumption, are distinct and appear at the top of the corresponding

w’s preference after the ith iteration of step 4. The (i+ 1)th iteration does not change

this, so Mi+1 is a perfect matching such that, for all w ∈ Vw(I0), pMi+1(w) appears first

on w’s preference list after the (i+ 1)th iteration of step 4.

It is not immediately obvious that the preference ists constructed in algorithm 5.11

produce a stable marriage instance. In order for this to be the case, we need each

vertex’s preference list to consist of distinct elements.

Proposition 5.14. Given any pointed order (P,≤), let Vm and Vw (and their corre-

sponding preference lists) be defined as in algorithm 5.11. Then, for all m ∈ Vm, w ∈ Vw,

m and w appear in one another”s preference lists at most once.

Proof. By symmetry, it is sufficient to show that no man appears on the preference

list of any woman more than once. Let we be an arbitrary element of Vw, and me1 =

me,me2 , . . . ,mec be the men in we’s preference list, in the order that they are added

to we’s preference list; for j ≥ 2, let ij be the iteration of step 4 where mij is added

to we’s preference list. Since the above algorithm only adds vertices to the top of we’s

preference list, we’s preference list is [mec ,mec−1 , . . . ,me1 ]. By the description of step

4 above and the fact that every p ∈ P has at least two edges incident with it in H(P )
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(one above and one below), ei 6= ei+1 for all i ∈ [c − 1]. In particular, mec−1 6= mec ;

thus, if c ≤ 2, all of the elements on the preference list of we are distinct.

Now, assume c ≥ 3; for 2 ≤ j ≤ c, we define ij ∈ [k] such that mej is added to we’s

preference list in the ijth iteration of step 4. We show the following lemma:

Lemma 5.15. For all 2 ≤ j ≤ c, ej and ej−1 are incident with pij .

Proof. Since mej and we add each other to their respective preference lists in the ijth

iteration of step 4, ej ∈ Aij and e ∈ Bij . The former fact immediately implies that ej

is incident with pij . We also note that, since we’s preference list is constructed from

bottom to top, her top choice prior to the ijth iteration of step 4 was mej−1 - and at

that time, mej−1 ’s bottom choice was we by proposition 5.13. Since e ∈ Bij , this tells

us that ej−1 must be in Aij ,and so ej−1 is incident with pij .

Corollary 5.16. For all 2 ≤ j ≤ c − 1, ej is incident with pij from above and pij+1

from below.

Proof. By lemma 5.15, ej is incident with both pij and pij+1 ; since these vertices are

distinct, ej must be incident with one from above and the other from below, with the

former covered by the latter in P . However, since ij ≤ ij+1 by the definition of ij ,

pij � pij+1 ; as a result, pij cannot cover pij+1 , implying that ej is incident with pij from

above and pij+1 from below.

By corollary 5.16, {pij : 2 ≤ j ≤ c} forms a maximal chain in P . In addition, since e1

is incident with pi2 , it cannot be incident with pij for any j ≥ 3. (If j = 3, then e1 being

incident with pij would imply e1 = e2, which cannot be; otherwise, pi2 ≤ pi3 ≤ pij , so

(pij , pi2) /∈ H(P ).) Lastly, since ec is incident with pic , it cannot be incident with pij

for any j < c. (If j = c − 1, then ec being incident with pij would imply ec = ec−1,

which cannot be; otherwise, pij ≤ pic−1 ≤ pic , so (pic , pij ) /∈ H(P ).) All together, these

imply that the elements e1, . . . , ec are distinct.
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Thus, algorithm 5.11 produces a stable marriage instance. To complete the proof of

theorem 5.12, we need to show that the poset of join-irreducibles of Ls(I0) is isomorphic

to (P,≤). The strategy is to use theorem 2.18, which says that the poset of join irre-

ducibles of Ls(I0) is isomorphic to the rotation poset Π(I0) = (R(I0),≤R). Therefore,

theorem 5.12 follows if we can show that Π(I0) is isomorphic to (P,≤), and this is how

we proceed.

Proposition 5.17. For all i ∈ {0, . . . , k}, Mi is stable over I0.

Proof. Let (m,w) ∈ E(G(I)) be arbitrary; we only need to show that (m,w) does not

destabilize Mi. If m and w add each other to their preference lists at or before the ith

iteration of step 4, then, by proposition 5.13, w prefers pMi(w) to m. On the other

hand, if m and w add each other to their preference lists after the ith iteration of step

4, then, because algorithm 5.11 only adds women to the bottom of men’s preference

lists, we note that m prefers pMi(m) to w. Either way, (m,w) does not destabilize Mi,

and so Mi is stable over I0.

Corollary 5.18. For all i ∈ [k], Mi covers Mi−1 in Ls(I0).

Proof. By proposition 5.17, Mi−1 is a stable matching over I0. In the subinstance

I(Mi−1,∅), each man in ρ(i) has his partner in ρm(i) as his top choice and his partner in

ρw(i) as his second choice, so ρ(i) is a rotation exposed by Mi−1. By proposition 2.12,

Mi covers Mi−1 in Ls(I0).

Theorem 5.19. Let (P,≤) be a pointed order, and I0 be the stable marriage instance

constructed in algorithm 5.11 such that L is isomorphic to Ls(I0). Then, R(I0) =

{ρ(i) : i ∈ [k]}, and the bijection µ : P − {0̂, 1̂} → R(I0) such that µ(pi) = ρ(i) is an

order isomorphism between (P − {0̂, 1̂},≤) and Π(I0).

Proof. We note that M0 = {(me, we) : e ∈ E(H(P ))} is the man-optimal stable match-

ing over I0, since it matches each man with his top choice; similarly, Mc is the woman-

optimal stable matching over I0. In addition, by corollary 5.18, for all i ∈ [k], Mi covers

Mi−1 in Ls(I0). By lemma 2.14, R(I0) = {ρ(i) : i ∈ [k]}.
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By theorem 2.17, the rotation poset Π(I0) = ({ρ(i) : i ∈ [k]},≤r), where ≤r is the

transitive closure of R(I0) - the digraph containing all edges of the form (ρ, ρ′) such

that at least one of the following occurs:

• ρw ∩ ρ′m 6= ∅.

• There exists a man m0 ∈ ρ′ and a woman w0 ∈ ρ such that (m0, w0) does not

appear in any element of {ρ(i) : i ∈ [k]} and, in I, m0 prefers pρ′m(m0) to w0 to

pρ′w(m0) and w0 prefers pρw(w0) to m0 to pρm(w0).

Since every edge in G(I0) appears in some rotation over I0 by proposition 5.20, R(I0)

contains no edges of the second type. For edges of the first type, we see that, since

every man appears in at most two rotations, ρw ∩ ρ′m 6= ∅ iff there exists a man that

appears in ρ and ρ′; this occurs iff ρ = ρ(i1) and ρ′ = ρ(i2), where pi2 covers pi1 in

(P,≤). Therefore, we see that (P − {0̂, 1̂},≤) is isomorphic to the transitive closure

Π(I0) via the bijection µ.

We take particular note of the fact that any vertex v is added to the preference list

of any over vertex v′ at most once. Furthermore, we note the following property of I0

as defined above, which will be very useful in a later section.

Proposition 5.20. Every hub-stable matching in I0 is stable.

Proof. As a result of theorem 5.19, every edge in G(I0) appears in some stable matching;

consequentially, ψI0(G(I0)) = G(I0), so G(I0) is self-generating and the hub-stable

matchings are all G(I0)-stable. However, every G(I0)-stable matching is stable by

definition, so every hub-stable matching in I0 is also stable.

5.3 The Structure of the Edge-Specific Sublattice

Before looking at the possible representations of (Ls(I),Lh(I)) as a lattice flag, we

look at the style of reasoning that we will use to determine all such representations

on a similar but simpler problem. If two stable matchings both contain a particular

edge (m,w), then their join and meet do as well; consequentially, the set of all stable
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matchings that contain (m,w) is closed under join and meet, and the following results

trivially. For this, we let Ke = Ke(I) be the set of all stable matchings over I that

contain the edge e.

Theorem 5.21. For a given instance I and edge (m,w), the structure (Ke,�) is a

distributive sublattice of (Ls,�).

Proof. In order for (Ke,�) to be a distributive lattice, it must be closed under ∨ and

∧; by the definitions provided in theorem 2.8, it is straightforward to see that this is

the case.

In this section, we show that (Ke(I),Ls(I)) is a covering lattice flag, and identify the

necessary and sufficient conditions on a lattice flag (L0,L1) for it to be (Ke(I),Ls(I))

for some instance I and edge e. (If L0 = ∅, then L1 can be any distributive lattice - by

theorem 5.12, there exists an instace I such that Ls(I) is isomorphic to L1, and setting

e to be any edge /∈ E(G(I)) will make (Ke(I),Ls(I)) isomorphic to (L0,L1). For the

remainder of the section, we will assume that L0 6= ∅).)

For this section, we label the man-optimal and woman-optimal matchings in Ke(I)

asM0 andM1 respectively. The interval [M0,M1] is the sublattice of Ls(I) that contains

every matching M such that M0 �M �M1.

Proposition 5.22. (Ke(I),Ls(I)) is a lattice flag, and Ke(I) = [M0,M1].

Proof. If M is any stable matching �M0 and �M1, then m ranks pM (m) between his

partners in M0 and M1; however, he is matched with w in both of those matchings, so

he must be matched with w in M as well. As a result, Ke(I) contains the set of all

matchings that �M0 and �M1. Furthermore, since M0 and M1 are the man-optimal

and woman-optimal matchings respectively in Ke(I), any element that �M0 or �M1

cannot be in Ke(I); therefore, Ke(I) = [M0,M1].

We note that M0 � M1 obviously. We recall that an element l of a distributive

lattice L is join-irreducible iff it cannot be represented as the join of two elements

l1, l2 ≺ l and 6= 0̂L, and is meet-irreducible iff it cannot be represented as the meet of
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two elements l1, l2 � l and 6= 1̂L. We define IJ(L) to be the union of {0̂L} and the set

of all join-irreducible elements of L, and IM(L) to be the union of {1̂L} and the set of

all meet-irreducible elements of L.

Proposition 5.23. As elements of Ls, M0 ∈ IJ(Ls) and M1 ∈ IM(Ls).

Proof. If M and M ′ are two stable matchings that do not contain e, then M ∨M ′,M ∧

M ′ ⊆M ∪M ′ cannot contain e either. As a result, if we express M0 as the join of two

elements that dominate it, at least one must be in Ke; however, by the definition of

M0, the only such matching that dominates M0 is itself. Consequentially, M0 must be

join-irreducible or 0̂Ls .

Similarly, if we express M1 as the meet of two elements that it dominates, at least

one must be in Ke; however, by the definition of M1, the only such matching that M1

dominates is itself. Consequentially, M1 must be meet-irreducible or 0̂Ls .

Proposition 5.24. Every element of Ls either �M0 or �M1.

Proof. Assume for the sake of contradiction that there exists a matching M such that

M �M0 and M �M1. Since every element of Ke dominates M1, M is not in Ke, and

pM (m) 6= w. Let M ′ be any element of Ke. Since M ∧M ′ ≺M ′, m prefers pM∧M ′(m)

to pM ′(m) = w; however, since M ∧M ′ ≺ M � M0, M ∧M ′ � M0 and so /∈ Ke,

implying m strictly prefers pM∧M ′(m) to w. Since M ∧M ′ can only match m with w

or pM (m), m strictly prefers pM (m) to w.

Similarly, since M ∨M ′ � M ′, m prefers pM ′(m) = w to pM∨M ′(m). As a result,

since M ∨M ′ can only match m with w or pM (m), m prefers w to pM (m). This creates

a contradiction, so no such M can exist, and so every element of Ls either � M0 or

�M1.

We will prove that the above three propositions give the only restrictions on (Ke(I),Ls(I)).

Theorem 5.25. Let (L0,L1) be a lattice flag. Then, there exists an instance I and

edge e ∈ E(G(I)) such that (L0,L1) is isomorphic to (Ke(I),Ls(I)) iff:

1. 0̂L0 ∈ IJ(L1) and 1̂L0 ∈ IM(L1).
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2. {l ∈ L1 : 0̂L0 � l � 1̂L1} = ∅.

3. L0 = [0̂L0 , 1̂L0 ] in L1.

5.3.1 Proof of theorem 5.25

In this subsection, we show that, given any lattice flag (L0,L1) that upholds conditions

1-3 in theorem 5.25, we can find an instance and an edge e such that (Ke(I),Ls(I)) is

isomorphic to (L0,L1). We use corollary 5.8 to represent (L0,L1) as (D(P,≤∗),D(P,≤))

- in doing so, we need to consider how conditions 1-3 translate into this new represen-

tation.

Proposition 5.26. Let (P,≤) and (P,≤∗) be a pointed order and separated extension

respectively. Then, D(P,≤∗) is an interval of D(P,≤) iff for all p1, p2 ∈ P not in the

equivalence class of 0̂ or 1̂ in ≤∗, p1 ≤∗ p2 ⇒ p1 ≤ p2.

Proof. We note that D(P,≤∗) is an interval of D(P,≤) iff for all d ∈ D(P,≤∗) such

that 0̂D(P,≤∗) � d � 1̂D(P,≤∗), d ∈ D(P,≤∗). If p1 ≤∗ p2 ⇒ p1 ≤ p2 for all p1, p2 ∈ P

not in the equivalence class of 0̂ or 1̂ in ≤∗, we see that every such d vacuously remains

in D(P,≤∗), and D(P,≤∗) is an interval of D(P,≤).

Otherwise, take any such p1, p2 such that p1 � p2 and p1 ≤∗ p2; the set D ⊆ P ,

consisting of every element of P that is either ≤ p2 or in the equivalence class of 0̂

in ≤∗, is in D(P,≤), but not D(P,≤∗) (since D contains p2 but not p1). However,

0̂D(P,≤∗) � D � 1̂D(P,≤∗), so by our note at the beginning of the proof, D(P,≤∗) is not

an interval of D(P,≤).

Proposition 5.27. Let (P,≤) and (P,≤∗) be a pointed order and separated extension

respectively. Then, 0̂D(P,≤∗) is in IJ(D(P,≤)) iff the equivalence class of 0̂ in ≤∗ is

{p :∈ P : p ≤ pα} for some pα ∈ P − {1̂}, and 1̂D(P,≤∗) is in IM(D(P,≤)) iff the

equivalence class of 1̂ in ≤∗ is {p :∈ P : p ≥ pβ} for some pβ ∈ P − {0̂}.

Proposition 5.28. Let (P,≤) and (P,≤∗) be a pointed order and separated extension

respectively, and pα, pβ be defined as in proposition 5.27. Then, every element of D(P,≤

) is � 0̂D(P,≤∗) or � 1̂D(P,≤∗) iff pα < pβ.
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Proof. Every element of D(P,≤) is � 0̂D(P,≤∗) or � 1̂D(P,≤∗) iff every element of D(P,≤)

that contains pβ (or any pj ≥ pβ) also contains pα (and every element pi ≤ pα). This

occurs iff pα ≤ pβ. In addition, α 6= β - otherwise 1̂ ≤∗ pβ = pα ≤∗ 0̂, which contradicts

(P,≤∗) being a pointed quasi-order.

We therefore see that conditions 1-3 correspond to the following conditions on (P,≤)

and (P,≤∗).

1’. The equivalence class of 0̂ in ≤∗ is {p :∈ P : p ≤ pα} for some pα ∈ P − {1̂}, and

the equivalence class of 1̂ in ≤∗ is {p :∈ P : p ≥ pβ} for some pβ ∈ P − {0̂}.

2’. pα < pβ.

3’. For all p1, p2 ∈ P not in the equivalence class of 0̂ or 1̂ in ≤∗, p1 ≤∗ p2 ⇒ p1 ≤ p2.

To complete the proof of theorem 5.25, we need to show that there is an instance I

and an edge e so that (Ke(I),Ls(I)) is isomorphic to (D(P,≤∗),D(P,≤)).

Suppose pβ covers pα in (P,≤); by theorem 5.12, the algorithm in algorithm 5.11

generates an instance I0 such that L1 is isomorphic to Ls(I0). Furthermore, taking e0 to

be the edge of the Hasse diagram H(P ) that is incident to both pα and pβ, let m′ = me0 ,

and w′ be the woman that m′ is partnered with in ρw(α) (if pα 6= 0̂) and ρm(β) (if

pβ 6= 1̂); we observe that (K(m′,w′)(I0),Ls(I0)) is isomorphic to (L0,L1), by noting that

the set of elements in K(m′,w′)(I0) is {M ∈ Ls(I0) : ρα ∈ ν−1(M), ρβ /∈ ν−1(M)} =

{ν(µ(D)) : D ∈ D(P,≤∗)}. (For this, µ and ν are defined as in proposition 5.4 and

theorem 2.18 respectively.)

Now, suppose pβ does not cover pα in (P,≤). Then, we need to modify the algorithm

as follows. (For this, H(P,≤) augmented by s is the Hasse diagram with the edge s

added; the meaning of edges being incident with vertices from above or below remains

the same.)

1. Perform step 1 of algorithm 5.11.

2. Let H be the Hasse diagram H(P,≤) augmented by s = (pβ, pα), and E = E(H).

The instance I will have Vm = {me : e ∈ E} and Vw = {we : e ∈ E}. (This is the
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same as step 2 of algorithm 5.11, with an extra ms and ws.)

3. Perform step 3 of algorithm 5.11.

4. For i from 1 to k, iterate the following:

(a) If i 6= α or β, perform step 4 of algorithm 5.11.

(b) If i = α or β, let ai(1) = s, and {ai(2), . . . , ai(r)} be an arbitrary ordering of

the edges incident with node i such that ai(2) is incident with node i from

above and ai(r) is incident with node i from below. For j ∈ [r], let wbi(j)

be the last choice on mai(j)’s current preference list. Then, for j ∈ [r], place

wbi(j+1) at the bottom of mai(j)’s preference list and mai(j) at the top of

wbi(j+1)’s preference list, where j + 1 is taken mod r.

It is not immediately obvious that these preference lists produce a stable marriage

instance; in order for this to be the case, we need to show that no vertex appears on

the preference list of another vertex more than once.

Lemma 5.29. No vertex appears on the preference list of another vertex more than

once.

Proof. By symmetry, it is sufficient to show that no man appears on the preference

list of any woman more than once. Let we be an arbitrary element of Vw, and me1 =

me,me2 , . . . ,mec be the vertices in we’s preference list, in the order that they are added

to we’s preference list. (Since the above algorithm only adds vertices to the top of we’s

preference list, we’s preference list is [mec ,mec−1 , . . . ,me1 ].)

If e 6= s, then by the same proof as the one presented in proposition 5.14, no man

appears on we’s preference more than once. If e = s, then c > 1 iff pα 6= 0̂ or pβ 6= 1̂;

if c > 1, let γ = β if pα = 0̂ and = α otherwise. Then, e2 is incident to the node γ

from below; the only other node that e2 incident to has a lower index than γ, so no

subsequent operation of step 4 will add another element to ws’s preference list. Now,

e2 6= s, so every element of ws’s preference list is distinct - whether c = 1 or 2.
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Now that we know that the above algorithm produces an instance, we consider the

structure of Ls(I). We do this by constructing the rotation poset and showing that it

is isomorphic to (P − {0̂, 1̂},≤) via the bijection µ, analogously to theorem 5.19. For

i ∈ [k], let

ρ(i) = ({(mai(1), wbi(1)), . . . , (mai(r), wbi(r))}, {(mai(1), wbi(2)),

. . . , (mai(r−1), wbi(r)), (mai(r), wbi(1))}).

Lemma 5.30. R(I) = {ρ(i) : i ∈ [k]}, and the bijection µ : P − {0̂, 1̂} → R(I0) such

that µ(pi) = ρ(i) is an order isomorphism between (P − {0, 1},≤) and Π(I0).

Proof. We note that M0 = {(me, we) : e ∈ E(H)} is the man-optimal stable matching

over I, since it matches each man with his top choice. Given this, we may show that the

set of all rotations over I is {ρ(i) : i ∈ [k]} by the same argument used in theorem 5.19.

By theorem 2.17 and the argument presented in theorem 5.19, Π(I)) = ({ρ(i) : i ∈

[k]},≤r), where ≤r is the transitive closure of the digraph containing all edges of the

form (ρ, ρ′) such that ρw ∩ ρ′m 6= ∅. Since every man appears in at most two rotations,

ρw ∩ ρ′m 6= ∅ iff there exists a man in ρ and ρ′; this occurs iff ρ = ρ(i1) and ρ′ = ρ(i2),

where pi2 covers pi1 in (P,≤) or (i1, i2) = (α, β). Since pα ≤ pβ, the effect of (ρ(α), ρ(β))

on the transitive closure is redundant, and we see that (P − {0̂, 1̂},≤) is isomorphic to

the transitive closure Π(I) via the bijection µ.

It remains to select an edge e and show that γ maps D(P,≤∗) to Ke(I). We note

that µ maps D(P,≤∗) = {D ∈ D(P,≤) : pα ∈ D, pβ /∈ D} to κ ≡ {d ∈ D(Π(I)) : ρ(α) ∈

D, ρ(β) /∈ D}.

Lemma 5.31. Let ν be as defined in theorem 2.18. Then, ν maps κ to K(ms,w′)(I) for

some w′ ∈ Vw(I).

Proof. If α = 0, we set w′ = ws; otherwise, we set w′ = pρw(α)(ms). Now, consider any

D ∈ D(Π(I)). The edge (ms, w
′) appears in the following rotations over I:

• If α = 0, then (ms, w
′) is in the man-optimal stable matching, and appears in no

ρw ∈ R(I); otherwise, (ms, w
′) ∈ ρw(α).
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• If β = k + 1, then (ms, w
′) is in the woman-optimal stable matching (since algo-

rithm 5.11 does not change the preference lists of ms or w′ after the αth iteration

of step 4). Otherwise, (ms, w
′) ∈ ρm(β) (since after the αth iteration of step 4,

the βth iteration is the first thime that ms - and correspondingily w′ - sees its

preference list altered).

By theorem 2.18, (ms, w
′) ∈ ν(D) iff ρ(α) ∈ D and ρ(β) /∈ D - i.e. iff D ∈ κ.

As a result, γ maps D(P,≤∗) to Ke(I) when e = (ms, w
′) (with w′ defined as in

lemma 5.31). Therefore, (K(ms,w′)(I),Ls(I)) is isomorphic to (D(P,≤∗),D(P,≤)) =

(L0,L1).

5.4 Proof of theorem 5.1

In this section, we prove theorem 5.1, which states that every covering lattice flag

(Ls,Lh) can be realized as (Ls(I),Lh(I)) for some stable marriage instance I, and

construct such an instance I. Our full construction is outlined in the following algorithm

- we note that this algorithm follows steps analogous to those in algorithm 5.11, with

step 4 in particular significantly expanded upon. The crux of the construction is to

create an instance I such that I[ψ∞I ] is the instance created by algorithm 5.11 given

(P,≤h) (see proposition 5.33), and add additional edges that change which matchings

are stable without affecting the hub of I. For this section, we define P0 and P1 to be

the equivalence classes of 0̂ and 1̂ respectively in (P,≤s).

Algorithm 5.32. Let (P,≤h) be a pointed order, and (P,≤s) be a separated extension.

Then, we construct a set of men Vm and a set of women Vw such that each vertex has

a preference list consisting of vertices of the other type as follows:

1. Let k = |P |−2, and P = {p0, . . . , pk+1} be any reference ordering of P as defined

by proposition 5.2.

2. Let H(P ) be the Hasse diagram of (P,≤h). The instance I will have Vm = {me :

e ∈ E} ∪ {mτ} and Vw = {we : e ∈ E} ∪ {wτ}.



74

3. Perform step 3 of algorithm 5.11. In addition, initialize the list of mτ by plac-

ing wτ on his preference list, and initialize the list of wτ by placing mτ on her

preference list.

4. For i from 0 to k + 1, iterate the following steps:

(a) If 0 < i < k + 1, let ai(1), . . . , ai(r) be an arbitrary ordering of the edges

incident with node i in H(P ). For j ∈ [r], let wbi(j) be the last element

of {we : e ∈ E} that appears on mai(j)’s current preference list. Then, for

j ∈ [r], place wbi(j+1) at the bottom of mai(j)’s preference list and mai(j) at

the top of wbi(j+1)’s preference list, where j + 1 is taken mod r. (This is

functionally the same as step 4 of algorithm 5.11 applied to (P,≤h), ignoring

wτ - see lemma 5.38.) In addition, if pi ∈ P − P0 − P1, we define x′(i) ∈ E

to be any edge incident to pi from below, and x(i) ∈ E to be the index of the

last woman on x′(i)’s preference list (i.e. the newly added one).

(b) If pi ∈ P −P0 −P1, then let y(i) ∈ E be any edge incident to pi from above.

Then, for every pj ∈ P − P0 − P1 such that j < i, pj �h pi, and pi covers

pj in (P,≤s), place wx(j) second from the bottom on my(i)’s preference list,

and my(i) second from the top on wx(j)’s preference list. (This ensures that

rotations corresponding to elements that are totally ordered in (P,≤s) but

not (P,≤h) are totally ordered in Π(I) but not Pi(I[ψ∞I ]) - see lemma 5.40

and lemma 5.41.)

(c) If pi is the last element of P0, then, for every e ∈ E, place mτ second from

the top of we’s preference list and we at the top of mτ ’s preference list (in

any order). (This ensures that rotations corresponding to elements of P that

are ≤s 0̂ don’t appear in Π(I) - see lemma 5.40 and lemma 5.43.)

(d) If pi is the last element of P − P1, then, for every e ∈ E, place wτ at the

bottom of me’s preference list and me at the top of wτ ’s preference list (in

any order). (This ensures that rotations corresponding to elements of P that

are ≥s 1̂ don’t appear in Π(I) - see lemma 5.40 and lemma 5.43.)

For the instance I output by algorithm 5.32, let Gh be the set of edges (m,w) such
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that m and w add each other to their preference lists in step 3 or 4a. We note that the

restriction I[Gh] is the instance I0 constructed by algorithm 5.11 on input of (P,≤h).

Proposition 5.33. Given any pointed order (P,≤h) and separated extension (P,≤s),

the preference lists created by algorithm 5.32, restricted to the elements added during

steps 3 and 4a, is the set of preference lists created by applying algorithm 5.11 to (P,≤h),

with the additional vertices mτ ∈ Vm(I[Gh]) and wτ ∈ Vw(I[Gh]) that only have one

another on their preference lists.

Proof. The instance created by running algorithm 5.32 without running steps 4b, 4c,

and 4d is trivially identical to that created by applying algorithm 5.11 to (P,≤h), with

the additional edge (mτ , wτ ), since mτ and wτ are never added to another preference

list by step 4a. Thus, to prove the proposition, we need only to show that steps 4b,

4c, and 4d never change the element of {we : e ∈ E} that appears last in any man’s

preference list.

In the ith iteration of step 4, for each relevant j < i, step 4b places a woman second

from the top of mb(i,j)’s preference list; however, mb(i,j) already has a preference list

with at least 2 terms 6= wτ (one from step 3, and one from the ith iteration of step 4a),

so this does not change the element of {we : e ∈ E} that appears last in any man’s

preference list. Step 4c only adds elements to the top of mτ ’s preference list, and step

4d can only add wτ to any man’s preference list, so we are done.

As with algorithm 5.11, it is not immediately obvious that the preference lists pro-

duced by algorithm 5.32 describe a stable marriage instance - in order for this to be

the case, we need every such preference list to consist of distinct elements.

Proposition 5.34. For all i ∈ [k] such that pi ∈ P − P0 − P1, wx(i) has mx′(i) as

the first element of her preference list, and mx′(i) has wx(i) as the last element of his

preference list in {we : e ∈ E}.

Proof. Since wx(i) and mx′(i) were added to one another’s preference lists in the ith

iteration of step 4a, wx(i) has mx′(i) as the first element of her preference list and mx′(i)

has wx(i) as the last element of his preference list. For all e ∈ E, steps 4b, 4c, and 4d
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cannot add an element to the top of we’s preference list, or put we at the bottom of

any man’s preference list; thus, we see that only step 4a could introduce an element

that breaks the property in the proposition.

Assume for the sake of contradiction that there exists a minimum j > i such that

at least one of mx′(i) and wx(i) changes their preference list in the jth iteration of step

4a. Since wx(i) is still the last element of {we : e ∈ E} on mx′(i)’s preference list

before this, pj must be incident with x′(i); however, since x′(i) is incident with pi from

below, the only other vertex x′(i) is incident with must have index < i. This creates

a contradiction, so neither vertex expands its preference list in step 4a after the ith

iteration, and so we are done.

Proposition 5.35. For all i ∈ [k] such that pi ∈ P − P0 − P1, my(i) and wy(i) do not

add any element of {we : e ∈ E − {y(i)}} or {me : e ∈ E − {y(i)}} to their preference

lists before the ith iteration of step 4a.

Proof. Since such an e has e 6= y(i), τ , we note that any such addition can only occur

in step 4a or 4b. Let j be the smallest natural number such that my(i) or wy(i) adds to

their preference list in the jth iteration of step 4a. Since step 4a is the only time that

my(i) can change the last element of {we : e ∈ E} on his preference list, this implies

that wy(i) is the last such element prior to that step. Thus, we see that y(i) must be

incident with pj and pk for some k > j. However, since y(i) is incident with pi from

above, it is incident with pi and pk for some k > i - thereby implying that i = j.

Furthermore, since the only vertices that y(i) is incident to have index ≥ i, y(i) 6=

x(j) or y(j) for any j < i. As a result, we see that the preference lists of my(i) and wy(i)

are unchanged by steps 4a and 4b before the ith iteration, and so we are done.

Proposition 5.36. As functions from [k] to E, x(i) and y(i) are both injections.

Proof. Consider any i, j ∈ [k] such that i < j. Then, y(i) and y(j) are incident to pi

and pj from above respectively; since pi 6= pj , y(i) 6= y(j).

Now, suppose that x(i) = x(j). This implies that mx′(j) was added to the top of

wx(i)’s preference list during the jth iteration of step 4a. However, this contradicts
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proposition 5.34, so this cannot happen.

Proposition 5.37. Given any pointed order (P,≤), let Vm and Vw (and their corre-

sponding preference lists) be defined as in algorithm 5.32. Then, for all m ∈ Vm, w ∈ Vw,

m and w appear in one another’s preference lists at most once.

Proof. Since mτ and wτ initially have one another as the only elements of their respec-

tive preference lists, and only add additional elements in step 4c and 4d respectively,

they both have preference lists with no repeated elements and appear in each other

vertex’s preference list at most once; by this property and the apparent symmetric

property, it is sufficient to show that for any e, e′ ∈ E, me′ appears on we’s preference

list at most once. By proposition 5.14, steps 3 and 4a together don’t add any me′ to

we’s preference list more than once, so we only need to show that step 4b does not

cause any duplicates. (Steps 4c and 4d cannot add any me′ to we’s preference list when

e, e′ ∈ E, so we only need to show that we don’t create duplicates with steps 3, 4a, and

4b.)

Consider any edge (me′ , we) such that we adds me′ to her preference list in step 4b;

then, e = x(j) and e′ = y(i) for some i, j ∈ [k] such that j < i. We note that we’s

preference list is added to in the jth iteration of step 4a and - by proposition 5.34 -

not in any subsequent one. By proposition 5.35, me′ ’s preference list is not changed

by any iteration of step 4a before the ith one; therefore, since i > j, no iteration of

step 4a changes both preference lists, which is necessary in order to add me′ to we’s

preference list. Similary, by proposition 5.35, we′ ’s preference list is not changed in the

jth iteration of step 4a, so e 6= e′ and so me′ is not added to we’s preference in step 3.

As a result, we see that the theorem holds iff for any given e, e′ ∈ E, step 4b adds

me′ to we’s preference list at most once. In total, for each pi, j ∈ P − P0 − P1 such

that i > j, step 4b adds my(i) to wx(j)’s preference list at most once. Furthermore, by

proposition 5.36, the function that maps (i, j) to (y(i), x(j)) is an injection, so we are

done.
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5.4.1 The Structure of Lh(I) and Ls(I)

In order to show that this construction creates an instance I where (Ls(I),Lh(I)) is

isomorphic to (D(P,≤s),D(P,≤h), we show the following lemmas centered around the

restriction I[Gh], in this order. Recall that ψ∞I is the unique hub of I.

• The lattice of stable matchings over I[Gh] is isomorphic to D(P,≤h) via an order

isomorphism γ (see lemma 5.38).

• The lattice of the stable matchings over I which are ⊆ I[Gh] is isomorphic to

D(P,≤s) via γ (see lemma 5.40).

• ψ∞I = Gh, and the set of hub-stable matchings over I is the set of stable matchings

over I[Gh] (see theorem 5.44).

We now begin proving the necessary lemmas. For all i ∈ [k], we define ρm(i) =

{(mai(t), wbi(t)) : t ∈ [ri]} and ρw(i) = {(mai(t), wbi(t+1)) : t ∈ [ri−1]}∪{mai(r), wbi(1))}.

Naturally, ρ(i) = (ρm(i), ρw(i)). We also recall the functions ν and µ, defined as in

theorem 2.18 and proposition 5.4 respectively).

Lemma 5.38. The lattice of stable matchings over I[Gh] is isomorphic to Lh. Fur-

thermore, R(I[Gh]) = {ρ(i) : i ∈ [k]}, the bijection µ : P −{0̂, 1̂} → R(I[Gh]) such that

µ(pi) = ρ(i) is an order isomorphism between (P −{0, 1},≤h) and π(I[Gh]), and every

edge in Gh appears in some stable matching over I[Gh].

Proof. We note by proposition 5.33 that I[Gh] is identical to the instance created by

algorithm 5.11 given (P,≤), with the additional vertices mτ and wτ that have one

another on their preference lists; as a result, the first three statements in the lemma

hold by theorem 5.19. In addition, every edge in Gh is either (mτ , wτ ) (which vacuously

appears in every stable matching over I[Gh], as neither vertex has any other acceptable

partner), or appears in some ρ(i); therefore, every edge in Gh appears in some stable

matching over I[Gh].

In particular, by theorem 5.12, we may identify an isomorphism γ = ν ◦ µ from

D(P,≤h) to the stable matchings in I[Gh].
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Lemma 5.39. Let i, j ∈ [k] such that pi, pj ∈ P − P0 − P1, i > j, pi �h pj, and

pi covers pj in (P,≤s). Then, my(i) ∈ ρ(i) and wx(j) ∈ ρ(j). Furthermore, my(i)

prefers pρm(i)(my(i)) to wx(j) to pρw(i)(my(i)), and wx(j) prefers pρw(j)(wx(j)) to my(i) to

pρm(j)(wx(j)).

Proof. Since y(i) and x(j) are incident with pi and pj respectively, y(i) = ai(s) and

x(j) = bj(t) for some s ∈ ri, t ∈ rj . We note that mai(s) has wbi(s) = pρm(i)(my(i))

as the last element of {we : e ∈ E} on his preference list before the ith iteration of

step 4a, adds wbi(s+1) = pρw(i)(my(i)) (with s+ 1 taken mod ri) to the bottom of his

preference list then, and adds wx(j) second from the bottom in the ith iteration of step

4b; consequentially, my(i) prefers pρm(i)(my(i)) to wx(j) to pρw(i)(my(i)).

Similarly, we note that wbj(t) has maj(t) = pρm(j)(wx(j)) as the first element on her

preference list before the jth iteration of step 4a, adds maj(t−1) = pρw(j)(wx(j)) (with

s − 1 taken mod rj) to the top of her preference list then, and adds my(i) second

from the top in the ith iteration of step 4b. By proposition 5.34, the top element of

wx(j)’s preference list does not change after the ith iteration of step 4a, so wx(j) prefers

pρw(j)(wx(j)) to my(i) to pρm(j)(wx(j)).

The stable matchings over I[Gh] are perfect matchings, and retain this property

over the larger instance I. We can use lemma 5.39 to show which of these matchings

preserve the property of being stable over the larger instance. Let Sb, Sc, and Sd be

set of all edges e ∈ E(G(I)) such that me and we add one another to each other’s

preference lists in step 4b, 4c, and 4d respectively.

Lemma 5.40. Let S ∈ D(P,≤h). Then, γ(S) is stable in I iff S ∈ D(P,≤s).

Proof. Suppose S ∈ D(P,≤h). As noted by lemma 5.38, the matching γ(S) is Gh-stable.

We consider whether S is Sb-stable, Sc-stable, and Sd-stable.

• We note that Sb is the set of all edges of the form e = (my(i), wx(j)), where

pi, pj ∈ P − P0 − P1, i > j, pi �h pj , and pi covers pj in (P,≤s). By lemma 5.39,

my(i) prefers pρm(i)(my(i)) to wx(j) to pρw(i)(my(i)), and wx(j) prefers pρw(j)(wx(j))

to my(i) to pρm(j)(wx(j)); therefore, by the definition of γ, wa prefers pγ(S)(wa)
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to mb iff S contains pi, and mb prefers pγ(S)(mb) to wa iff S does not contain

pj . Therefore, γ(S) is {e}-stable iff pi ∈ S ⇒ pj ∈ S, and γ(S) is Sb-stable iff

pi ∈ S ⇒ pj ∈ S for all i, j ∈ [k] such that i < j, pi �h pj , and pi ≤s pj .

• Since (mτ , wτ ) ∈ γ(S) for all S ∈ D(P,≤h), γ(S) is Sc-stable iff every woman other

than wτ prefers her partner in γ(S) to mτ . This occurs iff each such woman weakly

prefers her partner in γ(S) to her partner in γ(Tm), where Tm = {p ∈ P : p ≤s 0̂}

- which occurs iff S ⊇ Tm.

• Since (mτ , wτ ) ∈ γ(S) for all S ∈ D(P,≤h), γ(S) is Sd-stable iff every man other

than mτ prefers his partner in γ(S) to wτ . This occurs iff each such man weakly

prefers his partner in γ(S) to his partner in γ(Tw), where Tw = {p ∈ P : p �s 1̂}

- which occurs iff S ⊆ Tw.

Thus, we see that S is {e}-stable for every e ∈ G(I) iff it fulfills every condition for

being in D(P,≤s).

Since every stable matching in I that consists entirely of edges in Gh is also stable

in I[Gh], we see that γ is a bijection from D(P,≤s) to the stable matchings of I that

consisit entirely of edges in Gh. This set of stable matchings, which we define as S,

is obviously closed under join and meet (as the join and meet of two stable matchings

consist of edges from those matchings).

We now aim to show that ψ∞(I) = Gh. Since every edge in Gh appears in some

element of S, ψ∞(I) ⊇ ∪S∈SS. Therefore, we need only to show that for every edge

e0 = (me, we) /∈ ∪S∈SS, e /∈ ψ∞(I).

Lemma 5.41. If e ∈ Sb, then e /∈ ψ∞I .

Proof. By the definition of step 4b, we may find i, j ∈ [k] such that me = my(i) and

we = wx(j); in particular, we note that i > j, pi �h pj , pi covers pj in (P,≤s). Let

D1 be the minimal element of D(P,≤s) that contains pj (i.e. the set of all p ≤s pj),

and D2 ≡ D1 − {pi, pj}. (We know that D2 ∈ D(P,≤s) as well because pj covers pi.)

Since both downsets are also in D(P,≤h), M1 ≡ γ(D1) and M2 ≡ γ(D2) are stable

matchings over I, and M2 dominates M1. As a result, we can consider the subinstance
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I∗ = I(M2,M1). It is trivial to see that Π(I∗[Gh]) = ({ρ(i), ρ(j)},≤h); furthermore,

the rotations ρ(i) and ρ(j) don’t share any vertices (since they are independent over

Π(I[Gh]), so Gh ∩G[I∗] = M2 ∪ ρw(i) ∪ ρw(j).

Lemma 5.42. Sb ∩G[I∗] = e.

Proof. By lemma 5.39, e ∈ G[I∗]; it is also in Sb. Thus, to prove the lemma, we only

need to show that if e0 ∈ Sb ∩G[I∗], then e0 = e.

Any e0 ∈ Sb can be expressed as (m0, w0) = (my(i0), wx(j0)) for some i0, j0 ∈ [k]

such that i0 > j0, pi0 , pj0 ∈ P − P0 − P1, and pi0 > pj0 . If pi0 /∈ D1, then m0 prefers

pM1(m0) to pρm(i0)(m0); since m0 strictly prefers pρm(i0)(m0) to w0 by lemma 5.39, e0

cannot be in I∗. Similarly, if pj0 ∈ D2, then w0 prefers pM2(w0) to pρw(j0)(w0); since

w0 strictly prefers pρw(j0)(w0) to m0 by lemma 5.39, e0 cannot be in I∗.

As a result, we see that if e0 ∈ Sb∩G[I∗], then pi0 ∈ D1, pj0 /∈ D2, pi0 ≥s pj0 . Since

D1 and D2 are both downsets in (P,≤s), this implies that pi0 , pj0 ∈ D1−D2 = {pi, pj}.

However, since i0 > j0, we see that i0 = i and j0 = j, and so we are done.

We also note that I∗ contains no edge in Sc or Sd (since for all e′ ∈ E, we′ prefers

pM2(we′) to mτ , and me′ prefers pM1(me′) to wτ . As a result, G[I∗] consists of some

number of isolated vertices (the edges M1 and M2 share), two even cycles (ρm(i)∪ρw(i)

and ρm(j) ∪ ρw(j)) and the single edge e between the two cycles. I∗ is satisfactory (as

it contains the perfect stable matching M1), so any hub-stable matching in it must be

perfect as well. However, e is not contained in any perfect matching, so it cannot be in

ψ∞I∗ ; by corollary 4.37, e /∈ ψ∞I .

Lemma 5.43. If e ∈ Sc ∪ Sd, then, e /∈ ψ∞I .

Proof. Assume, for the sake of contradiction, that the lemma is false; then, there exists

a hub-stable matching M∗ such that mτ and wτ are not matched with each other.

Let M0 be any stable matching over I that includes (mτ , wτ ) as an edge - we know

such a matching exists by lemma 5.40. Since M∗ and M0 are hub-stable, they must

be costable as well. However, mτ and wτ are partnered in M0, and both prefer their
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respective partners in M∗ to each other; this creates a contradiction, and so no such

M∗ can exist.

Theorem 5.44. ψ∞I = Gh.

Proof. As a consequence of lemma 5.41 and lemma 5.43, ψ∞I ⊆ Gh, and so Gh ⊇

ψI(Gh). However, by lemma 5.38, every edge e ∈ Gh appears in some Gh-stable match-

ing Me over I[Gh]; this matching remains Gh-stable over I, so e ∈ ψI(Gh). This means

that Gh ⊆ ψI(Gh), so Gh = ψI(Gh) - implying that Gh = ψ∞I .

Corollary 5.45. The set of hub-stable matchings over I is the set of stable matchings

over I[Gh].

Since every stable matching is hub-stable, every stable matchings over I appears in

S, as defined in lemma 5.40. Consequentially, D(P,≤h) and D(P,≤s) have the desired

structure.

We are now ready to finish proving theorem 5.1.

Proof. By theorem 5.7, we may find a pointed order (P,≤h) and a separated exten-

sion (P,≤s) such that (D(P,≤s),D(P,≤h)) is isomorphic to (Ls,Lh). Let I be the

instance created by algorithm 5.32 given (P,≤h) and (P,≤s). By corollary 5.45 and

lemma 5.38, the lattice of hub-stable matchings over I is isomorphic to Lh, and the

bijection γ maps D(P,≤h) to the set of all hub-stable matchings over I. Furthermore,

by lemma 5.40, γ also maps D(P,≤s) to the set of all stable matchings over I that are

⊆ Gh; however, every stable matching is hub-stable, and every hub-stable matching is

⊆ Gh by theorem 5.44, so γ maps D(P,≤s) to the set of all stable matchings over I.

Therefore, (Ls(I),Lh(I)) is isomorphic to (D(P,≤s),D(P,≤h)) - which is isomorphic

to (Ls,Lh).

5.5 Lattices of the Odd-Stable Matchings

We recall that a matching is k-stable over I if it is ψkI (∅)-stable. In our construc-

tion for the previous section, we note that Lh is also the lattice of 3-stable matchings
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over I. As an extension of the above, we may consider what the sequence {L0(I) =

Ls(I),L1(I), . . . ,Lz(I) = Lh(I)} can look like, where z ∈ N and Lr(I) is the poset of

(2r + 1)-stable matchings over I for 0 ≤ r ≤ z.

Proposition 5.46. For all r ≤ z, Lr(I) is a distributive lattice under the domination

ordering.

Proof. Every (2r + 1)-stable matching M is ⊆ ψ2r+2
I (∅) ⊆ ψ∞I ⊆ ψ2r+1

I (∅); consequen-

tially, by theorem 3.9, Lr(I) is a distributive lattice under the domination ordering.

Proposition 5.47. For all r ∈ [z], Lr−1(I) is a cover-preserving sublattice of Lr(I).

Proof. Consider the instance Ir−1 = I[ψ2r−1
I (∅)]; over this instance, Lr−1(I) is the

lattice of stable matchings and Lr(I) is the lattice of 3-stable matchings. By theorem 4.9

and theorem 3.11, Lr−1(I) is a sublattice of Lr that preserves the property of covering.

Corollary 5.48. For all r < r′, Lr(I) is a cover-preserving sublattice of Lr′(I).

As a result, we see that (L0(I),L1(I), . . . ,Lz(I)) is a covering lattice z-flag. There

are three additional properties of such a lattice z-flag that do not have an analogue in

(Ls(I),Lh(I)).

Proposition 5.49. For any r ∈ [z], let M0 and M1 be the man-optimal and woman-

optimal matchings in Lr−1 respectively, and [M0,M1] ⊆ Lh is the set of all hub-stable

matchings M such that M0 �M �M1. Then, [M0,M1] ⊆ Lr.

Proof. By definition, ψ2r
I (∅) is the union of all ψ2r−1

I (∅)-stable matchings - i.e. the

union of all elements of Lr−1. As noted by the construction in theorem 4.39, ψ2r+1
I (∅)

is the union of ψ2r
I (∅) and some E ⊆ G(I) such that every e ∈ E fulfills one of the

following conditions:

• me prefers we to pM0(me) and we prefers pM0(we) to me.

• we prefers me to pM1(we) and me prefers pM1(me) to we.
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For an arbitrary hub-stable M ∈ [M0,M1], every man m weakly prefers pM (m) to

pM1(m) and every woman w weakly prefers pM (w) to pM0(w); consequentially, M is {e}-

stable for every e ∈ E. M is also ψ2r
I (∅) -stable, since ψ2r

I (∅) ⊆ ψ∞I . Consequentially,

M must be ψ2r+1
I (∅)-stable, and so ∈ Lr.

Proposition 5.50. For any r ∈ [z−1], if a matching M0 is the man-optimal matching

in Lr−1 and Lr, then it is the man-optimal matching in Lr′ for all r ≤ r′ ≤ z.

Proof. Consider the subinstance I ′ ≡ I(M0,∅), the restriction of I to all edges e ∈ G(I)

such that me weakly prefers we to pM0(me). We note that ψ2r
I (∅)∩G(I ′) = ψ2r+2

I (∅)∩

G(I ′) = M0, so by theorem 4.29 and the fact that M0 is (2r−1)-stable, ψ2
I′(M0) = M0.

This also informs us that ψ2s
I′ (M0) = M0 for all s ∈ N. M0 is trivially in Lr′ for all

r′ > r as well, so by theorem 4.29, ψ2r′+2
I (∅) ∩ G(I ′) = ψ

2(r′−r+1)
I (ψ2r

I (∅)) ∩ G(I ′) =

ψ
2(r′−r+1)
I′ (M0) = M0. However, since M0 ∈ Lr′ , the man-optimal matching in Lr′ must

weakly dominate it - i.e. consist only of edges in G(I ′). The only such edges that can

appear in a ψ2r′+1
I -stable matching are those in M0, so M0 is left as the only candidate

for the man-optimal matching in Lr′ .

Corollary 5.51. For any r ∈ [z−1], if a matching M0 is the woman-optimal matching

in Lr−1 and Lr, then it is the woman-optimal matching in Li for all r ≤ i ≤ z.

By the Birkhoff Representation Theorem, we construct a pointed order (P,≤) to

create an isomorphism between Lh and D(P,≤). Since Lr is a cover-preserving sublat-

tice of Lh for all r ∈ z, we can identify for each Lr a corresponding extension (P,≤r).

(Note that ≤z is the same as ≤.) By the fact that every Lr−1 is a cover-preserving

sublattice of Lr for r ∈ [z], (P,≤r−1) is an extension of (P,≤r) with the property

that all equivalence classes other than those that include 0̂ and 1̂ have size exactly 1.

Furthermore, we note the following property.

Theorem 5.52. Let p1, p2 ∈ P such that at least one is ≤0 0̂ or ≥0 1̂, and r ∈ [z]

be the least element such that both p1 and p2 are in their own equivalence classes in

(P,≤r). If p2 covers p1 in (P,≤r) and p1 �z p2, then p1, p2 ≤r−1 0̂ or p1, p2 ≥r−1 1̂.
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We ultimately prove this by the following proposition. For this propostion, we use

the following notation:

• The lattice of hub-stable matchings over I, Lh(I), corresponds to D(P,≤h).

• The lattice of 3-stable matchings over I, Lc(I), corresponds to D(P,≤c).

• The lattice of stable matchings over I, Ls(I), corresponds to D(P,≤s).

Proposition 5.53. Let p1, p2 ∈ P . If 1̂ �c p1, p2 �c 0̂, p2 covers p1 in (P,≤c), and

p1 �h p2, then either p1, p2 ≤s 0̂ or p1, p2 ≥s 1̂.

Proof. Let ρ1 = µ(p1), ρ2 = µ(p2) be rotations over I[ψ∞I ] as defined by proposition 5.4.

Since p1 and p2 aren’t ordered in (P,≤h), we know that ρ1 and ρ2 don’t share any ver-

tices; WLOG, we say ρ1 = ({(m1, w1), . . . , (ma, wa)}, {(m1, w2), . . . , (ma−1, wa), (ma, w1)})

and ρ2 = ({(ma+1, wa+1), . . . , (mb, wb)}, {(ma+1, wa+2), . . . , (mb−1, wb), (mb, wa+1)}). Since

p2 covers p1 in (P,≤c), we see that there must exist two 3-stable matchings M,M ′′ such

that (ρ1)m ∪ (ρ2)m ⊆ M and M ′′ = M ∪ (ρ1)w ∪ (ρ2)w − (ρ1)m − (ρ2)m. Furthermore,

the matching M ′ = M ∪ (ρ1)w − (ρ1)m is hub-stable, but not 3-stable.

This implies the existence of an edge e ∈ ψ3
I (∅) that destabilizes M ′, but not M or

M ′′. We make the following observations about e.

• If me /∈ ρ2, then pM ′(me) = pM (me), and we prefers pM ′(we) to pM (we); therefore,

if e destabilizes M ′, it also destabilizes M . This contradicts M being 3-stable, so

me or we is in ρ2.

• If we /∈ ρ1, then pM ′(we) = pM ′′(we), and me prefers pM ′(me) to pM ′′(me);

therefore, if e destabilizes M ′, it also destabilizes M ′. This contradicts M ′′ being

3-stable, so me or we is in ρ1.

Therefore, me ∈ ρ2 and we ∈ ρ1. (WLOG, we may assume that me = mb and we = w1.)

In order to ensure that e destabilizes only M ′, we must have mb prefer wb to w1 to

wa+1, and w1 prefer ma to mb to m1. However, since M ′ is hub-stable, e /∈ ψ∞I ;

consequentially, by theorem 4.46, e must uphold one of the following:
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• mb prefers w1 to his partner in the man-optimal stable matching M0 over I.

However, wa+1 is mb’s top choice among the women that he prefers w1 to, and

can be partnered with in a 3-stable matching. M0 is also a 3-stable matching,

so mb also prefers wa+1 to pM0(mb); this means that mb strictly prefers wb to

pM0(mb). However, this means that µ−1(M0) contains p2; since µ−1(M0) is the

smallest downset in D(P,≤s), then every downset in it contains p2, so p2 ≤s 0̂.

In addition, p1 ≤s p2 (since ≤s is an extension of ≤c), so p1 ≤s 0̂ as well.

• w1 prefers mb to her partner in the woman-optimal stable matching M1 over I.

However, m1 is w1’s top choice among the men that she prefers mb to, and can

be partnered with in a 3-stable matching. M1 is also a 3-stable matching, so w1

also prefers m1 to pM1(w1); as a result, w1 does not strictly prefer pM1(w1) to

m1. However, this means that µ−1(M1) does not contain p1; since µ−1(M1) is

the largest downset in D(P,≤s), then every downset in it does not contain p1, so

p1 ≥s 1̂. In addition, p2 ≥s p1 (since ≤s is an extension of ≤c), so p2 ≥s 1̂ as well.

We note that this generalizes to theorem 5.52.

Proof. Consider the instance I ′ = I[ψ2r−1
I (∅)]. By corollary 4.28 and theorem 4.9,

Ls(I ′) = Lr−1(I), Lc(I ′)Lr(I), and Lh(I ′) = Lz(I ′); they correspond to D(P,≤r−1),

D(P,≤r), and D(P,≤z) respectively. By proposition 5.53, we see that p1, p2 ≤r−1 0̂ or

p1, p2 ≥r−1 1̂.

5.6 The Example For the 3-Lattice Flags

The results of the previous section tell us that if {D(P,≤z),D(P,≤z−1, . . . ,D(P,≤0)}

is isomorphic to {L0(I) = Ls(I),L1(I), . . . ,Lz(I) = Lh(I)} for some instance I, then

the following properties must hold:

• For all r ∈ [z], (P,≤r−1) is an extension of (P,≤r) with the property that all

equivalence classes other than those that include 0̂ and 1̂ have size exactly 1.



87

• Let r ∈ [z]. Then, for every p, p′ ∈ P not in the same equivalence class of (P,≤r),

p covers p′ in (P,≤r+2) iff p cover p′ in (P,≤r+1).

• For any r ∈ [z], if the equivalence classes of 0̂ in (P,≤r) and (P,≤r−1) are the

same, then both are {0̂}.

• For any r ∈ [z], if the equivalence classes of 1̂ in (P,≤r) and (P,≤r−1) are the

same, then both are {1̂}.

We conjecture that these conditions are the only necessary conditions for such a

lattice z-flag. While we have not yet been able to show that this is the case, we have

determined that these are the only necessary conditions for such a lattice 3-flag. For

the following, Lc(I) ≡ L1(I) is the lattice of 3-stable matchings over I.

Theorem 5.54. Let (P,≤h) be a pointed order, (P,≤c) be a separated extension of

(P,≤h), and (P,≤s) be a separated extension of (P,≤c) such that the following condi-

tions are upheld:

• For any p1, p2 ∈ P such that 1̂ �c p1, p2 �c 0̂, p2 covers p1 in (P,≤c), and

p1 �h p2, either p1, p2 ≤s 0̂ or p1, p2 ≥s 1̂.

• If the equivalence classes of 0̂ are the same for ≤s and ≤c, then both are {0̂}.

• If the equivalence classes of 1̂ are the same for ≤s and ≤c, then both are {1̂}.

Then, there exists an instance I such that (Ls(I),Lc(I),Lh(I)) is isomorphic to (D(P,≤s

),D(P,≤c),D(P,≤h)).

We show this via the following construction. For this construction, P0 and P1 are

the equivalence classes of 0̂ and 1̂ respectively in (P,≤c). In addition, P ∗0 and P ∗1 are

the equivalence classes of 0̂ and 1̂ respectively in (P,≤s).

Algorithm 5.55. Let (P,≤h) be a pointed order, (P,≤c) be a separated extension of

(P,≤h), and (P,≤s) be a separated extension of (P,≤c) such that the conditions in

theorem 5.54 are upheld. We construct a set of men Vm and a set of women Vw such

that each vertex has a preference list consisting of vertices of the other type as follows:
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1. Let k = |P |−2, and P = {p0, . . . , pk+1} be any reference ordering of P as defined

by proposition 5.2.

2. Let H(P ) be the Hasse diagram of (P,≤h), and E = E(H(P )). The instance

I will have Vm(I) = {me : e ∈ E} ∪ {mτ ,mτ ′ ,mτ ′′}, and Vw(I) = {we : e ∈

E} ∪ {wτ , wτ ′ , wτ ′′}.

3. Perform step 3 of algorithm 5.32. In addition, initialize the lists of mτ ′ and wτ ′

by placing each on the other’s preference list, and initialize the lists of mτ ′′ and

wτ ′′ by place each on the other’s preference list.

4. For i from 0 to k + 1, iterate the following steps:

(a) Perform step 4a of algorithm 5.32.

[QUESTION: WHERE TO PUT ACCEPTABLE LISTS?]

(b) If pi ∈ P −P0−P1, then let y(i) ∈ E be any edge incident to pi from a bove,

and y′(i) ∈ E be the index of the last woman of {we : e ∈ E} on my(i)’s

preference list. Then, do the following:

i. If pi ∈ P ∗0 , then, for every pj ∈ P ∗0 − P0 such that j < i, pj �h pi, and

pi covers pj in (P,≤c), place wx(j) second from the bottom on my(i)’s

preference list, my(i) second from the top on wx(j)’s preference list, wy′(i)

in mx′(i)’s ”acceptable list,” and mx′(i) on wy′(i)’s ”icky list.”

ii. If pi ∈ P ∗1 , then, for every pj ∈ P ∗1 − P1 such that j < i, pj �h pi, and

pi covers pj in (P,≤c), place wx(j) second from the bottom on my(i)’s

preference list, my(i) second from the top on wx(j)’s preference list, wy′(i)

in mx′(i)’s ”icky list,” and mx′(i) on wy′(i)’s preference list directly above

mτ ′′.

iii. Otherwise, for each pj ∈ P − P ∗0 − P ∗1 such that j < i, pj �h pi, and

pi covers pj in (P,≤s), place wx(j) second from the bottom on my(i)’s

preference list, and my(i) second from the top on wx(j)’s preference list.

(c) If pi is the last element of P0 and P0 ⊂ P ∗0 , then, for every edge e ∈ E

that is incident with pj for some j ≤ i, do the following: place mτ ′ second
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from the top of we’s preference list and we at the top of mτ ′’s preference

list (in any order). In addition, place all women on me’s ”acceptable list”

second from the bottom of me’s preference list (in any order). Lastly, place

wτ ′ second from the bottom of me’s preference list, and me at the bottom of

wτ ’s preference list (in any order). [QUESTION: IS THIS RIGHT?]

(d) If pi is the last element of P ∗0 , then, for every e ∈ E, place mτ second from

the top of we’s preference list and we at the top of mτ ’s preference list (in

any order).

(e) If pi is the last element of P − P ∗1 , then, for every e ∈ E, place wτ at the

bottom of me’s preference list and me at the top of wτ ’s preference list (in

any order).

(f) If pi is the last element of P − P1 and P1 ⊂ P ∗1 , then, for every edge e ∈ E

that is incident with pj for some j > i, do the following: place wτ ′′ at the

bottom of me’s preference list and me at the top of wτ ′′’s preference list

(in any order). In addition, for every e′ ∈ E such that the first man on

we′’s preference list is such an me, place mτ ′′ second from the top of we′’s

preference list, and we′ at the bottom of mτ ′′’s preference list (in any order).

5. For each vertex v, place all other vertices on v’s ”icky list” at the bottom of v’s

preference list (in any order).
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Chapter 6

The Structure of Fractional S-Stable Matchings

Given any n ∈ N, we can consider the representation of Rn2
such that the elementary

real variables are of the form {xi,j : i, j ∈ [n]}. The convex hull of some number of

elements Q = {q̂1, . . . , q̂k} of Rn2
consists of all x̂ such that x̂ =

∑k
i=1 ciq̂i, where ci ≥ 0

for all i and
∑k

i=1 ci = 1. Any convex hull is also a polytope - the set of all points Rz

(for some z ∈ N) that uphold a given set of linear equalities and inequalities.

Any matching M over Kn,n with vertex set {m1, . . . ,mn} ∪ {w1, . . . , wn} can be

considered as the element of Rn2
such that xi,j = 1 if (mi, wj) ∈M and = 0 otherwise.

For this section, we will work under the assumption that the n×n instance I is complete

(and thereby satisfactory as well). The space that we consider is within the convex

hull of all perfect matchings over Kn,n, which we refer to as the fractional perfect

matchings; by the following theorem, which George Dantzig attributes to Garrett

Birkhoff ([Bir46]), we can describe it as a polytope.

Theorem 6.1. We can represent the convex hull of all perfect matchings over Kn,n as

a polytope on the domain of functions wt : E(G(I))→ R with the following constraints:

1. For all (m,w) ∈ E(G(I)), wt(m,w) ≥ 0.

2. For all m ∈ Vm,
∑

w∈Vw wt(m,w) = 1.

3. For all w ∈ Vw,
∑

m∈Vm wt(m,w) = 1.

([Dan63], Chapter 15, Theorem 1)

Any element of the convex hull of the stable matchings is a fractional stable

matching. These structures are already well understood, and the set of constraints

that define it as a polytope were noted by John Vande Vate.
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Theorem 6.2. Given an n×n complete instance I, we can represent the set of fractional

stable matchings over I as a polytope on the domain of functions wt : E(G(I)) → R

with the following constraints:

1. For all (m,w) ∈ E(G(I)), wt(m,w) ≥ 0.

2. For all m ∈ Vm,
∑

w∈Vw wt(m,w) = 1.

3. For all w ∈ Vw,
∑

m∈Vm wt(m,w) = 1.

4. For all (m,w) ∈ E(G(I)), wt(m,w) +
∑

w′<mw
wt(m,w′) +

∑
m′<wm

wt(m′, w) ≤

1.

([VV89], Theorem 1)

In a similar fashion, for any S ⊆ E(G(I)) we state that any element of the convex

hull of the S-stable matchings is a fractional S-stable matching, and any element

of the convex hull of hub-stable matchings is a fractional hub-stable matching. In

this chapter, we consider how to determine the necessary and sufficient conditions for

the fractional S-stable matchings, considered as a polytope.

One thing that we note about the conditions listed in theorem 6.2 is that they fit

into four categories: we identify four similar categories of constraints that are obviously

necessary for the polytope of fractional S-stable matchings.

1. Q1: For all (m,w) ∈ E(I), wt(m,w) ≥ 0.

2. Q2: For all m ∈ Vm(I),
∑

w∈Vw(I)wt(m,w) = 1.

3. Q3: For all w ∈ Vw(I),
∑

m∈Vm(I)wt(m,w) = 1.

4. Q4(S): For all (m,w) ∈ S, wt(m,w) +
∑

w′<mw
wt(m,w′) +

∑
m′<wm

wt(m′, w) ≤

1.

It is straightforward to see that the polytope PS of fractional S-stable matchings

over I must be constrained by these four conditions - the vertices of this polytope,

which are the S-stable matchings, are. Consequentially, it is natural to ask whether,
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for arbitrary S, the conditions {Q1, Q2, Q3, Q4(S)} are sufficient to constrain PS . This

is not the case; however, we can show that this does hold for S = ψkI (∅) for some k ∈ N.

(We recall that the k-stable matchings over I are the ψkI (∅)-stable matchings.)

Theorem 6.3. For all k ∈ N, the polytope Pk of fractional k-stable matchings for

an n × n instance I is the set of all wt : E(G(I)) → R that uphold the constraints

{Q1, Q2, Q3, Q4(ψkI (∅))}.

In Section 6.3, we conjecture at how we could find a list of sufficient conditions to

constrain the S-stable matchings over I, using experimental observations.

6.1 The Polytope of Hub-Stable Matchings

After the perfect matchings and the stable matchings, the next most natural polytope

of fractional matchings to consider is the polytope of fractional hub-stable matchings.

The necessary and sufficient conditions in order to constrain these matchings follows as

the natural extension of theorem 6.2.

Theorem 6.4. Let Ph be the polytope of weight functions wt : E(I)→ R constrained by

the conditions {Q1, Q2, Q3, Q4(ψ∞I )}. Then, Ph is the polytope of fractional hub-stable

matchings over the instance I.

It is obvious that this set of conditions is necessary; however, we still need to show

that it is sufficient. The proof of this theorem uses our prior knowledge on the structure

of ψ∞I and the hub-stable matchings.

For arbitrary S ⊆ E(G(I)), we use Q5(S) to represent the family of constraints

such that for all (m,w) /∈ S, wt(m,w) = 0. By theorem 6.2, we note that the polytope

of fractional stable matchings over I[ψ∞I ] - i.e. the polytope of fractional hub-stable

matchings over I - can be constrained by {Q1, Q2, Q3, Q4(ψ∞I ), Q5(ψ∞I )}. However, in

order to show that the constraints in Q5(ψ∞I ) are redundant, we need to prove the

following lemma:

Lemma 6.5. For any wt ∈ Ph and edge e /∈ ψ∞I , wt(e) = 0.

We prove this lemma via three sublemmas.
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Lemma 6.6. Let PI be defined as above, and M0 be the man-optimal hub-stable match-

ing for I. Then, for any wt ∈ PI and edge e ∈ E(I) such that me strictly prefers we to

pM0(me) or we strictly prefers pM0(we) to me, wt(e) = 0.

Proof. By theorem 2.25, we may set Vm = {m1,m2, . . . ,mn} and Vw = {w1, w2, . . . , wn}

such that M0 = (mi, wi) : i ∈ [n] is the man-optimal hub-stable matching and for all

i < j ≤ n, mi prefers wi to wj . For the sake of contradiction, assume that there exists a

wt ∈ PI and edge (mk, wj) such that mk strictly prefers wj to wk, and wt(mk, wj) > 0;

WLOG, we may assume that we select (mk, wj) such that k is minimized.

We now consider the matching M ′ ≡ M ′{k}, as defined for theorem C.3. By the-

orem C.3, M ′ is hub-stable. We note that pM ′(mk) = wk, and for all i ∈ [k − 1],

pM ′(mi) = wi′ for some i′ ∈ [k − 1]; furthermore, each such wi′ prefers mi to mk. As

one final observation, we recall that M ′ = M{k} ∪ {(mi, wi) : k < i ≤ n}, where M{k}

is the man-optimal stable matching over I[{(mi, wi′) : i, i′ ≤ k}]; as a result, if i, i′ ≤ k

and mi prefers wi′ to pM ′(mi), then wi′ prefers pM ′(wi′) to mi (otherwise, (mi, w
′
i)

would destabilize M{k} over I[{(mi, wi′) : i, i′ ≤ k}]).

Since M ′ ⊆ ψ∞I ,
∑

w′∈Vw(I):w′>mw
wt(m,w′) ≥

∑
m′∈Vm(I):m′<wm

wt(m′, w) for all

(m,w) ∈M ′. Adding these inequalities for all m ∈ {mi : i < k} gives us that∑
(mi,w):i<k,w>mipM′ (mi)

wt(mi, w) ≥
∑

(m,wi):i<k,m<wipM′ (wi)

wt(m,wi).

By our assumption WLOG, every term in the former sum equals 0, so the latter sum

equals 0 as well; however, because wt : E(G(I))→ [0, 1] only has non-negative outputs,

wt(m,wi) = 0 if i < k and wi strictly prefers pM ′(wi) to m. However, if mk prefers

wj to wk, then j < k (by theorem 2.25) and wj strictly prefers pM ′(wj) to mk. This

contradicts the fact that wt(mk, wj) > 0, so by contradiction, we see that if wt ∈ PI

and mk prefers wj to wk, then wt(mk, wj) = 0.

To see that wt(mi, wj) = 0 when wj prefers mj to mi, we note that M0 ⊆ ψ∞I , and

so
∑

w∈Vw(I):w>miwi
wt(mi, w) ≥

∑
m∈Vm(I):m<wimi

wt(m,wi) for all i ∈ [n]. Adding

these inequalities for all i ∈ [n], we see that:∑
(mi,wj):wj>miwi

wt(mi, wj) ≥
∑

(mi,wj):mi<wjmj

wt(mi, wj).
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By our previous observations, every term in the former sum equals 0, so the latter sum

equals 0 as well; however, because wt : E(G(I))→ [0, 1] only has non-negative outputs,

wt(mi, wj) = 0 if wj strictly prefers mj to mi.

Corollary 6.7. Let PI be defined as above, and M1 be the woman-optimal hub-stable

matching for I. Then, for any wt ∈ PI and edge e ∈ E(I) such that me prefers pM0(me)

to we, wt(e) = 0.

This lemma and its corollary tell us that lemma 6.5 holds iff it holds for every

instance I where the man-optimal hub-stable matching matches each man with his top

choice and each woman with her bottom choice, and the woman-optimal hub-stable

matching matches each woman with her top choice and each man with his bottom

choice.

Lemma 6.8. Suppose that I is a satisfactory instance where the man-optimal hub-

stable matching matches each man with his top choice and each woman with her bottom

choice, and the woman-optimal hub-stable matching matches each woman with her top

choice and each man with his bottom choice. We define PI as above. Then, for every

wt ∈ P and e ∈ E(I)− ψ∞I , wt(e) = 0.

Proof. We prove this result by induction on q, the number of edges in G(I). For the

base case, when q = n, G(I) must be a perfect matching for I to be satisfactory, and

the above holds.

Now, assume that the above is true for every instance I ′ such that G(I ′) has less

than q edges for some q > n; we will show that it is true for I such that G(I) has

q edges. As noted in our construction of ψ∞, if G(I) has > n edges, there ex-

ists a sequence of men m1,m2, . . . ,mk and women w1, w2, . . . , wk such that for each

i ∈ [k], mi’s top choice is wi and his second choice is wi+1 (with the index taken

mod k). (WLOG, we may assume that Vm(I) = {mi : i ∈ [n]}, Vw(I) = {wi :

i ∈ [n]}, and each mi’s top preference is wi.) We can confirm that the matching

M2 ≡ {(m1, w2), (m2, w3), . . . , (mk−1, wk), (mk, w1), (mk+1, wk+1), . . . , (mn, wn)} is sta-

ble; as a result, for every edge (m,w) in {(m1, w2), (m2, w3), . . . , (mk−1, wk), (mk, w1)},
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PI is constrained by
∑

w′∈Vw(I):w′>mw
wt(m,w′) ≥

∑
m′∈Vm(I):m′<wm

wt(m′, w). Adding

these inequalities together, we see that

∑
(mi,w):i∈[k],w>mipM2

(mi)

wt(mi, w) ≥
∑

(m,wi):i∈[k],m<wipM2
(wi)

wt(m,wi).

However, the edges in the former sum are {(m1, w1), . . . , (mk, wk)}, sinceM2 matches

every mi with his second choice. These edges also appear in the latter sum (since each

wi has mi at the bottom of her preference list), so by the non-negative condition on wt,

this inequality is tight and wt(m,wi) = 0 if i ∈ [k], m 6= mi, and wi prefers mi−1 (mod

k) to m. (Note that, by the construction of ψ∞I , no such edge appears in that set.)

In addition, for every i ∈ [k−1], by the condition ascribed by (mi, wi+1), wt(mi, wi) =

wt(mi+1, wi+1) - as such, there exists a constant Cwt such that wt(mi, wi) = Cwt for

all i ∈ [k]. As a result, we notice that wt′ ≡ wt−Cwt · {(mi, wi) : i ∈ [n]}+Cwt ·M2 is

also in PI . Furthermore, wt′ is a weight function on the subinstance I ′ = I(M2,∅). By

corollary 4.36, wt′ ∈ PI′ , so by the inductive assumption, for every e ∈ E(I ′) not in

ψ∞I′ , wt
′(e) = 0. This means that wt(e) = 0 for each such edge as well.

Since for every e /∈ ψ∞I , we either prefers me to pM2(we) (in which case e ∈ E(I ′)−

ψ∞I′ by corollary 4.36) or prefers pM2(we) to me, we have shown that wt(e) = 0 for every

such edge, and we are done.

We now can prove lemma 6.5.

Proof. Let M0 and M1 be the man-optimal and woman-optimal hub-stable matchings

of I respectively; by lemma 6.6 and corollary 6.7, wt(e) = 0 unless e ∈ S, where S is the

set of all edges such that me ranks we between pM0(me) and pM1(me), and we ranks me

between pM1(we) and pM0(we). This implies that PI = PI[S]. By lemma 6.8, wt ∈ PI[S]

implies that wt(e) = 0 for every e /∈ ψ∞I′ . However, by corollary 4.37, ψ∞I[S] ⊆ ψ∞I , and

so wt(e) = 0 for every e /∈ ψ∞I .

We are now able to prove theorem 6.4.

Proof. In our description of PI , we note by lemma 6.5, the conditions that wt(m,w) =

0 for all (m,w) /∈ ψ∞I is implicitly enforced. However, by theorem 6.2, this set of
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conditions is exactly the set of conditions on the convex hull of stable matchings of

I[ψ∞I ]. By the definition of ψ∞I , the stable matchings of I[ψ∞I ] are the hub-stable

matchings of I, so we are done.

6.2 An Accessible Class of S-Stable Matchings

As previously noted, finding a compact representation of all of the S-stable matchings

over I appears to be very difficult for a general instance I and S ⊆ E(G(I)), and

the same truth appears to hold for representing the polytope of fractional S-stable

matchings. However, just as we can find the sequence (∅, ψ(∅), ψ2(∅), . . .} efficiently,

we can also find a compact set of necessary and sufficient constraints for the polytope

of S-stable matchings when S = ψkI (∅) - i.e. the k-stable matchings - for an arbitrary

value of k. In this section, we prove theorem 6.3. We do this by first showing that the

theorem holds for even k, then showing that it holds for odd k.

Theorem 6.9. Let S be a union of stable matchings. Then, the polytope PS of fractional

S-stable matchings for an n×n instance I is the set of all wt : E(G(I))→ R that uphold

the constraints {Q1, Q2, Q3, Q4(S)}.

Proof. It is obvious that every wt ∈ PS obeys all of the above constraints, since its

vertices do; therefore, we only need to show that any wt that obeys the above constraints

is in PS . Suppose that we have such a wt. In particular, it upholds the constraints:

1. For all (m,w) ∈ E(I), wt(m,w) ≥ 0.

2. For all m ∈ Vm(I),
∑

w∈Vw(I)wt(m,w) = 1.

3. For all w ∈ Vw(I),
∑

m∈Vm(I)wt(m,w) = 1.

so, by theorem 6.1, we can express it as a weighted average of perfect matchings wt =∑
aiMi, where

∑
ai = 1. Now, we can consider any stable matching M ⊆ S. By sum-

ming constraint 4 for every (m,w) ∈M , we see that
∑

E1
wt(m,w)+

∑
E2
wt(m,w) ≤ n,

where E1 = {(m,w) : w ≤m PM (m)} and E2 = {(m,w) : m <w PM (w)}.

However, since M is stable, every edge is in at least one of E1 and E2; this implies

that, for every perfect matching Mi,
∑

E1
Mi(m,w) +

∑
E2
Mi(m,w) ≥ n. In addition,
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this inequality holds with equality iff Mi is M -stable. As a result, if we express wt as

a weighted average wt =
∑
aiMi,

∑
E1
wt(m,w) +

∑
E2
wt(m,w) ≥ n; this means that∑

E1
wt(m,w) +

∑
E2
wt(m,w) = n. Furthermore, the equality can only hold if ai = 0

for every Mi that is not M -stable - i.e. every Mi that is not {e}-stable for some e ∈M .

However, our choice of M ⊆ S was arbitrary; since every edge in S appears in some

stable matching ⊆ S, we see that ai = 0 for every Mi that is not {e}-stable for some

e ∈ S. Consequentially, the representation wt =
∑
aiMi has wt expressed as a weighted

average of S-stable matchings, so wt ∈ PS and we are done.

Corollary 6.10. The polytope P2 of fractional 2-stable matchings for an n×n instance

I is the set of all wt : E(G(I))→ R that uphold the constraints {Q1, Q2, Q3, Q4(ψ2
I (∅))}.

Proof. By the definition of ψI , ψ
2
I (∅) = ψI(E(G(I))) is the union of all stable matchings

over I. By substituting S = ψ2
I (∅) in theorem 6.9, we see that the above constraints

are necessary and sufficient for P2.

Given that the structure of the polytope of the fractional stable matchings and the

polytope of the fractional 2-stable matchings have a similar structure, it is natural to

ask if the polytope of the fractional k-stable matchings has an analogous structure for

all positive k ∈ N. We will show a necessary and sufficient list of conditions for the

polytope of the fractional k-stable matchings, when k is even. For the following, we use

Q5(S) to represent the family of constraints that for all (m,w) /∈ S, wt(m,w) = 0. We

recall from Section 2.3 that I[S] is the restriction of I to the set of edges S ⊆ E(G(I)).

Theorem 6.11. For all k ∈ N, the polytope P2k of fractional 2k-stable matchings for

an n × n instance I is the set of all wt : E(G(I)) → R that uphold the constraints

{Q1, Q2, Q3, Q4(ψ2k
I (∅))}.

Proof. We prove this result by induction on k. For the base case k = 0, the theorem

holds trivially by theorem 6.1.

Now for the inductive step, assume that the polytope P2k of fractional 2k-stable

matchings is the set of all wt : E(G(I))→ R that uphold the constraints {Q1, Q2, Q3, Q4(ψ2k
I (∅))}.

Since P2k is the convex hull of ψ2k
I (∅)-stable matchings, the set of all edges e ∈ E(G(I))
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such that wt(e) is not identically 0 for all wt ∈ P2k is ψ2k+1
I (∅). Consequentially, for all

wt ∈ P2k, wt(m,w) = 0 if (m,w) /∈ ψ2k+1
I (∅).

Now, consider the restriction I ′ = I[ψ2k+1
I (∅)]. By corollary 6.10, we note that the

set of fractional ψ2
I′(∅)-stable matchings over I ′ is the set of all wt : E(G(I))→ R that

uphold the constraints {Q1, Q2, Q3, Q4(ψ2
I′(∅)), Q5(E(G(I ′)))}. For the next step, we

need the following proposition, which is a generalization of proposition 4.58.

Proposition 6.12. Let I be any instance, and Ib = I[ψ2b+1
I (∅)] for some positive b ∈ N.

Then, for all positive k ∈ N, ψkIb(∅) = ψk+2b
I (∅).

Proof. We prove this result by induction on b. For the base case, when b = 1, the

statement is a restatement of proposition 4.58.

For our inductive step, suppose that for all positive k ∈ N, ψkIb(∅) = ψk+2b
I (∅). We

now consider Ib+1 = I[ψ2b+3
I (∅)]. By our inductive assumption, ψ2b+3

I (∅) = ψ2
Ib

(∅);

since Ib is a restriction of I and ψ2
Ib

(∅) ⊆ E(G(I)), Ib[ψ
2
Ib

(∅)] = I[ψ2
Ib

(∅)] = Ib+1. As

a result, by proposition 4.58, for all positive k ∈ N, ψkIb+1
(∅) = ψk+2

Ib
(∅), which equals

ψk+2b+2
I (∅) = ψ

k+2(b+1)
I (∅). Thus, we have proven our inductive step, and by induction,

we are done.

Now, by proposition 6.12, the set of all ψ2
I′(∅)-stable matchings is the set of all

ψ2k+2
I (∅)-stable matchings, so the above set of constraints is the set of constraints for

the polytope P2k+2. However, as noted above, a subset of the above constraints are

sufficient to enforce that wt(m,w) = 0 for all (m,w) /∈ E(G(I ′)), so the condition that

wt(m,w) = 0 for all (m,w) /∈ E(G(I ′)) is redundant. In addition, by proposition 6.12,

ψ2
I′(∅) = ψ2k+2

I (∅), so we see that the necessary and sufficient conditions of P2k+2 are

{Q1, Q2, Q3, Q4(ψ2k+2
I (∅))}.

Thus, we have shown the necessary inductive step, and by induction, we are done.

The following straightforward corollary of theorem 6.11 is a reproof of theorem 6.4.

Corollary 6.13. The polytope Ph of fractional hub-stable matchings for an n × n in-

stance I is the set of all wt : E(G(I))→ R that uphold the constraints {Q1, Q2, Q3, Q4(ψ∞I )}.
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Proof. We note that by theorem 4.50, ψ2n
I (∅) = ψ∞I . Since the hub-stable matchings are

the ψ∞I -stable matchings over I, the above set of constraints is necessary and sufficient

to describe the polytope of fractional hub-stable matchings by theorem 6.11.

We also note that the result of corollary 6.13 can be extended to the convex hulls

of S-stable matchings for any S ⊇ ψ∞I .

Theorem 6.14. Let S be set of edges such that ψ∞I ⊆ S ⊆ E(G(I)), and PS be the

polytope of fractional S-stable matchings. Then, Ps is the set of all wt : E(G(I))→ R

that uphold the constraints {Q1, Q2, Q3, Q4(S)}.

Proof. We note that the above list of conditions is a superset of the conditions on Ph

from corollary 6.13; consequentially, PS ⊆ Ph. As a result, for every wt ∈ PS and

(m,w) ∈ E(G(I))− ψ∞I , wt(m,w) = 0. In particular this is true for all (m,w) /∈ S, so

for every wt ∈ PS , wt(m,w) ≡ 0 for every e /∈ S. As a result, by theorem 6.2, the above

constraints describle the polytope of the fractional stable matchings of I[S]. However,

since S ⊇ ψ∞I ⊇ ψ(S), the S-stable matchings over I are precisely the stable matchings

over I[S] by theorem 3.9; consequentially, their convex hulls are the same, and so the

polytope of fractional S-stable matchings is also the set of all wt that uphold the above

constraints.

We note that theorem 6.14 is sufficient to show that the polytope of fractional

k-stable matchings has the expected structure when k is odd as well.

Corollary 6.15. For all k ∈ N, the polytope P2k+1 of fractional 2k+1-stable matchings

for an n × n instance I is the set of all wt : E(G(I)) → R that uphold the constraints

{Q1, Q2, Q3, Q4(ψ2k+1
I (∅))}.

Proof. By theorem 4.9, ψ∞I ⊆ ψ2k+1
I (∅) ⊆ E(G(I)); therefore, by theorem 6.14, the

desired result holds.

Taking together theorem 6.11 and corollary 6.15, we see that theorem 6.3 holds.
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6.3 Counterexamples on Characterizations of the S-Stable Polytopes

Ultimately, we were unable to identify a characterization of the necessary and sufficient

constraints for the polytope of S-stable matchings. However, we did make a number

of observations on necessary constraints on the polytope, and highlight why they are

necessary by using an example instance I and S ⊆ E(G(I)). (Note that in many

practical cases, some of these constraints will end up being redundant.)

For the following examples, we let I0 be the instance such that the following holds:

• Vm = {m1,m2,m3,m4} and Vw = {w1, w2, w3, w4}.

• For all i ∈ {1, 2, 3, 4}, mi’s preference list is [w1, w2, w3, w4] and wi’s preference

list is [m1,m2,m3,m4].

Example 6.16. Let S = {(m2, w2)}. Then, the polytope of S-stable matchings over I0

is constrained by the following:

1. For all i ∈ {1, 2, 3, 4},
∑4

j=1wt(mi, wj) =
∑4

j=1wt(mj , wi) = 1.

2. For all i, j ∈ {1, 2, 3, 4}, wt(mi, wj) ≥ 0.

3.
∑4

i=2wt(m2, wi) +
∑4

i=3wt(mi, w2) ≤ 1.

4. For all i, j ∈ {3, 4}, wt(m2, wj) + wt(mi, wj) + wt(mi, w2) ≤ 1.

5.
∑4

i,j=2(wt(mi, wj))− (m2, w2) ≤ 2.

Example 6.17. Let S = {(m3, w2)}. Then, the polytope of S-stable matchings over I0

is constrained by the following:

1. For all i ∈ {1, 2, 3, 4},
∑4

j=1wt(mi, wj) =
∑4

j=1wt(mj , wi) = 1.

2. For all i, j ∈ {1, 2, 3, 4}, wt(mi, wj) ≥ 0.

3.
∑4

i=2(wt(m3, wi)) + wt(m4, w2) ≤ 1.

4. For all i ∈ {3, 4}, wt(m3, wi) + wt(m4, w2) + wt(m4, wi) ≤ 1.

5. wt(m4, w2) +
∑3

i=2

∑4
j=2wt(mi, wj) ≤ 2.
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6. wt(m2, w1) + wt(m2, w2) + wt(m4, w2) ≤ 1.

In each example, the constraints from position 4 on form part of a family of necessary

constraints of the S-stable matchings; however, such a constraint requires an additional

definition in order to state it. We note that mn(T ), the matching number of a graph

T , is the maximum number of edges in any matching that is a subgraph of T . Given any

instance I, any edge e0 = (m0, w0) ∈ E(G(I)), and any T ⊆ G(I), we define ζm(e0, T )

as follows:

• If T contains some edge e1 = (m0, w1) such that m0 prefers w1 to w0, then

ζm(e0, T ) = mn(T ′), where T ′ = T − {(m0, w) : m0 strictly prefers w0 to w}.

• Otherwise, ζm(e0, T ) = mn(T ′′) − 1, where T ′′ = T ∪ {(m0, w) : m0 prefers w to

w0} − {(m0, w) : m0 strictly prefers w0 to w}.

Similarly, we define ζw(e0, T ) as follows:

• If T contains some edge e1 = (m1, w0) such that w0 prefers m1 to m0, then

ζw(e0, T ) = mn(T ′), where T ′ = T − {(m,w0) : w0 strictly prefers m0 to m}.

• Otherwise, ζw(e0, T ) = mn(T ′′) − 1, where T ′′ = T ∪ {(m,w0) : w0 prefers m to

m0} − {(m,w0) : w0 strictly prefers m0 to m}.

We then define ζ(e0, T ) = max(ζm(e0, T ), ζw(e0, T )).

Theorem 6.18. Let M be any S-stable matching, e0 be any edge in S, and T ⊆ G(I).

Then, |M ∩ T | ≤ ζ(e0, T ).

Proof. Let e0 = (m0, w0). By the fact that M is {e0}-stable, we see that m0 prefers

pM (m0) to w0 or w0 prefers pM (w0) to m0 (or both).

Suppose m0 prefers pM (m0) to w0. Then, every edge of T in M must also be in T ′,

so |M ∩ T | = |M ∩ T ′| ≤ mn(T ′). In addition, if no edge in T is of the form (m0, w1),

where m0 prefers w1 to w0, then M must include exactly one edge in T ′′ − T , and so

|M ∩ T | = |M ∩ T ′′| − 1 ≤ mn(T ′′)− 1. In either case, |M ∩ T | ≤ ζm(e0, T ) ≤ ζ(e0, T ).

Similarly, if w0 prefers pM (w0) to m0, then |M ∩ T | ≤ ζw(e0, T ) ≤ ζ(e0, T ).
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Corollary 6.19. The polytope of S-stable matchings over I is constrained by
∑

e∈T wt(e) ≤

ζ(e0, T ) for all e0 ∈ S, T ⊆ E(G(I)).

For the above two examples, adding this family of constraints to the standard family

is sufficient to define the polytope of S-stable matchings. However, there exist examples

where this family is insufficient.

Example 6.20. Let S = {(m2, w2), (m3, w3)}. Then, the polytope of S-stable match-

ings over I0 is constrained by the following:

• For all i ∈ {1, 2, 3, 4},
∑4

j=1wt(mi, wj) =
∑4

j=1wt(mj , wi) = 1.

• For all i, j ∈ {1, 2, 3, 4}, wt(mi, wj) ≥ 0.

•
∑4

i=2wt(m2, wi) +
∑4

i=3wt(mi, w2) ≤ 1.

• For all i ∈ {3, 4}, wt(m2, wi) + wt(mi, w2) + wt(mi, wi) ≤ 1.

• wt(m3, w3)) + wt(m3, w4) + wt(m4, w3) ≤ 1.

• wt(m3, w4) + wt(m4, w3) + wt(m4, w4) ≤ 1.

• wt(m1, w1) + wt(m2, w1) + wt(m2, w3) + wt(m2, w4) ≤ 1.

• wt(m1, w4) + wt(m3, w1)− wt(m4, w3) ≥ 0.

• wt(m1, w3) + wt(m4, w1)− wt(m3, w4) ≥ 0.

The last two constraints are not part of any known family of constraints, and at the

present time, we do not know the best way of identifying a general family of constraints

that they belong to.
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Chapter 7

Achieveable Graphs

In many of the previous sections, we have explored how an arbitrary instance I is

influenced by the underlying graph G(I). It is trivial to see that for any bipartite graph

G, there exists an instance I such that G(I) = G; however, as our analyses in the

previous sections have shown, some number of these edges may ultimately be irrelevant

to the overall structure of the stable matchings over I. (As an example, an incomplete

instance I and its completion are very similar instances, but their underlying graphs are

very different.) We therefore constrain our question further, and restrict our instances

to those where every edge appears in a stable matching.

We define an instance I to be concise if every edge appears in a stable matching

over I. (We note that this is equivalent to ψ∞I = G(I). Given a bipartite graph G with

vertex parts Vm and Vw, we say that a concise instance I achieves G if G = G(I), and

that G is achieveable if there exists a concise instance that achieves G.

7.1 Achieving the Complete Bipartite Graph

Given the significance of complete instances, it is natural to ask about the structure of

instances that are both concise and complete.

Proposition 7.1. Suppose that an instance I with n men and n′ women is concise and

complete. Then, n = n′.

Proof. If I is both concise and complete, then every vertex appears in an edge for some

stable matching. However, by theorem 2.4, every stable matching over I covers the

same vertices, so every stable matching must be perfect - and a perfect matching over

I can only exist if I has the same number of men and women.
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During our inquiries, we conjectured that the concise instances that could achieve

the complete bipartite graph Kn,n were part of a family of instances with a similar

structure.

Conjecture 7.2. A concise instance with n men and n women achieves Kn,n iff, for

each i, there exists a perfect matching where each man is matched with his ith choice,

and each woman is matched with her (n− i+ 1)th choice.

Such a matching can be encoded via an n × n Latin square as follows: entry (i, j)

is equal to k iff man i has woman j as his kth choice and woman j has man i as her

(n− k + 1)th choice. Furthermore, any such matching achieves the complete bipartite

graph - for any given value of k ∈ [n], every man has a different woman as his kth choice,

so the matching that gives every man his kth choice is perfect. In addition, for any

k′ < k, if man i has woman j as his k′th choice, woman j has man i in her preference

list at position n−k′+1 > n−k+1, and so prefers her partner in the matching to man

i; however, every man-woman pair such that the man prefers the woman to his current

partner can be described in such a fashion, and so the matching above is stable. The

union of these matchings for all values of k gives the complete bipartite graph, and so

the instance must achieve the complete bipartite graph.

We note that the above observation and proposition 7.1 imply the following:

Proposition 7.3. Kn,n′ is achieveable iff n = n′.

Testing the converse of conjecture 7.2 requires more work. In any instance that

achieves the bipartite graph, if man i has woman j as his first choice, woman j must

have man i as her last choice. (Otherwise, any matching that included the edge between

woman j and her last choice would be destabilized by the edge between man i and

woman j - since man i prefers woman j over anyone else - and so the former edge would

appear in no stable matching.) Similarly, if woman j has man i as her first choice, man

i must have woman j has his last choice. This can be used to show that, for either

gender, the subgraph with each edge between a vertex of that gender and their first

choice of partner is a perfect matching.
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This is enough to show that the conjecture is true for n ≤ 3 (for the third case, once

each vertex has its first and third choices assigned, there is only one possibility for its

second choice). Using Maple, we have shown that the conjecture is true for n = 4 as

well, by testing every complete instance with the property in the previous paragraph.

Testing each such matching for n = 5 is computationally unfeasible, so we instead

look to find instances for n = 5 where each vertex has a preference list of length 4 such

that they achieve a 4-regular bipartite graph. (Such an instance can be extended to

an instance that achieves the complete bipartite graph by, for each non-present edge

between man i and woman j, adding man i to the top of woman j’s preference list,

and woman j to the bottom of man i’s preference list.) Each instance of this sort

still must have the property that each vertex is the last choice of their first choice,

which gives a feasible number of graphs to check. This, however, ends up producing a

counterexample.

Example 7.4. Consider the instance with Vm = {m1,m2,m3,m4,m5}, Vw = {w1, w2, w3, w4, w5},

and the following preference lists:

m1 : (w1, w4, w2, w5, w3) w1 : (m3,m2,m5,m4,m1)

m2 : (w2, w3, w5, w1, w4) w2 : (m5,m3,m1,m4,m2)

m3 : (w3, w5, w4, w2, w1) w3 : (m1,m4,m2,m5,m3)

m4 : (w4, w1, w2, w3, w5) w4 : (m2,m5,m3,m1,m4)

m5 : (w5, w3, w1, w4, w2) w5 : (m4,m1,m2,m3,m5)

This instance achieves K5,5, but there does not exist a perfect matching where each man

is partnered with his second choice (since m2 and m5 have the same second choice).

7.2 Properties of Achieveable Graphs

In our investigations of achieveable graphs, we have focused on proving (or disproving)

the following conjecture:

Conjecture 7.5. Given a bipartite graph G ⊆ Kn,n, there exists an algorithm to de-

termine whether G is achieveable in O(nk) time, for some k ∈ N.
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While we were ultimately unsuccessful in finding a conclusive answer to this ques-

tion, we did uncover a number of interesting results.

Proposition 7.6. A bipartite graph G is achieveable iff there exists an instance I ′ such

that G is the union of all stable matchings over I.

Proof. If G is achieveable, then there exists a concise instance I that achieves G. Since

I is concise, the union of all stable matchings over I is G(I) = G.

Conversely, suppose there exists an instance I ′ such that G is the union of all stable

matchings over I ′; then, we can set I = I ′[G]. Since every stable matching M over I ′

is ⊆ G, every such M is also stable over I ′. Consequentially, every edge in G(I) = G

appears in a matching that is stable over I and I ′, so I is concise and achieves G -

thereby proving G is achieveable.

Proposition 7.7. A bipartite graph G is achieveable iff there exists an instance I ′ such

that G is the union of all hub-stable matchings over I.

Proof. If G is achieveable, then there exists a concise instance I that achieves G. Since

I is concise, G(I) is the hub of I, and so the union of all hub-stable matchings over I

is the union of all stable matchings over I - specifically, G(I) = G.

Conversely, suppose there exists an instance I ′ such that G is the union of all hub-

stable matchings over I ′; then, we note that G is the hub of I ′. We can set I = I ′[G]

- by proposition 4.14, the set of stable matchings over I is the set of all hub-stable

matchings over I ′, and so their union equals G = G(I). Therefore, I is concise and

achieves G - thereby proving G is achieveable.

Note that stable matchings are not necessarily perfect matchings, and G may have

isolated vertices; however, such vertices are ultimately irrelevant in determining whether

G is achieveable.

Proposition 7.8. Suppose G has an isolated vertex v0, and G′ = G− {v0}. Then, G

is achieveable iff G′ is achieveable.
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In a similar way, we can show that a bipartite graph is achieveable iff all of its con-

nected components are achieveable. However, this still leaves the question of whether

a given connected graph is achieveable.

One necessary condition for an achieveable graph with no isolated vertices is that

it is the union of perfect matchings, since every stable matching must be a perfect

matching. We can find necessary and sufficient conditions for this property to hold.

We define a bipartite graph to uphold the extended Hall’s condition if it upholds

Hall’s condition and, for any set of vertices X such that its neighborhood N(X) has

|N(X)| = |X|, that N(N(X)) = X.

Theorem 7.9. A nonempty graph with no isolated vertices is a union of perfect match-

ings iff it upholds the extended Hall’s condition.

Proof. Suppose that a bipartite graph G is a union of the elements ofM, a (nonempty)

set of perfect matchings. Since G contains at least one perfect matching - namely, any

M ∈ M - it must uphold Hall’s condition. Now, consider any set of vertices X such

that its neighborhood N(X) in G upholds |N(X)| = |X|. For any matching M ∈ M,

every element of X is matched by M with an element of N(X), the neighborhood of X

in G; however, since |N(X)| = |X|, each such element in N(X) must be matched with

an element of X by the pigeonhole principle. Since M is an arbitrary matching in M,

and G is the union of all such M , any element of N(X) can only have elements of X

in its neighborhood. Since X ⊆ N(N(X)) vacuously, N(N(X)) = X, and G upholds

the extended Hall’s condition.

Conversely, suppose that a bipartite graph G upholds the extended Hall’s condition.

Consider any edge e ∈ G; if we remove the vertices in e from G, the resulting graph

upholds Hall’s condition, and so contains a perfect matching. If we add e to that

matching, we produce a perfect matching Me ⊆ G that contains e. Taking the union

of Me for all e ∈ G produces G, so G is the union of a set of perfect matchings.

However, not every graph which can be expressed as the union of perfect matchings

is achieveable. For example, consider the complete 3 × 3 bipartite graph G0 with a

single edge removed.
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Proposition 7.10. G0 can be expressed as the union of perfect matchings, but it is not

achieveable.

Proof. We note that the perfect matchings M1, M2, M3, and M4 in the above figure

are the only perfect matchings contained in G0; these four matchings have their union

equal G0. In addition, since each contains an edge not in the others, G0 can only be

expressed as a union of perfect matchings in this way, so any instance that achieves G0

must have {M1,M2,M3,M4} as its set of stable matchings.

Assume we have such an instance I0, with M1 as the man-optimal stable matching

WLOG. Since each matching contains an edge not in any of the others, the lattice of

stable matchings of I0 must be totally ordered. (Otherwise, there would exist some i

such that {Mi} is the sublattice of stable matchings with a specific edge, and a j such
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that Mj is neither above nor below this sublattice, creating a contradiction). Now, look

at e2 = (m2, w3) and e3 = (m3, w2). Since e2 is only present in M1 and M2, and M1 is

the man-optimal stable matching, M2 must cover M1 in the lattice of stable matchings.

However, since e3 is only present in M1 and M3, M3 must similarly cover M1 in the

lattice. This creates a contradiction - since the lattice is totally ordered, only one stable

matching can cover M1 - so no such instance can exist, and G0 is not achieveable.

7.3 More Counterexamples in Achieveability

While our investigations did not lead to an efficient algorithm that would determine if

a graph is achieveable, we did find a number of noteworthy examples that expanded

our understanding of achieveable graphs.

Conjecture 7.11. If a graph G is achieveable, then, for any edge e ∈ G, there exists

an instance that achieves G with e in the man-optimal stable matching.

A counterexample to this conjecture is the seven-edge graph G shown below. It can

only be expressed as a union of perfect matchings with the shown three matchings, so

any instance that achieves G has exact that set of stable matchings. Furthermore, since

every vertex has degree > 2, the man-optimal and woman-optimal stable matchings

cannot share an edge (as otherwise, every stable matching would have that edge);

therefore, M2 cannot be the man-optimal stable matching. The edge (m2, w2) only

appears in M2, so it cannot be in the man-optimal stable matching.
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Conjecture 7.12. In any instance, every minimal set of stable matchings that cover

the achieved graph has the same number of members.

A counterexample to this conjecture is the instance below, which achieves the vertex-

disjoint union of two copies of K3,3. Two different minimal sets T and T ′ that cover

the achieved graph are shown with it - note that |T | = 3 6= 4 = |T ′|.
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Conjecture 7.13. If G and H are achieveable graphs with G ∩ H isomorphic to the

uniform degree 1 graph, then G ∪H is achieveable.

A counterexample of this property is shown below. Notice that the G used here is

the same G that appears in the counterexample to conjecture 7.11, with an additional

disjoint edge added - in fact, the reason that this serves as a counterexample is because

the edge of G that cannot be part of the man-optimal matching is shared with H. In

particular, this example gives us reason to think that determining whether a graph is

achieveable is very difficult without information on what the man-optimal (or woman-

optimal) stable matching is.
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Chapter 8

Bounding the Number of Variables in a Low Degree

Boolean Function

In this chapter, we prove that there is a constant C ≤ 6.614 such that every Boolean

function of degree at most d (as a polynomial over R) is a C ·2d-junta, i.e. it depends on

at most C · 2d variables. This improves the d · 2d−1 upper bound of Nisan and Szegedy

[Computational Complexity 4 (1994)].

The bound of C · 2d is tight up to the constant C, since a read-once decision tree

of depth d depends on all 2d − 1 variables. We slightly improve this lower bound by

constructing, for each positive integer d, a function of degree d with 3 ·2d−1−2 relevant

variables. A similar construction was independently observed by Shinkar and Tal.

8.1 Introduction to the Degree of a Boolean Function

The degree of a Boolean function f : {0, 1}n → {0, 1}, denoted deg(f), is the degree of

the unique multilinear polynomial in R[x1, ..., xn] that agrees with f on all inputs from

{0, 1}n. Minsky and Papert ([MP88]) initiated the study of combinatorial and compu-

tational properties of Boolean functions based on their representation by polynomials.

We refer the reader to the excellent book of Ryan O’Donnell ([O’D14]) on analysis

of Boolean functions, and surveys by Harry Buhrman, Ron DeWolf ([BDW02]), and

Pooya Hatami ([HKP11]) discussing relations between various complexity measures of

Boolean functions.

An input variable xi is relevant to f if xi appears in a monomial having nonzero

coefficient in the multilinear representation of f . LetR(f) denote the number of relevant

variables of f . Nisan and Szegedy ([NS94], Theorem 1.2) proved that R(f) ≤ deg(f) ·

2deg(f)−1.
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Let Rd denote the maximum of R(f) over Boolean functions f of degree at most

d, and let Cd = Rd2
−d. By the result of Nisan and Szegedy, Cd ≤ d/2. On the other

hand, Rd ≥ 2Rd−1 + 1, since if f is a degree d− 1 Boolean function with Rd−1 relevant

variables, and g is a copy of f on disjoint variables, and z is a new variable then

zf + (1− z)g is a degree d Boolean function with exactly 2Rd−1 + 1 relevant variables.

Thus Cd ≥ Cd−1 + 2−d, and so Cd ≥ 1− 2−d. Since Cd is an increasing function of d it

approaches a (possibly infinite) limit C∗ ≥ 1.

In this paper we prove:

Theorem 8.1. There is a positive constant C so that R(f)2−deg(f) ≤ C for all Boolean

functions f , and thus Cd ≤ C for all d ≥ 0. In particular C∗ is finite.

Throughout this paper we use [n] = {1, . . . , n} for the index set of the variables to

a Boolean function f . A maxonomial of f is a set S ⊆ [n] of size deg(f) for which∏
i∈S xi has a nonzero coefficient in the multilinear representation of f . A maxonomial

hitting set is a subset H ⊆ [n] that intersects every maxonomial. Let h(f) denote the

minimum size of a maxonomial hitting set for f , and let hd denote the maximum of

h(f) over Boolean functions of degree d. In section 8.2 we prove:

Lemma 8.2. For every d ≥ 1, Cd − Cd−1 ≤ hd2−d.

Through telescoping, this implies:

Corollary 8.3. For every d ≥ 0, Cd ≤
∑d

i=1 hi2
−i.

The next lemma is a simple combination of previous results.

Lemma 8.4. For any Boolean function f , h(f) ≤ deg(f)3, and so for all i ≥ 1, hi ≤ i3.

Proof. Nisan and Smolensky (see Lemma 6 of [BDW02]) proved hi ≤ deg(f)bs(f),

where bs(f) is the block sensitivity of f . Combining with bs(f) ≤ deg(f)2 (proved

by Avishay Tal ([?]), improving on bs(f) ≤ 2 deg(f)2 of Nisan and Szegedy ([NS94],

Lemma 3.8) yields h(f) ≤ deg(f)3.

Using lemma 8.4, the infinite sum in corollary 8.3 converges, and theorem 8.1

follows.
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Given that C∗ is finite, it is interesting to obtain upper and lower bounds on C∗. The

bounds that we will show in this paper are 3/2 ≤ C∗ ≤ 13545
2048 ≤ 6.614; we discuss these

bounds in section 8.3. (Recently, Wellens ([Wel19],Theorem 3) refined our argument to

obtain an improved upper bound of C∗ ≤ 4.416.)

Filmus and Ihringer ([FI18]) recently considered an analog of the parameter R(f)

for the family of level k slice functions, which are Boolean functions whose domain

is restricted to the set of inputs of Hamming weight exactly k. They showed that,

provided that min(k, n−k) is sufficiently large, every level k slice function on n variables

of degree at most d depends on at most Rd variables. ([FI18], Theorem 1.1) As a result,

our improved upper bound on Rd applies also to the number of relevant variables of

slice functions.

Proof Overview

Similar to Nisan and Szegedy ([NS94], Section 2.3), we upper bound R(f) by assigning

a weight to each variable, and bounding the total weight of all variables. The weight

assigned to a variable by Nisan and Szegedy was its influence on f ; the novelty of our

approach is to use a different weight function.

We assign to a variable xi of a Boolean function f a weight wi(f) that is 0 if f

does not depend on xi and otherwise equals 2− degi(f) where degi(f) is the degree of the

maximum degree monomial of f containing xi. We then upper and lower bound the

total weight W (f) of a degree d Boolean function f . It follows from the definition that

for a degree d Boolean function f , W (f) ≥ 2−d · R(f). Hence, to upper bound R(f)

it suffices to upper bound W (f). Let Wd be the maximum of W (f) among degree d

Boolean functions f . We prove that

Wd ≤ hd2−d +Wd−1.

We show this by considering a minimum size maxonomial hitting set H for a W (f)

maximizing f . We argue that for such an f , all variables in H have maximum degree

d, and hence their total weight adds up to 2−d · |H|. Additionally, we show that

the remaining variables have total weight at most Wd−1, by considering degree d − 1
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restrictions of f that are achieved by fixing variables in H. See proof of proposition 8.7

for more details.

Combining above with lemma 8.4 we have shown that R(f) ≤ 2d ·
∑d

i=1 i
32−i, which

readily implies R(f) ≤ 26 · 2d. However, the same argument as above also implies

R(f) ≤ 2d · (Wk +

d∑
i=k+1

i32−i).

Finally, plugging a bound of Wk ≤ k/2 which follows from previous works and optimiz-

ing the right hand side, we obtain an improved bound of R(f) ≤ 6.614 · 2d.

8.2 Proof of lemma 8.2

For a variable xi, let degi(f) be the maximum degree among all monomials that contain

xi and have nonzero coefficient in the multilinear representation of f . Let wi(f) := 0 if

xi is not relevant to f , and wi(f) := 2− degi(f) otherwise. Note that if xi is a relevant

variable of the degree d function f , then wi(f) = 2− degi(f) ≥ 2− deg(f) = 2−d.

The weight of f , W (f), is defined to be
∑

iwi(f), and Wd denotes the maximum of

W (f) over all Boolean functions f of degree at most d; this maximum is well defined

since, by the Nisan-Szegedy upper bound of Rd, it is taken over a finite set of functions.

A function f of degree at most d for which Wd = W (f) is Wd-maximizing.

lemma 8.2 will follow as an immediate consequence of Wd = Cd (corollary 8.6) and

Wd ≤Wd−1 + hd2
−d (proposition 8.7).

Proposition 8.5. If f is Wd-maximizing then every relevant variable of f belongs to

a degree d monomial.

Proof. Let the relevant variables of f be x1, . . . , xn. Assume for contradiction that

there are l ≥ 1 variables that do not belong to any degree d monomial, and that these

variables are x1, . . . , xl. We now construct a function g of degree at most d such that

W (g) > W (f), contradicting that f is Wd-maximizing. Let g be the n + l + 1-variate

function given by:

g(x1, . . . , xn+l+1) := xn+l+1f(x1, . . . , xn) + (1− xn+l+1)f(xn+1, . . . , xn+l, xl+1, . . . , xn).
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This function is boolean since it is equal to f(xn+1, . . . , xn+l, xl+1, . . . , xn) if xn+l+1 = 0

and to f(x1, . . . , xn) if xn+l+1 = 1. It clearly has no monomials of degree larger than

d + 1. Since xi appears in no degree d monomials of f for any i ≤ l, f(x1, . . . , xn)

and f(xn+1, . . . , xn+l, xl+1, . . . , xn) have the same set of degree d monomials. Thus the

degree d+1 monomials of xn+l+1f(x1, . . . , xn) cancel out the degree d+1 monomials of

(1− xn+l+1)f(xn+1, . . . , xn+l, xl+1, . . . , xn), and g has degree at most d. Furthermore,

all of the degree d monomials involving xl+1, . . . , xn appear with the same coefficient

in g as in f so wi(g) = wi(f) = 2−d for all i ∈ {l + 1, . . . , n}. Also, for each i ∈

{1, . . . , l}, any monomial m = xim
′ containing xi gives rise to monomials xn+l+1xim

′

and −xn+1+ixn+im
′ in g and so wi(g) = wn+i(g) = 1

2wi(f). Thus we have:

W (g) =
n+l+1∑
i=1

wi(g) =
l∑

i=1

(wi(g) + wn+i(g)) +
n∑

i=l+1

wi(g) + wn+l+1(g)

=

l∑
i=1

wi(f) +

n∑
i=l+1

wi(f) + wn+l+1(g)

= W (f) + wn+l+1(g) > W (f),

where the final inequality holds since xn+l+1 is a relevant variable of g (which is true

since for any monomial m of f containing x1, mxn+l+1 is a monomial of g). Thus, g is

a function of degree d with W (g) > W (f), which gives us the desired contradiction to

complete the proof.

Corollary 8.6. For all d ≥ 1, Wd = Cd.

Proof. For any function f of degree at most d, we have W (f) ≥ R(f)2−d. Thus

Wd ≥ Cd. If f is Wd-maximizing then by proposition 8.5, W (f) = R(f)2−d ≤ Cd.1

Therefore, to prove lemma 8.2 it suffices to prove:

Proposition 8.7. Wd − hd2−d ≤Wd−1.

1In a previous version of this paper, our proof that Wd ≤ Cd was erroneous; this has been amended
to its present form in this version. We thank Jake Lee Wellens for pointing out the error in the previous
version.
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Proof. Again, let f be Wd-maximizing. Let H be a maxonomial hitting set for f of

minimum size. Note that degi(f) = d for all i ∈ H, as otherwise H − {i} would be a

smaller maxonomial hitting set. Thus:

W (f) =
∑
i

wi(f) = 2−d|H|+
∑
i 6∈H

wi(f). (8.1)

We will now show:

∑
i 6∈H

wi(f) ≤Wd−1, (8.2)

which, combined with eq. (8.1), yields the desired conclusion Wd ≤ 2−dhd + Wd−1.

We deduce eq. (8.2) by bounding wi(f) by the average of wi(f
′) over a collection of

restrictions f ′ of f (which we will define later). We recall some definitions. A partial

assignment is a mapping α : [n] −→ {0, 1, ∗}, and Fixed(α) is the set {i : α(i) ∈

{0, 1}}. For J ⊆ [n], PA(J) is the set of partial assignments α with Fixed(α) = J .

The restriction of f by α, fα, is the function on variable set {xi : i ∈ [n]− Fixed(α)}

obtained by setting xi = αi for each i ∈ Fixed(α).

Lemma 8.8. For every J ⊆ [n] and i /∈ J ,

wi(f) ≤ 2−|J |
∑

α∈PA(J)

wi(fα).

Proof. Fix j ∈ J and write f = (1 − xj)f0 + xjf1 where f0 is the restriction of f to

xj = 0 and f1 is the restriction of f to xj = 1.

We proceed by induction on |J |. We consider the base cases of |J | ≤ 1. The |J | = 0

case is trivial. Let us now consider the |J | = 1 case where we have J = {j}.

• If f0 does not depend on xi, then wi(f) = wi(f1)/2 ≤ (wi(f0) + wi(f1)) /2.

• If f1 does not depend on xi, then wi(f) = wi(f0)/2 ≤ (wi(f0) + wi(f1)) /2.

• Suppose f1 and f0 both depend on xi.

– If degi(f0) < degi(f1), let m be a monomial containing xi of degree degi(f1)

that appears in f1. Then xjm is a maxonomial of f = xj(f0 − f1) + f0.



119

Therefore degi(f) = 1 + degi(f1). Thus wi(f) = 1
2wi(f1) ≤ 1

2(wi(f0) +

wi(f1)).

– If degi(f0) ≥ degi(f1) then wi(f0) ≤ wi(f1). It suffices that wi(f) ≤ wi(f0),

and this holds because each monomial that appears in f0 appears with the

same coefficient in f = xj(f1 − f0) + f0.

In every case, we have wi(f) ≤ 1
2(wi(f0) + wi(f1)), as desired.

For the induction step, assume |J | ≥ 2. We start with wi(f) ≤ 1
2(wi(f0) + wi(f1)),

and apply the induction hypothesis separately to f0 and f1 with the set of variables

J − {j}:

wi(f) ≤ 1

2
(wi(f0) + wi(f1))

≤ 1

2

21−|J |

 ∑
β∈PA(J−{j})

wi(f0,β)

+ 21−|J |

 ∑
β∈PA(J−{j})

wi(f1,β)


≤ 2−|J |

∑
α∈PA(J)

wi(fα).

To complete the proofs of eq. (8.2) and proposition 8.7 apply lemma 8.8 with J

being a hitting set H of minimum size, and sum over i ∈ [n]−H to get:

∑
i∈[n]−H

wi(f) ≤ 2−|H|
∑

i∈[n]−H

∑
α∈PA(H)

wi(fα) = 2−|H|
∑

α∈PA(H)

W (fα) ≤Wd−1,

where the last inequality follows since deg(fα) ≤ d− 1 for all α ∈ PA(H).

As noted earlier corollary 8.6 and proposition 8.7 combine to prove lemma 8.2.

8.3 Bounds on C∗

lemma 8.2 implies Cd ≤
∑d

i=1 2−ihi. Combining with lemma 8.4 yields Cd ≤
∑d

i=j i
32−i,

and thus C∗ ≤
∑∞

i=1 i
32−i, which equals 26 (since

∑
i≥0

(
i
j

)
2−i = 2 for all j ≥ 0, and

i3 = 6
(
i
3

)
+ 6
(
i
2

)
+ i). As noted in the introduction, Rd ≥ 2d − 1, and so C∗ ≥ 1. We

improve these bounds to:
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Theorem 8.9. 3
2 ≤ C

∗ ≤ 13545
2048 .

Proof. For the upper bound, lemma 8.2 implies that for any positive integer d,

C∗ ≤ Cd +

∞∑
i=d+1

2−ihi.

Using Cd ≤ d/2 as proved by Nisan and Szegedy, we have

C∗ ≤ min
d

(
d

2
+

∞∑
i=d+1

i32−i

)
.

The minimum occurs at the largest d for which d32−d > 1/2, which is 11. Evaluating

the right hand side for d = 11 gives C∗ ≤ 13545
2048 ≤ 6.614.

We lower bound C∗ by exhibiting, for each d,a function Ξd of degree d with l(d) =

3
22d−2 relevant variables. (A similar construction was found independently by Shinkar

and [ST17].) It is more convenient to switch our Boolean set to be {−1, 1}.

We define Ξd : {−1, 1}l(d) → {−1, 1} as follows. Ξ1 : {−1, 1} → {−1, 1} is the

identity function, and for all d > 1, Ξd on l(d) = 2l(d − 1) + 2 variables is defined

recursively by:

Ξd(s, t, ~x, ~y) =
s+ t

2
Ξd−1(~x) +

s− t
2

Ξd−1(~y)

for all s, t ∈ {−1, 1} and ~x, ~y ∈ {−1, 1}l(d−1). It is evident from the definition that

deg(Ξd) = 1 + deg(Ξd−1), which is d by induction (as for the base case d = 1, Ξ1 is

linear). It is easily checked that Ξd depends on all of its variables, and that Ξd(s, t, ~x, ~y)

equals s ·Ξd−1(~x) if s = t and equals s ·Ξd−1(~(y)) if s 6= t, and is therefore Boolean.

[Wel19] recently refined the arguments of this paper to improve the upper bound to

C∗ ≤ 4.416.
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Chapter 9

A Lower Bound on H(d)

In the previous chapter, we showed that we can bound the maximum number of relevant

variables in a degree d boolean function by a weighted sum of H(i), for i ∈ [d]. A

natural question that arises is how strong of a bound we can achieve via this method

- specifically, how small of an upper bound on H(d) we can find. Currently, our best

known upper bound on H(d) is d3, but we conjecture that H(d) is significantly smaller

(for example, we know that H(2) = 2, which is significantly smaller than 23 = 8). In this

chapter, we will discuss the best lower bounds that we have found on H(d), thereby

putting a limit on how strong a result our argument can produce without strategic

adaptation.

9.1 Maxinomial Hitting Set Size of Compositions

In order to find lower bounds onH(d), we will leverage the behavior of Boolean functions

under composition. Recall that for Boolean functions f : {0, 1}n → {0, 1} and g :

{0, 1}m → {0, 1}, their composition

f ◦ g = f (g(t1,1, . . . , t1,m), . . . , g(tn,1, . . . , tn,m))

is a Boolean function in mn variables with variable set {ti,j : i ∈ [n], j ∈ [m]}. It is

well known that deg(f ◦ g) = deg(f) · deg(g): the set of monomials of f ◦ g is the set

of all monomials of the form cM
∏
xi∈M mi, where M = cM

∏
xi∈M xi is a monomial of

f(x1, . . . , xn) and, for all relevant i, mi is a monomial of g(ti,1, . . . , ti,m). The degree of

such a monomial is maximized when M and all corresponding mi’s are maxonomials, in

which case its degree is
∑

xi∈M deg(g) = deg(f) · deg(g). However, we still must show

that hitting set size is also multiplicative under composition.
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Proposition 9.1. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be Boolean func-

tions. Then,

h(f ◦ g) = h(f) · h(g).

Proof. It is easy to check that S0 = {(i, j) : i ∈ S1, j ∈ S2} is a maxonomial hitting

set of f ◦ g, where S1 is any maxonomial hitting set of f(x1, . . . , xn) and S2 is any

maxonomial hitting set of g(t1,1, . . . , t1,m). Therefore, h(f ◦ g) ≤ h(f) · h(g).

We now show that h(f ◦ g) ≥ h(f) · h(g). Let S ⊆ {(i, j) : i ∈ [n], j ∈ [m]} be a

maxonomial hitting set of f ◦ g. Let Si be the set of pairs in S with first coordinate

i, and let S′ be the set of all i ∈ [n] such that Si is a maxonomial hitting set of

g(ti,1, . . . , ti,m). We claim that S′ is a maxonomial hitting set of f(x1, x2, . . .). Assume

to the contrary that there is a maxonomial Mf that S′ does not cover. For each i such

that xi ∈Mf , there is a maxonomial Mi of g(ti,1, . . . , ti,m) that is not hit by Si. Then,∏
i:xi∈Mf

Mi is a maxonomial of f ◦ g that is not hit by S, contradicting the fact that

S was a maxonomial hitting set of f ◦ g. This implies |S′| ≥ h(f). Since for every

i ∈ S′, |Si| ≥ h(g), we have |S| ≥ h(f)h(g). Therefore h(f ◦ g) ≥ h(f)h(g), and so

h(f ◦ g) = h(f)h(g).

Theorem 9.2. H(d) is supermultiplicative - i.e. H(d1 · d2) ≥ H(d1) · H(d2) for all

d1, d2 ∈ N.

Proof. By the definition of H(d), we can find Boolean functions f : {0, 1}n → {0, 1}

and g : {0, 1}m → {0, 1} such that deg(f) = d1, h(f) = H(d1), deg(g) = d1, and h(g) =

H(d2). Then, f ◦ g is a Boolean function with degree d1 · d2, and by proposition 9.1,

h(f ◦ g) = h(f) · h(g) = H(d1) ·H(d2). However, by the fact that its degree is d1 · d2,

h(f ◦ g) ≤ H(d1 · d2), and we are done.

9.2 Low Degree Functions with High Maxonomial Hitting Set Size

In order to find and confirm our lower bounds, we also need to show that H(d) is an

increasing function.

Theorem 9.3. For all d ∈ N, H(d+ 1) ≥ H(d).
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Proof. Let f(x1, . . . , xn) be a boolean function over with degree d such that h(f) =

H(d). We set f0(x1, . . . , xn) = f(x1, . . . , xn) and perform the following iterative process

for each i ∈ N ∪ {0}:

• If every relevant variable of fi(x1, . . . , xn+i) belongs to a degree d+ 1 monomial,

then we set g(x1, . . . , xn+i) = fi(x1, . . . , xn+i).

• Otherwise, we select any relevant variable xj of fi that does not appear in any

degree d+ 1 monomial, and define fi+1(x1, . . . ,n+i+1 ) to be fi with every occur-

rence of xj replaced with xj ∗ xn+i+1. We note that this operation preserves the

number of variables required to hit every monomial that was originally degree d,

and if fi has degree at most d+ 1, so does fi+1.

This process must terminate in at most 2d+1∗W (f) steps (since each fi+1 has one more

relevant variable than fi, and W (fi+1) ≤W (fi), implying W (fi) ≤W (f) for all i ∈ N.

Thus, the resulting g is a boolean function of degree d + 1, and h(g) ≥ h(f) = H(d).

Consequentially, H(d+ 1) ≥ H(d).

Corollary 9.4. Let d1, d2 ∈ N. Then, d1 ≥ d2 ⇒ H(d1) ≥ H(d2).

With these preliminaries complete, we can now prove a theorem that will let us

identify a lower bound on H(d); it accomplishes this by using the iterated composition

of a sample Boolean function.

Theorem 9.5. Let f : {0, 1}n → {0, 1} be a Boolean function such that deg(f) = d0

and h(f) = h0. Then, for all d ∈ N, H(d) ≥ dp

h0
, where p = logd0(h0).

Proof. For i ∈ N, we define fi : {0, 1}ni → {0, 1} as follows: f1(x1, . . . , xn) = f(x1 . . . , xn)

and fi+1(x1, . . . , xni+1) = f◦fi(x1, . . . , xni+1) for all i ∈ N. Then, for all i, fi(x1, . . . , xni+1)

is a boolean function with deg(fi) = di0 and h(fi) = hi0, showing that H(di0) ≥ hi0.

Now, for any d ∈ N, let i be the largest integer such that di0 ≤ d. By corollary 9.4,

H(d) ≥ H(di0) ≥ hi0 =
hi+1

0

h0
=

(di+1
0 )p

h0
>
dp

h0

and we are done.
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As an example, the Boolean functionR : {0, 1}4 → {0, 1} defined byR(x1, x2, x3, x4) =

x1 + x2 − x1 ∗ x2 − x1 ∗ x3 − x2 ∗ x4 + x3 ∗ x4 has deg(R) = 2 and h(R) = 2; therefore,

by theorem 9.5, H(d) ≥ d
2 , since p = log2(2) = 1. During our initial investigations, we

conjectured that this lower bound was tight, up to a constant factor.

Conjecture 9.6. For all d ∈ N, H(d) = d.

However, we were ultimately able to show that this conjecture was false, using the

following function.

Example 9.7. The function:

contra(x) = x1x2x6 − x1x2x10 + x1x3x6 − x1x3x9 − x1x6x9 + x1x6x10

−x2x3x8 − x2x3x10 + x2x6x10 − x2x8x9 + x2x9x10 + x3x6x9 + x3x8x10 + x8x9x10

−x1x6 + x1x9 + x2x3 − x2x6 + x2x8 − x3x6 − x6x10 − x8x10 − x9x10 + x6 + x10

is a Boolean function such that deg(contra(x)) = 3 and h(contra(x)) = 4.

Using a Maple program (described in greater depth in the next section), we were

able to prove the following result.

Theorem 9.8. H(3) = 4.

While this does contradict our conjecture, the fact that deg(contra) = 3 and

h(contra) = 4 lets us improve our lower bound on H(d) using theorem 9.5.

Theorem 9.9. H(d) > dp

4 , where p = log3(4).

9.3 The Computation of H(3)

It is easy to show that H(1) = 1 and H(2) = 2; previously, we have conjectured that

H(d) = d for all d ∈ N. To that end, we look to find the value of H(3), the first

term that is not easily found by hand. In this section, we will describe a program

that we wrote in order to find the value of H(3), and the degree 3 boolean function f4

with h(f4) = 4 it found - thereby disproving conjecture 9.6. For our explanation, the

maxonomial set of a Boolean function is the sum of its maxonomials.

The basic principle that we use in our program is the following:
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Proposition 9.10. Let f : {0, 1}n → {0, 1} be a boolean function such that deg(f) = d

and h(f) = k. Then, there exists j ∈ [n] such that for all α ∈ PA({j}):

• if k = 1, then deg(fα) < d.

• if k > 1, then deg(fα) = d and h(fα) = k − 1.

Proof. Set j ∈ [n] to be any value such that j is in a minimum size maxonomial hitting

set of f . For either α ∈ PA({j}), the set of degree d monomials in fα is the set of all

degree d monomials that do not contain xj (since every degree d monomial that does

contain xj disappears or becomes a degree d− 1 monomial respectively). If k = 1, then

every maxonomial of f contains xj , so deg(fα) < d for both α ∈ PA({j}).

If k > 1, then we note by the above observation that for either α ∈ PA({j}),

deg(f) = d; furthermore, for any S ⊆ [n]− {j}, S is a maxonomial hitting set of fα iff

S ∪{j} is a maxonomial hitting set of f . Since there exists an S of size k− 1 such that

S ∪ {j} is a maxonomial hitting set of f , h(fα) ≤ k − 1. However, if h(fα) < k − 1,

this would imply the existence of a maxonomial hitting set of f with < k elements, so

h(fα) = k − 1.

As a result, we see that every boolean f with deg(f) = 3 and h(f) = 1 can be

expressed as xj ∗ f1 + (1− xj) ∗ f0 for some j ∈ [n] and f0, f1 of degree at most 2 that

are independent of xj ; in addition, for k > 1, every boolean f with deg(f) = 3 and

h(f) = k can be expressed as xj ∗ f1 + (1−xj) ∗ f0 for some j ∈ [n] and f0, f1 of degree

at 3 and maxonomial hitting set size k−1 that are independent of xj . Consequentially,

if we know the set of all boolean functions of degree at most 2, we can find the set of all

boolean functions of degree 3 - and easily find H(3) by determining when the process

terminates.

At first blush, this seems computationally infeasible; however, we note that there

are many ways to express what is essentially the same boolean function. We define two

functions f, g : {0, 1}n → {0, 1} to be isomorphic if there exists some permutation

Ξ : [n] → [n] and subset A ⊆ [n] such that g(x1, . . . , xn) = f(α1(xΞ(1)), . . . , αn(xΞ(n))

or 1− f(α1(xΞ(1)), . . . , αn(xΞ(n)), where αi(t) = 1− t if i ∈ A and = t otherwise. Our
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program will use the schematic outlined above to inductively find the set of all boolean

functions f with deg(f) = 3 and h(f) = k for all k ∈ N.

9.3.1 Finding All Functions for k = 1

The set of all boolean functions of degree 2 or less, up to isomorphism, is as follows:

0, x1, x1x2, x1 + x2 − 2x1x2, x1 − x1x2 + x2x3,

x1 − x1x2 − x1x3 + x2x3, x1 + x2 − x1x2 − x1x3 − x2x4 + x3x4

In order to find, up to isomorphism, all boolean functions f with deg(f) = 3 and

h(f) = 1, we note that every such f can be expressed in the form x6f1(x)+(1−x6)f0(x),

where f1 and f0 are each isomorphic to one of the above. There are a number of

techniques that we use in order to save time in our computations. We begin by noting

that if f(x1, . . . , xn) = x1f1(x2, . . . , xn) + (1− x1)f0(x2, . . . , xn), where f1 and f2 have

degree 2, then every maxonomial of f (considered as a degree 3 function) is of the form

(c1 − c0)x1xaxb, where c1 and c0 are the coefficients of xaxb in f1 and f0 respectively.

We can sort the resulting boolean functions into two categories: those with at least

7 relevant variables, and those with at most 6. The number of isomorphism classes for

such f with at least 7 relevant variables is small, since having so many relevant variables

means that f1 and f0 share at most 2 relevant variables - i.e. at most 1 maxonomial.

A list of one member of each such isomorphism class for f appears in ExcepPool.

All of the functions with at most 6 relevant variables can be assumed to be of

the form f(x1, x2, x3, x4, x5, x6). For these functions, the set of all possible sets of

maxonomials, up to isomorphism, is relatively small. We sort the corresponding possible

sets of maxonomials by the maximum of the absolute values of the coefficients of the

maxonomials; WLOG, this maxonomial is c126x1x2x6, and c is positive. (Since f :

{0, 1}n → {0, 1}, every monomial has an integral coefficient.)

If c = 1, then every coefficient of a maxonomial is ±1, so the number of possible

maxonomials of f up to isomorphism is very small. The list of all such maxonomials is

listed in SchemataOne(x) - in particular, we note that every such set of maxonomials
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has at most seven members. If c ≥ 2, then we note that one of the following must be

true:

• x1x2 has a coefficient of 1 in f1 and a coefficient of −1 in f2.

• x1x2 has a coefficient of 2 in f1 or a coefficient of −2 in f2.

In either case, this reduces the number of possibilities for f1 and f0 to a number that

can reasonably be found by hand; a list of almost all possible sets of maxonomials up

to isomorphism are listed in SchemataTwo(x) and SchemataThree(x). Furthermore, all

but two possible maxinomial sets in these lists can be expressed so that x2x3x6 and

x3x4x6 have a coefficient of 0. As such, in listing out the above sets of maxonomials,

we ensure that each member does not include these monomials. (The two exceptions

are listed in ExcepPool(x).) In the case that the maxonomials exclude some variable

in {x3, x4, x5}, we include x4 over x5 over x3.

We now produce all f with d(f) = 3 and h(f) = 1 (excluding those in Ex-

cepPool) by taking all pairs of (potentially degenerate) degree 2 Boolean functions

f1, f0 : {x1, . . . , x5} with matching coefficients on x2x3, as well as x3x4, such that the

coefficient of x1x2 is more greater in f1 than f0. (We make certain to group them by

their maxonomials.)

9.3.2 Finding All Functions for k ≥ 2

We recall that, when k ≥ 2, every boolean f with deg(f) = 3 and h(f) = k can be

expressed as xjf1 +(1−xj)f0 for some j ∈ [n] and f0, f1 of degree at 3 and maxonomial

hitting set size k − 1 that are independent of xj . Consequentially, to find all such f ,

we need to consider all pairs f1, f0 with h(f1) = h(f0) = k − 1. However, we can

immediately eliminate most such pairs by the following proposition:

Proposition 9.11. Let f, f1, f0 be defined as above. Then, f1 and f0 have the same

set of maxonomials.

Proof. Assume for the sake of contradiction that they do not; then, there exists some

xaxbxc such that, if the monomial’s coefficient in f1 and f0 are c1 and c0 respectively,
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then c1 6= c0. Since the coefficient of xaxbxcxj in f is c1 − c0, it must be nonzero -

implying that deg(f) > 3 and creating a contradiction with the fact that deg(f) = 3.

As such, to find all such f , we only need to find it for all f1, f0 with the same

maxonomial set. WLOG, we may assume that j = k + 6; furthermore, since we are

looking at all f up to isomorphism, the lists of all f1, f0 up to isomorphism are almost

entirely sufficient. However, there is one pitfall we need to note for finding all f .

While we only need to consider one set of maxonomials from a collection of isomor-

phic sets, it is possible that there are different f0 and f1 that are isomorphic - so they

must be considered as different functions for the purposes of f . This may occur if f0 is

dependent on a variable xo that doesn’t appear in any maxonomial - we refer to such

an xo as an orphaned variable.

Proposition 9.12. Let f{0, 1}n → {0, 1}, and xo be an orphaned variable of f . Then,

xo appears in a monomial of degree ≥ 2.

Proof. Assume for the sake of contradiction that xo only appears in a monomial of

degree 1 - i.e. a monomial of the form c ∗ xo with c 6= 0. Then, fxo=0 and fxo=1 are

boolean functions such that fxo=1 = fxo=0 + c. However, this can only happen if one

of fxo=0 and fxo=1 is identically 0 and the other is identically 1, so f = xo or 1− xo -

contradicting the fact that xo is an orphaned variable.

Theorem 9.13. Let f : {0, 1}n → {0, 1} be a function with deg(f) = 3. Then, f has

at most one orphaned variable, and this variable appears in a monomial of degree 2.

Proof. We prove this by induction on k = h(f). If k = 1, then by proposition 9.10,

f = xjf1 + (1− xj)f0 for some j ∈ [n] with {xj} a maxonomial hitting set of f , where

f1 and f0 have degree at most 2. xj cannot be an orphaned variable, so any such xo

must be a variable in f1 and/or f0. Assume for the sake of contradiction that two such

orphaned variables xo, x
′
o exist; then, one of the following must be true:

• If xo or x′o (WLOG xo) is a relevant variable in only one of f1 and f0 (WLOG

f0), then f0 = xo or 1− xo, and f1 is independent of xo. deg(f1) = 2 (otherwise,
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deg(f) < 3), so no variable in f1 can be an orphaned variable by proposition 9.12;

however, x′o cannot be a variable in f0, and so f is independent of x′o, creating a

contradiction.

• If xo and x′o are relevant variables in both f1 and f0, then f1 and f0 must have

the same degree 2 monomials in xo and x′o; however, by looking at all possible f0

and f1, the only way this can happen is if f0 = f1, so f = f0 = f1 and deg(f) ≤ 2

- creating a contradiction.

As a result, f can have only one orphaned variable.

Now, suppose that the statement is true when h(f) = k for a given k ∈ N; we will

show it is true when h(f) = k + 1. By proposition 9.10, f = xjf1 + (1 − xj)f0 for

some j ∈ [n] and f0, f1 of degree 3 with h(f1) = h(f0) = k − 1 that are independent

of xj . If some xo is an orphaned variable in only one of f0 and f1 (WLOG f1), then

f0 is independent of xo and by proposition 9.12, cxoxa is a monomial in f1 for some

c 6= 0, a ∈ [n]; thus, cxoxaxj is a monomial in f , and xo is not orphaned there. By

our inductive assumption, f0 and f1 each have at most one orphaned variable, and any

variable that isn’t orphaned in either isn’t orphaned in f (since its maxonomials include

the maxonomials of f0 and f1). As a result, f contains xo as an orphaned variable iff f1

and f0 do, so f can only have one orphaned variable. By induction, we are done.

Since every degree 3 boolean function has at most one orphaned variable, and f

only has an orphaned variable if f0 and f1 do, it is sufficient for our family of degree

3 functions f with h(f) = 1 to allow two different variables to be the orphan variable

for isomorphic functions. Furthermore, every such f has at most 4 variables in its

maxonomials, and there are only two possible maxonomial sets that allow f to have

more than 3. For those two, we note that x3 is the only possible orphan variable, so we

add each such f with x3 replaced by x7; for the rest, x3 and x5 are already present as

potential orphan variables.
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9.3.3 Managing Runtime

When we sort our Boolean functions f with degree 3 and maxonomial hitting set size 1

by their maxonomials, we see that the most common maxonomial set by far is x1x2x6.

Computing x8f1 +(1−x8)f0 for all such f1, f0 would be very time-consuming; however,

we can save most of that time with the following theorem.

Theorem 9.14. Let f : {0, 1}n → {0, 1} be a Boolean function such that deg(f) = 3

and h(f) = 2, such that for any j, if h(fxj=0(x)) = 1, then fxj=0(x) has a maxonomial

hitting set that is isomorphic to x1x2x6. Then, f ’s maxonomial hitting set is isomorphic

to x1x2x6 + x1x2x8 + x1x6x8 + x2x6x8.

Proof. WLOG, we may assume there exists an a ∈ [n] such that x1x2x6 is the maxono-

mial hitting set of fxa=0; since the maxonomial set of fxa=0 is the set of all maxonomials

of f that don’t include xa, every maxonomial of f(x) either is x1x2x6 or contains xa

(so {i, a} is a maxonomial hitting set of f(x) for all i ∈ {1, 2, 6}). Furthermore, since

{i} is not a maxonomial hitting set of f(x) for any i ∈ [n], for each i ∈ {1, 2, 6}, there

must exist a corresponding maxonomial of f(x) that does not include xi as a variable.

Suppose that there exist two distinct b1, b2 ∈ [n] − {1, 2, 6, a} such that for each

b ∈ {b1, b2}, there exists a d ∈ [n] such that cxaxbxd appears a maxonomial in f(x)

(with c 6= 0). This implies that cxbxd appears in fxa=0(x) for each such b; however, by

our initial condition on xa, xb1 and xb2 do not appear in any maxonomial of fxa=0, and

so both are orphaned variables in fxa=0. However, by theorem 9.13, fxa=0 can have

at most one orphaned variable, so we have a contradiction, and two such b1, b2 cannot

exist.

Now, suppose that there exists a unique b ∈ [n] − {1, 2, 6, a} such that cxaxbxd

appears as a maxonomial in f(x) with c 6= 0 and d ∈ {1, 2, 6} (WLOG d = 6). Now, the

maxonomial set of f must contain another maxonomial (otherwise, {6} is a maxonomial

hitting set of f , contradicting h(f) = 2); furthermore, if any other maxonomial of f(x)

excludes xi for any i ∈ {1, 2}, then xi has the property that f ′(x) = fxi=0(x) has

h(f ′) = 1 (since {a} is now a maxonomial hitting set of f ′), and the maxonomial set of

f ′ is not isomorphic to x1x2x6. Consequentially, f(x)has x1x2x6+cxaxbx6+c′x1x2xa as
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its maxonomial hitting set for some c′ 6= 0; however, this means that f ′(x) = fxb=0(x)

has h(f ′) = 1 with the maxonomial hitting set not isomorphic to x1x2x6, creating a

contradiction, and so no such b can exist.

As a result, we note that the maxonomial hitting set of f(x) is x1x2x6 + cx1x2xa +

c′x1x6xa + c′′x2x6xa for some c, c′, c′′ 6= 0. As as result, h(fxi=0(x)) = 1 for all i ∈

{1, 2, 6, a}, and so c, c′, c′′ = ±1 by the condition on all such restrictions of f . Any

such f has a maxonomial hitting set that is isomorphic to x1x2x6 + x1x2x8 + x1x6x8 +

x2x6x8.

This implies that when f1 and f0 both have x1x2x6 as their set of maxonomials, we

only need to consider pairs such that x8f1 + (1−x8)f0 has x1x2x6 +x1x2x8 +x1x6x8 +

x2x6x8 as its maxonomial hitting set - greatly reducing the runtime.

By the inductive process followed above, we find, up to isomorphism, every Boolean

function f with deg(f) = 3 and h(f) = k for k = 2, 3, 4, 5. The set of Boolean functions

that we find when k = 4 is nonempty, and includes the function contra(x) defined

above; however, the set that we find for k = 5 is empty. This implies that no Boolean

f with deg(f) = 3 and h(f) > 5 exists (by a simple induction argument, using that

fact that any such f could be expressed as xjf1(x) + (1− xj)f0(x) for some f1, f0 with

deg(f1) = deg(f0) = 3 and h(f1) = h(f0) = k − 1).
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Appendix A

A Clarification of Gusfield

However, it is not always immediately obvious what the stable matchings that contain

(m,w) are, or even if any do. Gusfield ([GI89], Section 2.2.2) states that ”it is easy to

test if there is a stable matching containing (m,w), and if so, to find M(m,w). Simply

modify the Gale-Shapley algorithm so that w rejects all proposals from anyone other

than m, and such that no woman other than w accepts a proposal from m.” In this

appendix, we disambiguate Gusfield’s statement, and generalize it to not only determine

whether (m,w) appears in a stable matching over I, but find a compact representation

of every stable matching that contains (m,w).

We capture the structure of the stable matchings that contain (m,w) through the

restriction I∗(m,w) of I, defined such that a given edge (m′, w′) ∈ G(I∗(m,w)) iff either

(m′, w′) = (m,w), or all of the following conditions hold:

• m′ 6= m and w′ 6= w.

• If w prefers m′ to m, then m′ prefers w′ to w.

• If m prefers w′ to w, then w′ prefers m′ to m.

We will typically shorten I∗(m,w) to I∗ when (m,w) is implied.

In the case where Ke is nonempty, we note that this restriction is an example of a

truncation I(Tw,Tm), where Tm = {(m, a(m)) : m ∈ Vm(I) ∩ V } and Tw = {(a(w), w) :

w ∈ Vm(I) ∩ V }. For the case of I∗, we note that a(v) is as follows:

• a(m) = w and a(w) = m.

• For all m′ ∈ Vm(I) − {m}, if w prefers m′ to m, then a(m′) is the element on

m′’s preference list directly above w; otherwise, a(m′) is the last element on m′’s
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preference list.

• For all w′ ∈ Vw(I) − {w}, if m prefers w′ to w, then a(w′) is the element on

w′’s preference list directly above m; otherwise, a(w′) is the last element on w′’s

preference list.

Theorem A.1. For a given satisfactory instance I and edge (m,w) ∈ G(I), let V0 be

the set of vertices covered by the stable matchings over I, and M be any matching such

that (m,w) ∈M and the edges of M cover V0. Then, M is a stable matching over I iff

M ⊆ G(I∗) and is a stable matching over I∗.

Proof. If M is stable over I, then M cannot contain any edge not present in I∗ - the

presence of (m,w) in M tells us that there is no other edge in the matching containing

either vertex, and if M contains some (m′, w′) /∈ G(I∗) with m′ 6= m and w′ 6= w,

then via the definition of I∗, we see that either (m′, w) or (m,w′) destabilizes M in I.

Furthermore, M must be stable in I∗ - if it wasn’t, the edge (m′, w′) that destabilizes

M over I∗ would also destabilize M over I.

Now, suppose that M ⊆ G(I∗) and is a stable matching over I∗; we assume for the

sake of contradiction that M is not stable over I. As a result, there must exist an edge

(m0, w0) ∈ G(I) that destabilizes M over I.

• If m0 = m and w0 = w, then (m0, w0) is in M , so it can’t destabilize M .

• If m0 = m and w0 6= w, then m prefers w0 to w and w0 prefers m to pM (w0). This

means, by definition of I∗, that (pM (w0), w0) /∈ G(I∗), so M ( G(I∗), creating a

contradiction.

• If m0 6= m and w0 = w, then w prefers m0 to m and m0 prefers w to pM (m0).

This means, by definition of I∗, that (m0, pM (m0)) /∈ G(I∗), so M ( G(I∗),

creating a contradiction.

• If m0 6= m, w0 6= w, and (m0, w0) ∈ G(I∗), then the fact that M is stable over

I∗ tells us that either m0 prefers pM (m0) to w0 or w0 prefers pM (w0) to m0; in

either case, this tells us that no such (m0, w0) can destabilize M .
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• If m0 6= m, w0 6= w, and (m0, w0) /∈ G(I∗), then either m0 prefers w to w0 and

w prefers m0 to m, or w0 prefers m to m0 and m prefers w0 to w. In the former

case, the fact that (m0, pM (m0)) ∈ G(I∗) and w prefers m0 to m means that m0

prefers pM (m0) to w, so by the transitive property, m0 prefers pM (m0) to w0. In

the latter case, the fact that (pM (w0), w0) ∈ G(I∗) and m prefers w0 to w means

that w0 prefers pM (w0) to m, so by the transitive property, w′ prefers pM (w0) to

m0. Either way, we see that (m0, w0) cannot destabilize M .

Since we have a contradiction for every possible configuration of (m0, w0), there

cannot be any such destabilizing edge. Therefore, M is stable over I.

Corollary A.2. Let V0 be the set of vertices covered by the stable matchings over I.

Then, the set of all stable matchings over I that include (m,w) is the set of all stable

matchings over I∗ that cover V0.

Proof. By theorem 2.4, every stable matching over I covers V0; therefore, by theo-

rem A.1, every stable matching over I that contains (m,w) is a stable matching over

I∗, and continues to cover V0. Similarly, every stable matching over I∗ that covers V0

is also a stable matching over I by theorem A.1. Since every member of one set is part

of the other, the two sets are the same.

As such, we have reduced the problem of finding the poset Ke of all stable matchings

that include a given edge to the problem of finding the set of all perfect stable matchings

for a different instance. In particular, there exists a stable matching over I that includes

(m,w) iff the stable matchings over I∗ are perfect. We also note that the corollary of

theorem A.1 implies theorem 5.21.
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Appendix B

Proof of lemma 4.10

As noted previously, lemma 4.10 is not unique to this paper, and a lemma that uses

the same reasoning appears in [Wak08]. However, we discovered it independently and

only later discovered Wako’s presentation. In this section, we will show that if J and

K are any two subsets of E such that J ⊆ K, ψ(J) = K, and ψ(K) = J , then J = K.

B.1 The Association Partition

Our basic strategy to show that J = K is by contradiction. We note that the K-stable

matchings form a distributive lattice LK by theorem 3.9. If K−J is nonempty, we can

associate each edge of K − J with an element of P (LK) in such a way that, given an

element v ∈ P (LK) with at least one edge of K−J associated with it, we can construct

a K-stable matching using at least one edge associated with v; however, this creates a

contradiction with the initial condition that ψ(K) = J , implying that every K-stable

matching consists entirely of edges in J .

Proof. Since ψ(K) = J ⊆ K, by theorem 3.9, the set of matchingsMK that are stable

with respect to K can be placed under the distributive lattice structure LK = (MK ,�).

This in turn allows us to construct the poset of P (LK) of join-irreducible elements of

LK ; by our previous observations, the elements of P (LK) correspond to the rotations

over I[K]. Let us define P ′ as the poset created by adding two additional elements to

P (LK) - 0̂, which is set to be less than all other elements in P ′, and 1̂, which is set to be

greater than all other elements in P ′. We also set 0̂ = Mm, the man-optimal K-stable

matching. (We note that the property from Lk that Mm dominates every element of

P (LK) is also preserved in P ′.) We will construct a mapping ν : K − J → P ′.
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Now, consider any e ∈ K−J . Since e ∈ K = ψ(J), there exists a matching Me that

J-stable and includes e. Now, consider any matching M ′ that is K-stable. In particular,

since E(Me) ⊆ K and E(M ′) ⊆ J , Me and M ′ are costable. By theorem 3.1, Me∧mM ′

and Me ∧wM ′ are the same matching, and so me prefers we to his partner in M ′ iff we

prefers her partner in M ′ to me. (The order of preference in this case is always strict,

because e /∈M ′.)

We now consider the sublattice L∗e of K-stable matchings M ′ such that we prefers

her partner in M ′ to me. If this sublattice is empty, we define ν(e) = 1̂. Otherwise, me

prefers we to a nonempty subset of his possible partners in LK , and so the sublattice L∗e

of K-stable matchings M ′ such that we prefers her partner in M ′ to me is a nonempty

sublattice of LK ; as such, we may consider the man-optimal matching M0 of L∗e as the

meet of every element of this sublattice. By theorem 3.9, M0 is also in L∗e, and either

equals Mm or is a join-irreducible of LK . Either way, we see that M0 is an element

of P ′, and set ν(e) = M0. (Note that we prefers her partner in M0 to me, and every

K-stable matching M ′ with the same property is ≥M0.)

We say that an edge e ∈ K − J is associated with a vertex v ∈ P ′ if ν(e) = v - in

particular, every e ∈ K−J is associated with some v ∈ P ′.) However, we can show the

following lemma:

Lemma B.1. For any vertex v ∈ P ′, ν−1(v) = ∅.

Since any e ∈ K−J must be associated with some vertex of P ′, no such e can exist.

Therefore, K ⊆ J ; since J ⊆ K from our initial constraints on J and K, J = K.

B.2 Proof of lemma B.1

In proving lemma B.1, it is easiest to consider it as two separate sublemmas.

Lemma B.2. Let v be any vertex of P (LK) other than 1̂. Then, ν−1(v) = ∅.

We hold off on the proof of this lemma for the time being.

Lemma B.3. ν−1(1̂) = ∅.
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Proof. Consider an instance I ′ created from I by reversing which vertices are men and

which are women; J and K retain the property of mapping to each other via ψI′ . By

applying lemma B.2 to I ′ with v = 0̂, no edge e ∈ K − J can have the property that,

for every stable matching M over I ′, we prefers me to pM (we) and me prefers pM (me)

to we. (Recall that in I ′, we is a man and me is a woman.) However, this property

must continue to hold in I (since every vertex has the same preference list in I and I ′).

By the definition of ν, this means that no edge e ∈ K − J can be in ν−1(1̂).

We now set out to prove lemma B.2.

Proof. By the properties of P ′ stated in the proof of lemma 4.10, if v 6= 1̂, v ≡ M0 is

a K-stable matching with the property that we prefers her partner in M0 to me, and

every K-stable matching M ′ with the same property is dominated by M0. WLOG, let us

assume that M0 = {(m1, w1), (m2, w2), . . . , (mn, wn)}, and for the sake of contradiction,

ν−1(M0) is nonempty; for each such edge e = (mi, wj) ∈ ν−1(M0), mi prefers wj to wi,

and wj prefers mj to mi. We seek to construct a K-stable matching M∗ that dominates

M0 and includes at least one edge in ν−1(M0), by replacing some edge in M0 with new

edges. To this end, we create a directed graph D that represents the edges in K that

we consider as candidates for M∗.

For each woman wj , if wj appears as a vertex in some nonzero number of edges

associated with v, we define χ(j) to be the man in these edges that appears first in wj ’s

preference list. If M0 = Mm, this completes our definition of χ. For any other possible

v, we note that, in LK , M0 covers a unique matching M1, and M1 differs from M0 by

a rotation; WLOG, we may assume that:

M1 = {(m1, wr), (m2, w1), . . . , (mr, wr−1), (mr+1, wr+1), . . . , (mn, wn)}

for some 2 ≤ r ≤ n. (In addition, since M1 � M0, for every edge e associated with v,

we prefers me to her partner in M1, and me prefers his partner in M1 to we.) For every

j ≤ r that is otherwise undefined, we define χ(j) to be wj ’s partner in M1.

If we set α to be the set of all j such that χ(j) is defined, we can construct a directed

graph D with vertex set [n] and edge set {(j, χ(j)) : j ∈ α}. (The existence of an edge
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(j, i) ∈ D implies that (mi, wj) ∈ K.) We note that each vertex in D has outdegree at

most 1; however, some vertices - corresponding to women that do not appear in any

edge associated with v or in any edge that appears in the rotation between M0 and M1

- can have outdegree 0.

Proposition B.4. Suppose M0 6= Mm. Then, for every vertex i ∈ D such that i > r,

i has outdegree and indegree 0.

Proof. Let e = (j, i) be any edge in D. By the definition of D, mi prefers pM1(mi) to wj ,

and strictly prefers wj to pM0(mi); furthermore, wj strictly prefers pM0(wj) to mi, and

prefers mi to pM1(wj). This implies that mi strictly prefers pM1(mi) to pM0(mi), and

wj strictly prefers pM0(wj) to pM1(wj). This only can occur if i, j ≤ r; consequentially,

if i > r, it has indegree and outdegree 0 in D.

Lemma B.5. If a vertex i ∈ D has indegree ≥ 1, then it has outdegree 1.

Proof. Suppose M0 6= Mm, and the vertex i ∈ D has indegree ≥ 1. By proposition B.4,

i ≤ r; by the definition of χ, each such i has outdegree 1.

Now, suppose that M0 = Mm, and the vertex i ∈ D has indegree ≥ 1. This implies

the existence of an edge (mi, wj) ∈ K such that mi prefers wj to wi. Since K = ψ(J),

there exists a J-stable matching M ′ that contains (mi, wj), and M ′ ⊆ K; since M0 is

K-stable, it is ⊆ J , and therefore, M0 and M ′ are costable. By proposition 3.6, the fact

that mi prefers pM ′(mi) to wi = pM0(mi) implies that wi prefers mi to pM ′(wi) ≡ mk,

which implies that mk prefers wi to wk. As a result, there exists a man mk that prefers

wi to wk, so the vertex i ∈ D has outdegree 1.

If we assume that there exists a vertex in D with outdegree 1, then we may create

a sequence {i1, i2, . . .} where i1 is a vertex ∈ [n] with outdegree 1 and ik+1 = χ(ik) for

all k ≥ 1. We know that χ(i1) exists (since i1 has outdegree 1), so i2 is well defined.

Meanwhile, for any k > 1, ik = χ(ik−1), and so has indegree ≥ 1; by the contrapositive

of the lemma above, this means that it has outdegree 1, and so ik being well-defined

implies that ik+1 is well-defined. By induction, we see that the entire sequence is

well-defined.
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Since this is an infinite sequence over a finite domain, there must be some term ib

that equals a previous term il. Now, consider the matching M∗ such that wik is matched

with mik+1
= mχ(ik) for all k ∈ {l, l + 1, . . . , b − 1} and wi is matched with mi for all

i /∈ {il, il+1, . . . , ib−1}. Since every edge of the form (mχ(i), wi) has the property that

mχ(i) prefers wi to wχ(i) and wi prefers mi to mχ(i), M
∗ dominates M0. Furthermore,

if M0 6= Mm, then mχ(i) prefers pM1(mχ(i)) to wi and wi prefers mχ(i) to pM1(wi), so

M1 dominates M∗.

Lemma B.6. M∗ is K-stable.

Proof. Assume for the sake of contradiction that M∗ is not K-stable, so there exists an

edge ε = (mi, wj) ∈ K such that M∗ is not ε-stable - i.e. mi and wj prefer each other

to their respective partners in M∗. Since M∗ dominates M0, mi must still prefer wj to

his partner in M0; however, since M0 is K-stable, wj must prefer her partner in M0 to

mi.

If M0 is the man-optimal K-stable matching, these two facts are sufficient to imply

that ε is associated with M0 (since the properties holding for the man-optimal K-stable

matching imply that they hold for all K-stable matchings). Otherwise, M1 dominates

M∗, so wj must still prefer mi to her partner in M1. However, since M1 is K-stable,

mi must prefer his partner in M1 to wj . Consequentially, ε is associated with M0,

regardless of what M0 is.

At least one edge associated with M0 includes wj (namely, ε), so χ(j) is the index of

the man that is matched with wj through an edge associated with v that appears first

in wj ’s preference list, and wj weakly prefers mχ(j) to mi. By the definition of M∗, wj

is matched either with mj or mχ(j), and since wj = wε prefers mi to her partner in M∗,

wj is matched with mj . However, wj strictly prefers mj to mi, as (mi, wj) is associated

with v, and thus wj would prefer her partner in M0. This creates a contradiction with

the assumption that (mi, wj) destabilizes M∗, so our assumption must be false, and

M∗ is K-stable.

Since ψ(K) = J , this would imply that M∗ ⊆ J ; however, we can show that M∗

contains at least one edge in K−J - specifically, at least one such edge associated with
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M0.

Lemma B.7. M∗ contains at least one edge associated with M0.

Proof. M∗ includes the edges E∗ := {(mik+1
, wik) : k ∈ {l, l + 1, . . . , b − 1}}, none

of which appear in M0. If M0 = Mm, then every edge in E∗ is associated with v;

otherwise, E∗ consists of edges that are either associated with M0 or in M1.

For the sake of contradiction, assume that every edge in E∗ is in M1. As a result,

every edge in D of the form (ik, ik+1) with k ∈ {l, l + 1, . . . , b − 1} corresponds to an

edge from M1, and so is in {(1, 2), (2, 3), . . . , (r − 1, r), (r, 1)}. The only cycle that can

be created from these edges requires every such edge; this can only exist as a cycle in

D if mχ(i) = pM1(wi) for all i ∈ [r]. However, this implies that for every i ≤ r, there is

no edge associated with M0 that includes wi as a vertex. By proposition B.4, for every

i > r, there is no edge associated with M0 that includes wi as a vertex. These two

observations together give us that no woman can appear in an edge associated with M0;

this creates a contradiction with our assertion that at least one edge is associated with

M0, and so, by contradiction, M∗ contains at least one edge associated with M0.

We have thereby, given a vertex v 6= 1̂ with at least one edge ∈ K − J associated

with it, constructed a K-stable matching M∗ that contains at least one edge in K − J .

This creates a contradiction with ψ(K) = J , and so, by contradiction, lemma B.2 must

be true.



141

Appendix C

An Efficient Construction of ψ∞I

Previously, we proved that, for any given instance I, the hub-stable matchings over

I form a distributive lattice LK with ∨ and ∧ as its join and meet functions re-

spectively. This proof also provides a method to construct this lattice for a spe-

cific instance with n men and n women - generate ψ∞I by computing the sequence

{E(I), ψ(E(I)), ψ2(E(I)), . . .}, then finding the lattice of stable matchings over the

limit of this sequence. This algorithm finds ψ∞I in O(n3) time. However, as seen in

theorem 2.24 ([Wak10]), Jun Wako determined that there exists an algorithm that pro-

duces a description of the lattice of hub-stable matchings (and thereby the hub) in

O(n2) time.

We independently discovered an algorithm that finds ψ∞I in O(n3) time. This algo-

rithm follows the following strategy:

1. Generate the man-optimal hub-stable matching M0 and the woman-optimal hub-

stable matching M1.

2. Consider the instance I(M0,M1). Then, the hub of I is the union of all stable

matchings over I(M0,M1).

Theorem C.1. Let M0 and M1 be the man-optimal and woman-optimal hub-stable

matchings respectively. Then, the hub of I is the union of all stable matchings over

I∗ = I(M0,M1).

Proof. Over I∗, M0 and M1 are trivially the man-optimal and woman-optimal hub-

stable matchings (since M0 matches each man with his top choice, and M1 matches

each woman with her top choice); therefore, by corollary 4.21, the hub of I∗ is the

union of all stable matchings over it.
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By corollary 4.31, ψ∞I′ = ψ∞I ∩G(I ′). By the definition of a subinstance, G(I ′) only

excludes edges e ∈ G(I) such that me strictly prefers pM1(me) to we, or we strictly

prefers pM0(we) to me. If me strictly prefers pM ′(me) to we, then e /∈ ψ∞I - since M ′

is the woman-optimal stable matching, every hub-stable matching has me partnered

with a woman he prefers to pM1(me). Similarly, if we strictly prefers pM0(we) to me,

then e /∈ ψ∞I - since M0 is the man-optimal stable matching, every hub-stable matching

has we partnered with a man she prefers to pM ′(we). As a result, G(I ′) ⊇ ψ∞I , and so

ψ∞I′ ψ
∞
I .

Given I(M0,M1), we can generate the union of stable matchings over it in O(n2) time.

Consequentially, the runtime of this algorithm is dependent on how efficiently we can

find M0 and M1. We will present an algorithm that finds these matchings in O(n3)

time; however, in [Wak10], Wako presents an algorithm that finds M0 and M1 in O(n2)

time.

C.1 Generating the Man-Optimal Hub-Stable Matching

As an intermediate step in the generation of ψ∞, we attempt to generate the man-

optimal hub-stable matching without generating the sequence {∅, ψ(∅), ψ2(∅), . . .}. One

such algorithm is described in [Dig16]; we present the algorithm here, and prove that

it produces the man-optimal hub-stable matching. (We note that while we did not

discover the algorithm, our proof that it produces the man-optimal hub-stable matching

is original. Digulescu also notes that this matching is the man-optimal hub-stable

matching in the acknowledgments of [Dig19], which postdates our discovery of this

fact.)

Algorithm C.2. Given a satisfactory n×n instance I, we construct a perfect matching

Mh over I as follows.

1. Set t = n I∗n = I, and Mh = ∅.

2. While t > 0, do the following:
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(a) Let M ≡ M{t} be the man-optimal stable matching over I∗t . Set I ′t =

(I∗t )(∅,M), the subinstance of I∗t restricted to edges (mw) ∈ E(G(I∗t )) such

that m prefers w to pM (m).

(b) Let wt ∈ Vw(I ′t) be a vertex in G(I ′y) with degree exactly 1, and mt be the

unique element of Vm(I ′t) such that (mt, wt) ∈ G(I ′t). (We note that such a

wt must exist - specifically, the last woman proposed to in any operation of

the Gale-Shapley algorithm on I ′t is such a wt.) Set Mh = Mh ∪ {(mt, wt)}

and I∗t−1 to be I ′ with the vertices mt and wt (and all edges incident to them)

removed.

(c) Set t = t− 1.

For t ∈ [n], we define M ′{t} = M{t} ∪ {(mk, wk) : t < k ≤ n} and I ′′t = I(∅,M ′{t})
.

Theorem C.3. In algorithm C.2, M{t} is a hub-stable matching for all t ∈ [n]. Fur-

thermore, the perfect matching Mh constructed in algorithm C.2 is the man-optimal

hub-stable matching over I.

Proof. We prove this result by strong induction on decreasing t - specifically, by showing,

for all 2 ≤ t ≤ n, if M ′{t} is hub-stable, then M ′{t−1} is hub-stable. For our base case,

we note that M ′{n} = M{n} is the man-optimal stable matching over I = I∗n, and so is

hub-stable.

For our inductive step, since M ′{t} is hub-stable, so by theorem 4.35, we note that

ψ∞I′′t
= ψ∞I ∩ E(G(I ′′t ). In G(I ′′t ), for all i ≥ t, wi has degree 1 and is incident with the

edge (mi, wi). However, since M ′{t} is a perfect stable matching over I ′′t (and thereby

also hub-stable), every hub-stable matching over I ′′t is also perfect by theorem 2.4. As

a result, {(mi, wi) : t ≤ i ≤ n} is a subset of every hub-stable matching over I ′′t , and so

e ∈

psi∞I′′t
⇒ e ∈ St, where St = {(mi, wj ∈ E(G(I ′′t ) : i = j or i, j < t}.

As a result, M ′{t−1} is thereby St-stable (since in any operation of the Gale-Shapley

algorithm over I ′′t [St], mi simply proposes to wi for all i ≥ t); this implies that M ′{t−1}

is hub-stable over I ′′t . By theorem 4.35, M ′{t−1} is also hub-stable over I.
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By induction, we see that if we define (m1, wi) to be the unique edge in M{1},

M ′{1} ≡ {(mi, wi) : i ∈ [n]} is hub-stable over I. To show that this is the man-optimal

hub-stable matching, assume otherwise for the sake of contradiction; then, there exists

a hub-stable matching over I that dominates Mh. By theorem 4.35, this matching

must also be hub-stable over I(∅,Mh), and so Mh ⊂ ψ∞I(∅,Mh)
. However, by our inductive

observations, (mi, wj) /∈ ψ∞I(∅,Mh)
if i 6= j and max(i, j) ≥ 2, so ψ∞I(∅,Mh)

⊆ Mh. This

creates a contradiction, so Mh is the man-optimal hub-stable matching over I.

Theorem C.4. We can run algorithm C.2 in O(n3) time.

Proof. Each iteration of step 2 can be run in O(n2) time. Given any satisfactory

instance as I∗t , we can find the man-optimal stable matching M{t}, as well as mt and

wt, in O(n2) time by using the Gale-Shapley algorithm. We also note that E(I ′t) is the

set of all (m,w) such that m proposes to w in the Gale-Shapley algorithm over I∗t , and

so can be found in O(n2) time as well; E(I∗t−1) is just the set of all such edges where

m 6= mt.

Given that we run through step 2 n times, and the runtime of step 1 is trivial, we

see that we can runalgorithm C.2 in O(n3) time.

We may also prove theorem 2.25 at this juncture.

Proof. As noted in the proof of theorem C.3, for all i, j ∈ [n] such that i < j, mi prefers

pM{j}(mi) to wj - otherwise, mi would have proposed to wj before pM{j}(mi). However,

because M{j} is hub-stable over I and Mh is the man-optimal hub-stable matching, mi

prefers pMh
(mi) = wi to pM{j}(mi); therefore, mi prefers wi to wj .

Corollary C.5. There exists an algorithm to construct the woman-optimal hub-stable

matching in O(n3) time.

Proof. We may run algorithm C.2, with the roles of the men and women switched.
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C.2 Extending to Nonsatisfactory Instances

The above algorithm for the construction of the lattice of hub-stable matchings is

contingent on the instance being satisfactory; however, as noted in corollary 4.23, any

nonsatisfactory instance can be extended into a complete instance that preserves the

behavior of ψ.

Theorem C.6. For any n′ × n′′ instance I, the lattice of hub-stable matchings can be

constructed in O(n3) time, where n = max(n′, n′′).

Proof. If I is a satisfactory instance, then we can apply the above construction. Oth-

erwise, let I ′ be any completion of I; since I ′ is a complete instance, we can determine

ψ∞I′ in O(n3) time. Thus, by corollary 4.23, ψ∞I = ψ∞I′ ∩ E(G(I)) can be constructed

in O(n3) time as well. Given ψ∞I , we can generate the lattice of hub-stable matchings

on I in O(n2) time by finding the lattice of stable matchings on the instance generated

from I by removing all edges not in ψ∞I . As a result, we can generate the lattice of

hub-stable matchings on I in O(n3) time.
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