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Abstract

In this paper, we will discuss how to use Maple programming to empirically in-

vestigate the asymptotic normality of the generalized Hirsch citation index (alias size

of Durfeee rectangle) with respect to the uniform distribution on the sample space of

integer partitions of n.

All the results of this article were obtained using Maple programs, and is available

at: http://math.rutgers.edu/ hbl15/em15/HIRSCHgData.txt
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Chapter 1

Introduction

1.1 Informal Overview

1.1.1 The general h-index

The Ferrers diagram corresponding to a partition λ is a graphical representation

of λ. To construct the Ferrers diagram for λ = (λ1, λ2, . . . , λk), simply place a row of

λi+1 left justified blocks on top of λi blocks, for each i = 1, 2, . . . , k − 1. For example,

the Ferrers diagram for the partition λ = (6, 4, 3, 1, 1) is :

The Hirsch index (h-index), h(λ) is the largest λi such that the λi × λi square fit

inside the Ferrers diagram, in this case h(λ) = 3 . And for the general h-index,

h(λ, a, b) is the largest λi such that the (λi)× (aλi + b) rectangle fit inside the Ferrers

diagram.
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1.1.2 Probability Review

In probability theory, a sample space is the set of all possible outcomes for an experi-

ment. For example, if you toss a coin three times, the sample space for this experiment

is S3 ={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}, or shortly {H,T}3

Random variable, X : S → R , is the function that maps each event of in the

sample space (S) into a real value number that represent at feature of interested, for

example mapping HHT into the number of heads : X(HHT ) = 2

Probability distribution is a function that map measurable subset of the possible

outcomes in the sample space to a probability of occurrence. Continue from coin tossing

example above, if the probability of head is p (p ∈ [0, 1]) then the probability of getting

HHH is: pHHH = p3. The general probability distribution for a single event, s,in the

coin tossing experiment is : ps = pNumberOfHeads(1−p)NumberOfTails. (
∑

s∈S ps = 1). We

can also combine single events with similar features and get a probability distribution

for this ”compound event” , such as the probability of getting exactly 2 heads out of 3

tosses: Pr(s ∈ S|X(s) = 2) =
∑

s∈S|X(s)=2 ps =
(
3
2

)
p2(1 − p). The general probability

distribution formula for getting exactly k heads out of n tosses is :

Pr(s ∈ S|X(s) = k) =
∑

s∈S|X(s)=k

ps =

(
n

k

)
pk(1− p)n−k

.

Probability generating function, f(t), is a power series of t with valued from

probability distribution as coefficient :

f(t) =
∑
r∈R

Pr(X(s) = r)tr =
∑
s∈S

pst
X(s)

Expectation, or mean, or first moment of a random variable X is the weighted

average of all possible value that X can take. Each value of X is being weighted
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by the probability of that value occurring: Pr(s ∈ S|X(s) = k) =
∑

s∈S|X(s)=k ps.

Taking previous example, the expected number of heads if you toss a coin n times is

: µ = E(X) =
∑

r∈R Pr(X(s) = r)r =
∑

s∈S p
sX(s). Expectation plays important

role in characterizing the probability distribution, such as the location of shift of the

distribution.

Variance, or second moment of a random variable X describes the spread of the

possible values of X. For a random variable X with expectation µ = E[X], the variance

of X is

σ2 = E[(X − µ)2] =
∑
s∈S

ps(X(s)− µ)2

Higher moments is defined by the formula :

mr(X) =
∑
s∈S

ps(X(s)− µ)r

Moments are values that help understanding the characters of a distribution such as

its skewness, kurtosis... These values plays central role in our method of analyzing the

general h-index because of their special pattern when it comes to normal distribution.

Normal distribution of a random variable X, with mean µ and variance σ2 has

a probability distribution satisfies :

Pr(a ≤ x ≤ b) =
1

σ
√

2π

∫ b

a

e
−

(x− µ)2

2σ2 dx

When σ = 1 and µ = 0, then this distribution is called standard normal distribu-

tion. All normal distribution can be transformed into standard normal distribution

by centralized and normalized the random variable by the formula :

Zn =
Xn − µ
σ
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As mentioned above, the sequence of moments (starting from order 1 moment)

of a normal distribution when calculated has the pattern: {µ, µ2 + σ2, µ3 + 2µσ, µ4 +

6µ2σ2+3σ4, µ5+10µ3σ2+15µσ4, µ6+15µ4σ2+45µ2σ4+15σ6, µ7+21µ5σ2+105µ3σ4+

105µσ6, µ8 + 28µ6σ2 + 210µ4σ4 + 420µ2σ6 + 105σ8, ...}

Thus, for a standard normal distribution, its moment sequence (starting from order

1 moment) is always: {0,1,0,3,0,15,0,105,...} (subtituting σ = 1 and µ = 0 into the

sequence above). We used this characteristics to empirically prove whether the general

h-index for a Durfee rectangle is asymptotically normal, by using the refined central

limit theorem in The Automatic Central Limit Theorems Generator by Dr. Doron

Zeilberger [1].

The Central Limit Theorem : Let X1, X2, ... be a sequence of independent

and identically distributed random variable with common mean µ and variance σ2. If

Sn = X1 + X2 + ... + Xn then the distribution of
Sn − nµ
σ
√
n

converges to the standard

normal distribution, that is for every fixed β :

lim
n→∞

P{Sn − nµ
σ
√
n

< β} =
1√
2π

∫ β

−∞
e
−
x2

2 dx = N (β)

Before getting to the refined central limit theorem, one other set of moments that

play crucial role in our analyzing method is factorial moments :

fr(X) =
∑
s∈S

ps(X(s)− µ)(r)

=
∑
s∈S

ps(X(s)− µ)(X(s)− µ− 1)...(X(s)− µ− r + 1)

Factorial moments are important because they are very easy to calculate from

the probability generating function f(t). Supposed we had done our centralization to

our random variables and we have mean 0 for all of them, then we can get fr by
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differentiating f(t) r times and substitute t = 1:

fr =
drf(t)

dtr
|t=1

With Maple, we can do a Maclaurin expansion around t = 0 for f(1+t):

f(1 + t) =
∞∑
r=0

fr
tr

r!

And we can get the ordinary moments from factorial moments by the connection

formula ([GKP],p.250):

mr =
r∑

k=1

S(r, k)fr

where S(r,k) is the Stirling Numbers of the Second kind, defined as:

S(r, k) = kS(r − 1, k) + S(r − 1, k − 1)

with S(1,1) = 1 and S(1,k) = 0 for k6= 1

And without going to much further details, in [1], there is also a nice recurrence

formula that connect fr(n+ 1) and fr(n):

fr(n+ 1)− fr(n) =
r∑
s=2

(
r

s

)
Fsfr−s(n)

where Fs is the factorial moments of the single event, fr(0) = 0 and f1(n) = 0

The Refined Central Limit Theorem [1] : Let {Xk} be a sequence of mutually

independent and identically distributed random variables. Suppose that µ = 0 and

σ2 = 1 and all the first 2s moments, M1 = 0,M2 = 1,M3,M4, ....,M2s are finite. Let

Sn = X1 +X2 + ...+Xn, and m2r be the 2r-th moment of Sn, then for even s, then :
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m2r =
(2r)!

(2rr!)(1 +O(
1

ns
))

if the first 2s moments of X are the same as the first 2 moments of the Standard

Normal Distribution.

1.2 Historical Motivation

This work is inspired by Dr. Zeilberger’s paper ” A Quick Empirical Reproof of the

Asymptotic Normality of the Hirsch Citation Index” ([2]), which successfully used

number crunching method for reproving the asymptotic normality of the h-index (a.k.a

Durfee square).

The beauty of this method is that, while it’s almost impossible to figure out the

closed general form for the all factorial moments in term of both n and r, Maple

is very efficient in getting the explicit the first s terms, no matter why s is. This is

because we have constructs the math around using recurrence and Taylor, both of

which Maple is very fast in calculate a specific number of terms that we want.

On this paper, we want to expand on the original program so that we can analyze

a more general case of the h-index, and investigate the asymptotic normality of other

Durfee rectangle with respect to the uniform distribution on the sample space of integer

partition n.
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Chapter 2

Methodology and Discussion

2.1 Methodology

We started with the simplest case of Durfee rectangle : the largest rectangle with sides

k and k+b for a specific b. In order to analyze its asymptotic normality, we start with

its generating function:

The Durfee rectangle contributes a total of k(k+b) to the total size n. The gener-

ating function for the choice of an arm with no more than k row is:

P≤k(q) =
1

(1− q)(1− q2)...(1− qk)

The generating function for the choice of a leg with largest part not larger than

k+b is:

P≤(k+b)(q) =
1

(1− q)(1− q2)...(1− qk+b)

Thus the grand generating function is :

F (q, t) =
∞∑
k=0

qk(k+b)tk

(1− q)(1− q2)...(1− qk)(1− q)(1− q2)...(1− qk+b)
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If we can rewrite F(q,t) into this form :

F (q, t) =
∞∑
k=0

Ck(t)q
k

From this, if we can calculate all moments for each Ci(t) and prove that for these

moments are equal to 0 for k odd and
k!

(k/2)!2k/2
, then with the refined central limit

theorem, we can proved that F(q,t) is asymptotically normal.

However, since F(q,t) formula is a very complicated, to perform a rigorous proof

about the asymptotic normally is potentially very hard. Thus, we take advantage of

the computability power of computer to give an empirical analysis on the asymptotic

normality of the general h-index:

First step: we only try to compute the first couple thousand terms of Ck(t), say

K2 terms. This is done by consider only first K terms in the sum

FK(q, t) =
K∑
k=0

qk(k+b)tk

(1− q)(1− q2)...(1− qk)(1− q)(1− q2)...(1− qk+b)

and then use Taylor expansion on FK(q, t) up to qK
2

:

F ′(0, t)q0 + F ′′(0, t)q1 + F ′′′(0, t)
q2

2!
+ ...+ F (k2+1)(0, t)

qk
2

k!

⇒ Ci(t) = F (i)(0, t), i ∈ [0, K2]

This step is done by the SidraG function in the code section.

Second step: Transform the combinatorial generating function Ci(t) into the

probability generating function Pi(t) by diving each Ci(t) with Ci(1), under the uniform

distribution.

Pi(t) =
Ci(t)

Ci(1)

We have the sum:
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C0(t)

Ci(1)
q0 +

C1(t)

Ci(1)
q1 + ...+

CK2(t)

CK2(1)
qK

2

This step is done by function PGFsG.

Third step: Let ai = Ei(f) be the expectation of the random variable f(x) such

that

Ci(t) =
∑
x∈Xi

tf(x)

then we know :

ai = P ′i (1)

In this step we centralized the distribution (µ = 0) by diving each Pi(t) with tai :

Qi(t) =
Pi(t)

tai

⇒ we have the sum :

C0(t)

Ci(1)ta0
q0 +

C1(t)

Ci(1)ta1
q1 + ...+

CK2(t)

CK2(1)taK2
qK

2

We get the sequence of moments for each of the Qi(t) :

mk(i) = (t
d

dt
)kQn(t)|t=1

Then we standardized these moments:

αk(i) =
mk(i)

m2(i)k/2

This step is done by CGFsG, CGFsTg, AveAndMoms, Alpha functions.

Fourth step: Now we estimate αk when i→∞ by using L = [αk(1), αk(2), αk(3)....],

which are sequence of real number we already calculate, and try to estimate a function
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of αk by setting:

αk =
∑

(a[i]/ni, i = 0..K)

and solved for a[i] by creating the K equations:

a[0] +
a[1]

(K + 1− 1)1
+

a[2]

(K + 2− 1)2
+ ..

a[2]

(K + j − 1)2
= L[j]

Then we compare the sequence of αk with the sequence of moments of the Standard

Normal Distribution.

2.2 Discussion

For this work, one of the biggest mistake that we stumbled on was the generating

function for the Durfee rectangle. Originally, we thought for any integer a and b, the

generating function for the Durfee regtangle with the side k and a*k + b is:

∞∑
k=0

qk(ak+b)tk

(1− q)(1− q2)...(1− qk)(1− q)(1− q2)...(1− qak+b)

which seems pretty good initially. However, when we are trying the asymptotic normal-

ity with the case a 6= 1, we can see that the moments do not match those of Standard

Normal Distribution. A close look at the generating function, we can clearly see that

it is in fact not correct. Thus, to find the correct generating function for all a will be

the next step of this work.

Besides, we are also starting to take step toward the Multivariate Normal Distribu-

tion. As in our code, we have started working on finding moments for the probability

generating function in the variable a and y.

All our code and result can be found at math.rutgers.edu/ hbl15/em15
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Chapter 3

Code

• SidraG(K,q,t,a,b) : the polynomial of degree K(a*K+b) in q and K in t such

that the coefficient of qn× tk is the exact number of partitions of n whose size of

the largest Durfee rectangle has the form k(ak+b)

Caution: Since we have not found the correct general formula for the generating

function of all Durfee rectangle, this function for now is only correct if a = 1.

However, we want to keep it in this form in case we are able to find the correct

generating function for all case of a. Since, the rest of the program will work if

SidraG:=proc(K,q,t,a,b) local lu, k, j:

option remember:

lu:=add(q^(k*(a*k+b))*t^k/mul(1-q^j,j=1..a*k+b),k=1..K):

lu:=taylor(lu,q=0,K*(a*K+b)+1):

add(coeff(lu,q,j)*q^j,j=0..K*(a*K+b)):

end:

• PGFsG(K,t,a,b): the list of polynomials of size K(a*K+b), whose i-th entry

is the probability generating function for the random variable ”size of Durfee

rectangle” defined on integer partitions of i. Try: PGFsG(20,t,1,0);
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PGFsG:=proc(K,t,a,b) local lu,q,i:

lu:=SidraG(K,q,t,a,b):

[seq(sort(coeff(lu,q,i)/subs(t=1,coeff(lu,q,i))),i=1..K*(a*K+b))]:

end:

• CGFsG(K,t,a,b): the list of polynomials of size K2, whose i-th entry is the com-

binatorial generating function for the random variable ”size of Durfee sequare”

defined on integer partitions of i. Try: CGFsG(20,t,1,0);

CGFsG:=proc(K,t,a,b) local lu,q,i:

lu:=SidraG(K,q,t,a,b):

[seq(sort(coeff(lu,q,i)),i=1..K*(a*K+b))]:

end:

• CGFsTg(K,t,a,b): the list of polynomials of size K, whose i-th entry is the com-

binatorial generating function for the random variable ”size of Durfee rectangle”

defined on integer partitions of i*(a*i+b). Try: CGFsTg(20,t,1,0);

CGFsTg:=proc(K,t,a,b) local lu,q,i:

lu:=SidraG(K,q,t,a,b):

[seq(sort(coeff(lu,q,i*(a*i+b))),i=1..K)]:

end:

• QkN(k,N,q): the truncation up to qN , of the infinite product ((1 − q(k + 1)) ∗

(1− q(k + 2)))2 ∗ ... . Try: QkN(0,100,q);

Note: This is a function borrowed from [4]. It’s necessary for CGFsRTg function.

QkN:=proc(k,N,q) local gu,i:

if N<0 then
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RETURN(0):

fi:

gu:=taylor(mul((1-q^i)^2,i=k+1..trunc(N/2)+1),q=0,N+1):

add(coeff(gu,q,i)*q^i,i=0..N):

end:

• RHS(q,t,N): the truncation to order qN in q of Sum(q(k2) ∗ tk ∗ ((1− q(k + 1)) ∗

(1− q(k + 2) ∗ ...)2, try: RHS(q,t,100);

Note: This is a function borrowed from [4]. It’s necessary for CGFsRTg function.

RHS:=proc(q,t,N) local gu,k:

gu:=0:

for k from 0 to trunc(sqrt(N))+1 do

gu:=expand(gu+t^k*q^(k^2)*QkN(k,N-k^2,q)):

od:

end:

• CGFsRTg(K,t,a,b): the list of polynomials of size K, whose i-th entry is the com-

binatorial generating function for the random variable ”size of Durfee rectangle”

defined on integer partitions of i*(i*a+b), using the recurrence approach. Same

output as CGFsTg(K,t) but hopefully faster. Try CGFsRTg(20,t,1,0);

CGFsRTg:=proc(K,t,a,b) local q,N,L,R,i,j,T:

N:=K*(a*K+b):

L:=QkN(0,2*N+1,q):

R:=RHS(q,t,2*N+1):

T[0]:=1:

for i from 1 to N do

T[i]:=coeff(R,q,i)-add(coeff(L,q,j)*T[i-j],j=1..i):
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od:

[seq(T[i*(a*i+b)],i=1..K)]:

end:

• CGFsTpcG(K,t,a,b): Like CGFsTpc(K,t,a,b) but for K¡=100 using the precom-

puted values, hence much faster. K must be ¡=100. Try: CGFsTpcG(20,t,1,1);

CGFsTpcG:=proc(K,t,a,b) local H50:

if K>50 then

print(‘K must be <=50, try: CGFsTg(K,t,a,b), but allow a

lot of time!‘):

fi:

H50:=DS(a,b,t):

[op(1..K,H50)]:

end:

• AveAndMoms(f,x,N): Given a probability generating function f(x) (a polynomial,

rational function and possibly beyond) returns a list whose first entry is the av-

erage (alias expectation, alias mean) followed by the variance, the third moment

(about the mean) and so on, until the N-th moment (about the mean). If f(1) is

not 1, than it first normalizes it by dividing by f(1) (if it is not 0) .For example,

try: AveAndMoms(((1 + x)/2)100, x, 4);

Note: This is a function borrowed from [3]. It’s necessary for MamarG function.

AveAndMoms:=proc(f,x,N) local mu,F,memu1,gu,i:

mu:=simplify(subs(x=1,f)):

if mu=0 then

print(f, ‘is neither a prob. generating function nor can

it be made so‘):
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RETURN(FAIL):

fi:

F:=f/mu:

memu1:=simplify(subs(x=1,diff(F,x))):

gu:=[memu1]:

F:=F/x^memu1:

F:=x*diff(F,x):

for i from 2 to N do

F:=x*diff(F,x):

gu:=[op(gu),simplify(subs(x=1,F))]:

od:

gu:

end:

• Alpha(f,x,N): Given a probability generating function f(x) (a polynomial, rational

function and possibly beyond) returns a list, of length N, whose (i) First entry is

the average, (ii): Second entry is the variance, for i=3...N, the i-th entry is the

so-called alpha-coefficients that is the i-th moment about the mean divided by

the variance to the power i/2 (For example, i=3 is the skewness and i=4 is the

Kurtosis). If f(1) is not 1, than it first normalizes it by dividing by f(1) (if it is

not 0) . For example, try: Alpha(((1 + x)/2)100, x, 4);

Note: This is a function borrowed from [3]. It’s necessary for MamarG function.

Alpha:=proc(f,x,N) local gu,i:

gu:=AveAndMoms(f,x,N):

if gu=FAIL then

RETURN(gu):

fi:

if gu[2]=0 then
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print(‘The variance is 0‘):

RETURN(FAIL):

fi:

[gu[1],gu[2],seq(gu[i]/gu[2]^(i/2),i=3..N)]:

end:

• AsyAnal(L,N,n): given a list of numbers L, of length k, say, whose i-th en-

try is f(N+i-1) for i from 1 to nops(L), conjectures an asymptotic approxi-

mate expression for f(m) in the form a[0] + a[1]/n + ... + a[k]/n(k−1). Try:

AsyAnal([seq(1 + 6/i+ 11/i2, i = 98..100)], 98, n);

Note: This is a function borrowed from [4]. It’s necessary for MamarG function.

AsyAnal:=proc(L,N,n) local k,eq,var,X,a,i:

k:=nops(L)-1:

X:=add(a[i]/n^i,i=0..k):

var:={seq(a[i],i=0..k)}:

eq:={seq(subs(n=N+i-1,X)-L[i],i=1..k+1)}:

var:=solve(eq,var):

subs(var,X):

end:

• MamarG(N,K,a,b): inputs a positive integer N and outputs an article EMPIR-

ICALLY proving the asymptotic normality, using standardized moments up to

N, and empirical asymptotics to order K. Try: MamarG(10,3,1,1);

MamarG:=proc(N,K,a,b) local i,lu,lu1,mu1,t,m,kak,R,vu1,j:

if not type(N,integer) and N<=2 then

print(N, ‘should be an integer larger than 2‘):

RETURN(FAIL):
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fi:

if not (type(K,integer) and K<=10 and K>=1) then

print(K, ‘must be an integer between 1 and 10‘):

RETURN(FAIL):

fi:

if not ([a,b]=[1,1] or [a,b]=[1,5] or [a,b]=[2,0] or [a,b]=[3,0] or

[a,b]=[4,0]) then

print(a,b,‘can only be one of the pairs (1,1),

(1,5),(2,0),(3,0),(4,0)‘):

RETURN(FAIL):

fi:

print(‘Empirical Proof of the Asymptotic Normality of the Hirsch

Citation Index ‘):

print(‘‘):

print(‘By Shalosh B. Ekhad & Ha Luu ‘):

print(‘Consider the random variable: h-index (alias size of Durfee

rectangle) defined on integer partitions of n, for large n‘):

lu:=evalf(CGFsTpcG(50,t,a,b)):

for i from 1 to N do

R[i]:=[]:

od:

for i from 50-K to 50 do

lu1:=lu[i]:

mu1:=evalf(Alpha(lu1,t,N)):

print(‘With ‘, i^2, ‘ citations, the average h-index is ‘ ,

evalf(mu1[1],10)):

print(‘and when it is divided by the sqrt of ‘, i^2, ‘ namely

by‘, i, ‘ it is ‘, evalf(mu1[1]/i,10) ):

print(‘‘):
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print(‘The variance is‘, evalf(mu1[2],10)):

print(‘and when it is divided by the sqrt of‘, i^2, ‘namely

by‘, i, ‘ it is ‘, evalf(mu1[2]/i,10) ):

print(‘‘):

print(‘The standardized moments, starting with the third are

:‘):

lprint(evalf([op(3..nops(mu1),mu1)],10)):

print(‘‘):

for j from 1 to N do

R[j]:=[op(R[j]),mu1[j]]:

od:

od:

print(‘‘):

print(‘-----------------------------------------------------‘):

print(‘‘):

vu1:=R[1]:

vu1:=[seq(vu1[i]/(50-K+i-1),i=1..K+1)]:

print(‘The estimated asymptotic expression for the average, divided by

m=sqrt(n), to order‘, K, ‘using the data from m=‘, 50-K, ‘to ‘,

50, ‘is ‘):

kak:=evalf(AsyAnal(vu1,50-K,m),50):

print(kak):

print(‘‘):

print(‘and in Maple input format: ‘):

print(‘‘):

lprint(kak):

print(‘‘):

print(‘note that the leading term is not far from the theoretical
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limit‘, evalf(sqrt(6)*log(2)/Pi,10) ):

print(‘‘):

print(‘-----------------------------------------------------‘):

vu1:=R[2]:

vu1:=[seq(vu1[i]/(50-K+i-1),i=1..K+1)]:

print(‘The estimated asymptotic expression for the variance, divided

by m=sqrt(n), to order‘, K, ‘using the data from m=‘, 50-K, ‘to ‘,

50, ‘is ‘):

kak:=evalf(AsyAnal(vu1,50-K,m),10):

print(kak):

print(‘‘):

print(‘and in Maple input format: ‘):

print(‘‘):

lprint(kak):

print(‘‘):

print(‘-----------------------------------------------------):

for j from 3 to N do

vu1:=R[j]:

print(‘The estimated asymptotic expression for the‘ , j , ‘-th

standardized moment, to order‘, K, ‘using the above data,

is: ‘):

kak:=evalf(AsyAnal(vu1,50-K,m),10):

print(kak):

print(‘‘):

print(‘and in Maple input format: ‘):

print(‘‘):

lprint(kak):

print(‘‘):

if j mod 2=1 then
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print(‘Note that the leading term is close to that of the

Normal Distribution, namely 0‘):

else

print(‘Note that the leading term is close to that of the

Normal Distribution, namely‘, j!/(j/2)!/2^(j/2)):

fi:

od:

print(‘‘):

print(‘-----------------------------------------------------‘):

print(‘‘):

print(‘This concludes this empirical, but VERY CONVINCING, proof of

the asymptotic normality‘):

print(‘Note also that it (empirically) proves Rodney Canfields

concentration measure since ‘):

print(‘The variance is proportional to the average, and since it is

normal, it is concentrated around the mean. ‘):

end:

• MamarGs(N,K,a,b): short version of MamarG inputs a positive integer N and

outputs an article EMPIRICALLY proving the asymptotic normality, using stan-

dardized moments up to N, and empirical asymptotic to order K. Try: Ma-

marGs(10,3,1,1);

Note: This function is using precomputed data. In order to run this function

correctly, you will need to download and read HIRSCHgData.txt beforehand.

MamarGs:=proc(N,K,a,b) local i,lu,lu1,mu1,t,m,kak,R,vu1,j:

if not type(N,integer) and N<=2 then

print(N, ‘should be an integer larger than 2‘):
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RETURN(FAIL):

fi:

if not (type(K,integer) and K<=10 and K>=1) then

print(K, ‘must be an integer between 1 and 10‘):

RETURN(FAIL):

fi:

if not ([a,b]=[1,1] or [a,b]=[1,5] or [a,b]=[2,0] or [a,b]=[3,0] or

[a,b]=[4,0]) then

print(a,b,‘can only be one of the pairs (1,1),

(1,5),(2,0),(3,0),(4,0)‘):

RETURN(FAIL):

fi:

lu:=evalf(CGFsTpcG(50,t,a,b)):

for i from 1 to N do

R[i]:=[]:

od:

for i from 50-K to 50 do

lu1:=lu[i]:

mu1:=evalf(Alpha(lu1,t,N)):

print(‘With ‘, i^2, ‘ citations, the average h-index is ‘ ,

evalf(mu1[1],10)):

print(‘and when it is divided by the sqrt of ‘, i^2, ‘ namely

by‘, i, ‘ it is ‘, evalf(mu1[1]/i,10) ):

print(‘‘):

print(‘The variance is‘, evalf(mu1[2],10)):

print(‘and when it is divided by the sqrt of‘, i^2, ‘namely

by‘, i, ‘ it is ‘, evalf(mu1[2]/i,10) ):

print(‘‘):

print(‘The standardized moments, starting with the third are
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:‘):

lprint(evalf([op(3..nops(mu1),mu1)],10)):

print(‘‘):

for j from 1 to N do

R[j]:=[op(R[j]),mu1[j]]:

od:

od:

vu1:=R[1]:

vu1:=[seq(vu1[i]/(50-K+i-1),i=1..K+1)]:

print(‘The estimated asymptotic expression for the average, divided by

m=sqrt(n), to order‘, K, ‘using the data from m=‘, 50-K, ‘to ‘,

50, ‘is ‘):

kak:=evalf(AsyAnal(vu1,50-K,m),50):

print(kak):

print(‘‘):

vu1:=R[2]:

vu1:=[seq(vu1[i]/(50-K+i-1),i=1..K+1)]:

print(‘The estimated asymptotic expression for the variance, divided

by m=sqrt(n), to order‘, K, ‘using the data from m=‘, 50-K, ‘to ‘,

50, ‘is ‘):

kak:=evalf(AsyAnal(vu1,50-K,m),10):

print(kak):

print(‘‘):

for j from 3 to N do

vu1:=R[j]:

print(‘The estimated asymptotic expression for the‘ , j , ‘-th

standardized moment, to order‘, K, ‘using the above data,

is: ‘):

kak:=evalf(AsyAnal(vu1,50-K,m),10):
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print(kak):

print(‘‘):

od:

end:

• ID(f,x,k): Given the probabity generating function f in the variable x, for some

r.v. under some prob. distibution outputs the list [av,var, std. moms]

ID:=proc(e,x,k) local i,av,M, f:

f:=e/subs(x=1,e):

av:=subs(x=1,diff(f,x)):

M:=[av]:

f:=f/x^av:

f:=x*diff(f,x):

for i from 2 to k do

f:=x*diff(f,x):

M:=[op(M),subs(x=1,f)]:

od:

M:

normal([M[1],M[2],seq(M[i]/M[2]^(i/2),i=3..k)]):

end:

• NumLr(n,k): Given a number n, output A(n,k) such that A(n,k) is total number

of ways to partition n, with the largest part is k, using the recurrence equation.

NumLr:=proc(n,k) local i:

option remember;

if n<0 then

return 0:

elif n=k then
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return 1:

else

return add(NumLr(n-k,i),i=1..k):

fi:

end:

• NumLrs(n): give a number n, out put list of numbers such that the i-th entry is

the number of way to partition n , with i to be the largest part.

NumLrs:=proc(n) local i:

[seq(NumLr(n,i),i=1..n)]:

end:

• GFLP(k,t): the first k terms in the sequence of polynomials Pi(t):= Sum of

t(largestpart(partition)), over all partitions of the integer i, using the generating

function, and taylor

GFLP:=proc(k,t) local i,lu,q:

lu:=expand(taylor(mul(1/(1-q^i*t),i=1..k),q=0,k+2)):

[seq(coeff(lu,q,i),i=1...k)]:

end:

• GFLPf(k,t): the first k terms in the sequence of polynomials Pi(t):= Sum of

t(largestpart(partition)), over all partitions of the integer i, using the recurrence

for A(n,k):=number of partitions of n with largest part k

GFLPf:=proc(k,t) local i,n:

option remember:

[seq(add(NumLr(n,i)*t^i,i=1..n),n=1..k)]:

end:
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• ID2(f,x,y,k): Given the probability generating function f in the variable x,y for

some r.v. under some prob. distribution outputs the list [av,var, std. moms]

ID2:=proc(e,x,y,k) local Mx,CPf,f1, f2, i, M, My, f:

f:=e/subs({x=1,y=1},e):

Mx:=subs({x=1,y=1},diff(f,x)):

My:=subs({x=1,y=1},diff(f,y)):

M:=[[Mx,My]]:

f:=f/(x^Mx*y^My):

f1:=x*diff(f,x):

f2:=y*diff(f,y):

for i from 2 to k do

f1:=x*diff(f1,x):

f2:=y*diff(f2,y):

M:=[op(M),[subs({x=1,y=1},f1),subs({x=1,y=1},f2)]]:

od:

M:

#[M[1],M[2],seq([M[i][1]/M[2][1]^(i/2),M[i][2]/M[2][2]^(i/2)],

i=3..k)]:

end:
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