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Outline
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The Role Of Computers In Mathematics

▶ In many ways, mathematical progress has gotten harder

throughout history.

▶ Computers give us an edge over our ancestors!

▶ 4-color theorem, famous early contribution of computers.
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The Role Of Computers In This Thesis

▶ We construct matrices with millions of entries

▶ We perform matrix multiplication and inverse computations

with them

▶ Will the output of our computations be understandable by a

person?

▶ Yes!
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The Role Of Computers In This Thesis

▶ Often in Experimental Mathematics big computations have

simple answers

▶ A combinatorial interpretation can give rise to conjectures and

theorems!

▶ Computers are not limited to helping us check proofs, they

can also provide conjectures and theorems themselves.
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Background: Finite State Machine!

▶ A finite state machine can be used to describe a set of valid

“words”

▶ The machine reads a word symbol by symbol and then when

it’s done reading it outputs ACCEPT or REJECT according to

whether the word was valid
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Binary Strings Avoiding 2 Consecutive 1s

A BS FAIL
1

0, 1
0

1

0 0, 1



8/100

Background: Finite State Machine!

▶ A finite state machine (FSM) is a directed graph.

▶ The edges (transitions) are labeled with symbols from an

alphabet

▶ The vertices (states) are used to store information as we read

a sequence of symbols

▶ Some of the states are labelled as ACCEPT states

▶ If a sequence of symbols leads to an ACCEPT state, than the

word formed by that sequence of symbols is accepted
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Related Questions

▶ How many ways can people sit in an auditorium so that no

two are adjacent but no more people can be added?

▶ How many ways can a rectangular grid of towns be divided

into two connected voting districts?

▶ How many solutions to a Ring-Ring puzzle are there on an

empty grid?

▶ How many Baxter Matrices exist for specific dimensions?

Counting the number of ways to arrange objects in a rectangular

grid!
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Framework

We would like to count the number of ways to arrange objects in a

rectangular grid.

▶ Let r be the number of rows and c be the number of columns.

▶ Key idea: Fix r

▶ Let Ar (c) be the number or valid arrangements on the r × c

grid.

▶ Analyze the sequence Ar

▶ Limitation: r is fixed
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Columns As Symbols

▶ For r rows, a column of our arrangement is a string of length

r .

▶ Now consider the whole column to itself be a single symbol.

▶ Our State Machine will read a sequence of columns, and then

ACCEPT or REJECT.
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Social Distancing

▶ This chapter is joint work with Doron Zeilberger
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Proctoring

▶ No two students may sit adjacent

horizontally or vertically

▶ Perhaps the students sit randomly

without violating the rules

▶ Will we run out of space?

▶ What density can we expect?

x x

x

x x

x x x
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Definitions

▶ Input: The dimensions of the grid of seats r × c

▶ Input: A set of forbidden patterns, S

▶ A seating assignment can be represented as an r × c matrix of

0s and 1s (1s represent occupied seats)

▶ An assignment is said to be maximal if it satisfies 2 properties:

▶ None of the forbidden patterns are present.

▶ Changing any 0 to a 1 causes a forbidden pattern to be

present.
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Example

Not Maximal

1 0 0 0 0

0 0 1 0 1

0 1 0 1 0

1 0 1 0 1

8 1s

Maximal

1 0 0 1 0

0 0 1 0 0

0 1 0 0 1

1 0 0 1 0

7 1s
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Questions

▶ Given r ,c , and S :

▶ How many maximal configurations are there?

▶ If I were to select a maximal configuration uniformly at

random, what is the expected density?
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Finite State Machine!

▶ For us, the symbols are possible columns

▶ 2r symbols in our alphabet

▶ A r by c maximal assignment will be an accepted word of

length c
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When to REJECT

There are two ways that a seating assignment can fail to be

maximal:

▶ There are two adjacent 1s

▶ There is a 0 with no adjacent 1

A 0 with an adjacent 1 is said to be a satisfied 0. If we encounter

an unsatisfied 0 we should REJECT!
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Detecting unsatisfied 0s

▶ We don’t have enough information to determine whether a 0

in the current column is satisfied.

▶ Instead check that each 0 in the previous column is satisfied

▶ Need to store the previous TWO columns in the state.

▶ Total of 22r states, one for each possible contents of the

previous two columns
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Which states are ACCEPT states?

▶ If we reach the end of input, should we ACCEPT or REJECT?

▶ Still need to check 0s in most recent column!

▶ If all those 0s are satisfied, then ACCEPT
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Counting Paths

▶ Each maximal assignment corresponds to a path from the

START state to the ACCEPT state.

▶ The number of maximal assignments with c columns is thus

the number of paths from START to ACCEPT with length c!
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Transition Matrix

▶ We can count paths using matrices!

▶ Let M be the adjacency matrix of the state machine

▶ Each state becomes a row and column of the matrix

▶ A valid transition from state i to j is represented by a 1 in the

[i , j ] entry of M

▶ All other entries are 0

▶ M2[i , j ] now counts the number of paths from i to j of length

2

▶ Mc [i , j ] now counts the number of paths from i to j of length

c
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r = 2 sequence

▶ We now can compute the sequence giving the number of

maximal assignments

▶ For r = 2: 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466,

754, . . .

▶ Twice the Fibonacci sequence!
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r = 3, 4

▶ Maximal assignments with 3 rows:

▶ 2, 4, 10, 18, 38, 78, 156, 320, 654, . . .

▶ Maximal assignments with 4 rows:

▶ 3, 6, 18, 42, 108, 274, 692, 1754, 4442, . . .

▶ A157049, A157050 is the OEIS
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Generating Function

▶ Using this method we can get generating functions for these

sequences without too much extra work. The sequence:

f (n) = Mn[1, 2]

has the generating function:

F (x) =
∑

f (n)xn



26/100

A system of Equations

1. Let Fi (x) be the generating function for the number of ways

to reach state i from START in n steps.

2. Then

Fi (x) =
∑
j

Fj(x) · x

where the sum is taken over preceding nodes

3. Big system of equations is great for Maple!
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Shortcut

▶ Ignoring matrices for a second...

F (x) =
∑

Mnxn (1)

=
∑

(Mx)n (2)

=
1

1−Mx
(3)

≈ (I −Mx)−1 (4)

▶ This matrix, N, contains all of our desired generating

functions!

▶ N[1, 2] gives the generating function for the number of paths

from START to ACCEPT.
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Results

▶ Here is the generating function for r = 3:
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Back to Density

▶ What if want to compute the average density over all these

maximal assignments?

▶ Modify the transition matrix M.

▶ Previously it had entries either 1 or 0 indicating edges in the

graph.

▶ Now replace the ones with powers of z .

▶ z t will indicate that the corresponding transition added t 1s

to the assignment.
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Density Polynomials

▶ Previously Mn[1, 2] counted the number of maximal

assignments with n columns.

▶ Now it is a polynomial in z .

▶ The coefficient of zk gives the number of maximal

assignments with n columns and k total 1s.
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Example

For 3x3 assignments we get the polynomial:

g(z) = z5 + z4 + 8z3

1

1 1

1

1 1

1

1 1

1

1

1

1

1

1

The average density is 0.37. One way to compute this is:

g ′(1)

9g(1)



32/100

Bivariate Generating Functions

▶ We can also include z in the generating function!

▶ The coefficient of x jzk now gives the number of maximal

assignments with j columns and k total 1s.

▶ For 3 rows:

▶ Maple can extract coefficient polynomials using Taylor series!
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Limiting Density

▶ We can look at the roots of the denominator of the

generating function to get asymptotics.

▶ We can compute the limiting average density over all maximal

assignments as the number of columns goes to infinity.

▶ For r = 3 we compute d = 0.352...

▶ For r = 4 we compute d = 0.347...

▶ For r = 5 we compute d = 0.342...

▶ Only slightly smaller than the 3 by 3 case, 0.37...
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Generalizing S

▶ Recall that S is the set of violations.

▶ So far we have looked at the specific case where S has two

elements: horizontal and vertical adjacencies

▶ We represent these violations as polyominoes

1 1
1

1
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Non-Attacking Kings

If the seats are not allowed to be adjacent diagonally, we get the

famous non-attacking kings problem.

1 1
1

1

1

1

1

1
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Housing Developments

The paper that inspired this research was interested in avoiding the

T-piece. “Packing density of combinatorial settlement planning

models”

1 1 1

1

The idea is that you don’t want any houses to be totally blocked

from the sun (and there is no sun from the North)
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Checking Arbitrary Patterns

▶ It is now not sufficient to only keep track of the previous two

columns.

▶ Let W be the largest width of any polyomino.

▶ In general we will have to store the previous 2W − 2 columns.

▶ This gives a total of 2r(2W−2) states.
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Down Facing T

1 1 1

1

▶ Maximally avoiding the T with r = 3 gives the following

sequence:

▶ 1, 1, 10, 19, 41, 105, 269, 651, 1560, . . .

▶ Sadly need to make the code faster to compute the generating

function, inverting the 189 x 189 matrix was taking too long.
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Baxter Matrices

Not only do we count them, we also resolve a conjecture of Donald

Knuth!
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Background

▶ Don Knuth

▶ Baxter Matrices – an

“Unpublication”

▶ September 5, 2021

▶ Extension of Baxter

Permutations
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What is a Baxter Matrix?

A m × n matrix of 0’s and 1’s satisfying 4 conditions:

1. Each row contains a 1

2. Each column contains a 1

3. Each clockwise pinwheel contains a segment of all 0’s

4. Each counterclockwise pinwheel contains a segment of all 0’s
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Pinwheels

▶ Each pinwheel requires a segment of zeroes

▶ Center can be on any vertex in the interior of the matrix

▶ (m − 1) ∗ (n − 1) possible centers
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An Example?
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How many 1’s can we fit into a Baxter Matrix?

Putting three 1’s in a corner:
1 1 ·

1 · ·

· · ·

−→


1 1 ·

1 0 0

· 0 ·

 −→


1 1 1

1 0 0

1 0 1


It turns out that the maximum number of 1’s in a 3× 3 matrix is 5.
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Conjecture (Knuth)

Conjecture:

The maximum number of 1’s in a m × n Baxter matrix is:

m + n − 1

▶ Knuth verified this conjecture for all Baxter Matrices up to

size 7× 7 by enumerating them
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FSM for 2× n Baxter Matrices

▶ Matrix as a sequence of columns

▶ Any sequence of columns can be “accepted” or “rejected”

▶ possible columns:

0

0

 1

0

 0

1

 1

1


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Rejecting Early

Suppose we read the columns

0

0

 1

1

 1

1


This means that our input matrix starts out like

0 1 1 . . .

0 1 1


▶ Not possible for the pinwheels to ever be satisfied!
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Keeping Track of Data

As we read a column, we check two new pinwheels

▶ They have center to the immediate left of our column
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Keeping Track of Data

▶ In order to check the pinwheel, we need to know the contents

of the previous columns

▶ Could be arbitrarily many columns!

▶ Finite State machine can only keep track of finitely many

things

To check the leftward orange segment, only need to know whether

that row has been all 0’s so far
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Keeping Track of Data

▶ Keep track of the exact contents of the previous column

▶ Keep track of whether each row has only 0’s so far

▶ What about the rightward segment?

Cannot see the future
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Seeing the future

▶ If any of the other segments are 0’s, then we don’t care

▶ Else, we have a row that must be permanently 0’s in the

future
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The 4 rowstates

1. This row had a 1 in the previous column

2. This row has only contained 0’s so far

3. This row must contain only 0’s in the future

4. This row had a 0 in the previous column, but neither 2 or 3

applies

If we know which rowstate each row is in, we can check whether

our new pinwheel is satisfied!
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Constructing the FSM for 2 rows

▶ 4× 4 = 16 states, to allow for all combinations of rowstates

between the two rows.
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Unused States

▶ Remove the states which do not have a row in rowstate 1
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Start State

After a single column, each row must be in either rowstate 1 or

rowstate 2
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Accept States

In a Baxter Matrix each row must contain a 1.

To accept, we must require that every row has left rowstate 2.
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Drawing in the Arrows
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Correspondence

We have a 1-1 correspondence between Baxter Matrices with 2

rows and paths from the start state to an accept state
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More rows!

▶ We can do a similar process for 3 rows, 4 rows, etc.

▶ Let’s fix r as the number of rows

▶ FSM will have 2r symbols (one for each column) and 4r − 3r

used states

▶ Denote the FSM for r rows as Ar
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A3 drawn with downward arrows
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Depth of a state

Definition:

The depth of a state is number of 1’s plus the number of 4’s plus

twice the number of 3’s that can be found in the rowstates of the

rows.

Min Depth = 0 (Start). Max Depth = 2r − 1

Lemma:

Any transition in Ar must either be a self arrow or increase depth.



62/100

Counting Baxter Matrices

▶ How many Baxter Matrices of size r × k?

▶ We don’t need a transfer matrix in this case!

▶ If we ignore self-arrows, the lemma forces there to be only

finitely many paths in Ar .

▶ A self-arrow corresponds to a repeated column in the Baxter

Matrix

▶ Let’s say a Baxter Matrix with no repeated columns is

“interesting”
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Counting Baxter Matrices

▶ Only finitely many interesting Baxter Matrices with r rows.

▶ Each non-interesting Baxter Matrix can classified according to

the interesting matrix that remains after removing the

self-arrows.

▶ To count the total number of r × k Baxter Matrices, just need

to count the number of non-interesting Baxter Matrices with

k columns that correspond to each interesting Baxter Matrix

with r rows.
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Counting Baxter Matrices with r rows

1. Enumerate the finitely many interesting Baxter Matrices with

r rows.

2. Receive a polynomial in k of degree at most 2r − 2 from each.

3. For any specific k , plug it in to each polynomial. If the output

would be negative, set it to 0.

4. Add up the results!
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Counting Baxter Matrices with r rows

▶ For k ≥ r , the polynomials won’t be negative, so we can add

up the polynomials before plugging in, to get a single

polynomial of degree 2r − 2

Theorem:

For a fixed number of rows, r , the number of Baxter matrices with

r rows and k columns eventually satisfies a polynomial in k of

degree 2r − 2.
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Maple Code

I have maple code that does the above process to compute the

polynomial for any r .

rows formula works for

2 k2 + 3k − 4 k ≥ 2

3 (1/3)k4 + 3k3 − (16/3)k2 + 2k + 3 k ≥ 3

4 (1/18)k6 + (21/20)k5 − (5/18)k4 − . . . k ≥ 4

5 (23/4032)k8 + (937/5040)k7 + . . . k ≥ 5

6 (361/907200)k10 + (403/20160)k9 + . . . k ≥ 6
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Returning to Knuth’s conjecture

Conjecture:

The maximum number of 1’s in a m × n Baxter matrix is:

m + n − 1

Recall from the definition that each column of a Baxter Matrix

must contain a 1.

▶ Let’s say each column with more than one 1 contains extra

1’s.
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Returning to Knuth’s conjecture

Rephrasing the conjecture,

Conjecture:

The number of extra 1’s in a Baxter Matrix with r rows is less

than r .
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A discovery

Lemma:

The total number of extra 1’s that appear in two consecutive

columns is at most the change in depth of the corresponding state

transition in Ar .
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A discovery
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Using the Discovery

Let M be a r × k Baxter Matrix, p be its corresponding path in

Ar , and T be the set of transitions in p.

(# of extra 1’s in M) = 1
2

(∑
τ∈T (# of extra 1’s in the columns associated with τ)

)

▶ This assumes the first and last states do not have extra 1’s.
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Using the Discovery

(# of extra 1’s in M) = 1
2

(∑
τ∈T (# of extra 1’s in the columns associated with τ)

)

≤ 1

2

(∑
τ∈T

(depth increase of τ)

)

≤ 1

2
(2r − 1)

< r

Done!
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Ring-Ring

In which we count the number of solutions to puzzles!
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Solved Ring-Ring Puzzle

Ring-Ring is a type of puzzle from the New York Times magazine.

The solution is in green.
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Rules

1. Draw a set of rectangles on the grid.

2. No cell can remain empty.

3. No rectangle may share a side or corner.
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Counting Solutions

▶ A good puzzle has only 1 solution.

▶ What if we remove the clues?

▶ How many solutions are there starting from an empty grid?

▶ We fix the number of rows and apply the same methodology.
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4 Row Case

The possible columns that could appear. Our state machine will

use 15 symbols.
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What are the states?

▶ All we need to keep track of is the locations of each rectangle

that is in progress.

▶ A set of disjoint subsets of the rows, where each subset is of

size 2.

▶ A present subset indicates a rectangle that is currently using

those 2 rows.

▶ The empty set is the start state and the only accept state!
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State Machine for r = 4

14

14, 23

23

12, 34

12 34

A,F

K , L

M

C ,G

B,H

N,O

M

D, I

E , J

START
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AKGCLF

The solution corresponding the sequence of symbols AKGCLF
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Results for the 4 row case:

▶ The first few terms are 0, 2, 1, 8, 12, 45, 98, 292, ...

▶ The generating function is:

(1 + x)(1− 2x)(1− 2x − x2)

(1− 3x − 3x2 + 10x3 + 3x4 − 5x5 − x6)
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Other values of r

▶ We were able to compute the generating functions up to

r = 8.

▶ For r = 2, we get the beloved fibonacci sequence!
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Gerrymander Sequence

This chapter is joint work with Manuel Kauers and Christoph

Koutschan.
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Voting Districts

▶ How many ways are there to divide the r × c chessboard into

two connected regions of equal area?

▶ This question was motivated by the number of ways to

gerrymander voting districts, illustrating the extent of the

problem.
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Example Division

Below is a valid division of the 8× 8 chessboard.

Note: Simply connected is not required.
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Most wanted number in the OEIS

▶ A348456 is the OEIS entry for the number of arrangements

for the 2n × 2n chessboard.

▶ Neil Sloane gave a guest lecture in our Experimental

Mathematics class on April 28, 2022, posing the computation

of A(4) as a challenge.
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Columns

The possible columns for r rows are binary strings of length r .

+ ?

✓ ✓ ⊘ ⊘ ✓ ✓ ⊘ ⊘

⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘
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Keeping track of connectivity

We must store whether rows are currently connected in the state.

The above diagram shows 3 example states that the machine could

be in.



89/100

Keeping track of connectivity

▶ A state is defined by a set partition

▶ The rows are partitioned into components which are currently

connected.

▶ We also store a bit for each component to indicate which

region it belongs to.



90/100

Removing Invalid States

▶ Key to the successful computation of the 8× 8 case was

reducing the size of the matrix.

▶ States can be impossible to resolve in the past

▶ States can be impossible to resolve in the future

⊘ ✓ ✓ ⊘
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Keeping track of area

▶ The regions are required to be of equal size.

▶ Use a weight enumerator variable, x , when constructing the

transfer matrix.

▶ Let the entry corresponding to a transition that added k white

squares be xk .

▶ The result of our computation for the 8× 8 case will now be a

polynomial in x of degree 64.

▶ We look specifically at the coefficient of x32 to get the answer.
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Final Answer

7157114189
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Do It Yourself Guide

In which we show how YOU can use this work!
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Abstract the code!

▶ Any computer scientist will tell you, never write the same

code more than once!

▶ All the problems so far have been similar in nature.

▶ I have created a stencil code file which is easily adaptable to

variations on the problem.
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What needs to be changed

Suppose the avid listener has an idea for a type of rectangular

arrangement. There are 4 functions that they will need to

implement.

1. gen-symbols: What are the entries that appear in our

arrangment?

2. gen-states(r): Given the number of rows, r , produce a list of

states with the start state listed first.

3. is-final(s): Is the state s an accept state? Return true/false

4. valid-trans(s1,s2): Is there a valid transition from state s1 to

state s2? Return true/false



96/100

Example!

Count the number of matrices with entries ∈ {0, 1, 2} such any

two adjacent entries are distinct.
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Example

1. gen-symbols: Return the set {0, 1, 2}

2. gen-states(r): Use the exact contents of the previous column

as a state. This is streamlined in the stencil code, simply

return gen-columns(r,symbols). The set of states is exactly

the set of columns.

3. is-final(s): Just return true! Do all of the checking in the

transition function

4. valid-trans(s1,s2): s1 is the previous column, s2 is the

proposed next column. Loop over each entry in s2 to make

sure the rules aren’t broken.
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Great Work

▶ The function comp-seq(r,n) now computes the first n terms of

the sequence. comp-seq(3,10) gives

12, 54, 246, 1122, 5118, 23346, 106494, 485778, 2215902, 10107954

▶ gen-fun(r) now gives the generating function for r rows.

gen-fun(3) gives
−4x2 + 7x + 1

2x2 − 5x + 1
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Future work

Submit all these sequences and more to the OEIS. The possibilities

are endless, and we have generating functions to go with them!
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The End

Thanks for listening!


