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Reduction

We will consider permutations π = π1 . . . πn ∈ Sn in one-line
notation.

Definition

The reduction of a sequence of distinct positive integers s1s2 . . . sk ,
denoted by red(s1 . . . sk), is the length k permutation obtained by
relabeling the i-th smallest term by i .

Example

red(63915) = 42513
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Classical pattern occurrences

Definition

Given a (permutation) pattern τ = τ1 . . . τk , we say that
permutation π = π1 . . . πn contains the pattern τ if there exists
1 ≤ i1 < . . . < ik ≤ n such that red(πi1πi2 . . . πik ) = τ .

Example

If pattern τ = 123,

π = 54321 has zero occurrences of τ ,

π = 42135 has two occurrences of τ .
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Background

Permutations patterns gained interest after some results in sorting.

Theorem (Knuth, 1968)

A permutation is stack-sortable if and only if it avoids the pattern
231.

This led to interest in enumerative questions.

Definition

Given a pattern τ , define

sn(τ) := # of π ∈ Sn that avoid τ.

What can we say about sn(τ)?
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Some previous results

Length 3 patterns (Knuth, 1968):

sn(123) = sn(132) = Cn =
1

n + 1

(
2n

n

)
.

Length 4 patterns:

Closed form for sn(1234) known. (Gessel, 1990)

Closed form for sn(1342) known. (Bóna, 1997)

sn(1324) =???

Conjecture (Zeilberger, 2005)

“Not even God knows s1000(1324).”
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Talk outline

We will consider two variations:

1 Enumerating permutations with exactly r copies of a
(classical) pattern.

Functional equations approach
Computationally extending existing techniques

2 Enumerating permutations avoiding consecutive patterns
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r copies of a pattern

Definition

Given a pattern τ and r ≥ 0, define

sn(τ, r) := # of π ∈ Sn with exactly r occurrences of τ.

Most work on r > 0 focuses on length 3 patterns:

G.F. for sn(132, r) studied by Bóna, Mansour and Vainshtein,
Fulmek, and others.

G.F. for sn(123, r) studied by Noonan and Zeilberger, Fulmek,
Callan, and others.

GOAL: for fixed pattern τ and fixed r , compute sn(τ, r) “quickly”.

We will assume τ = 123 (equiv. abc). (joint with Zeilberger)
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Additional definitions

Definition

For variables t, x1, . . . , xn, define

weight(π) := t# of abc in π ·
n∏

i=1

x# of ab in π s.t. a=i
i

Pn(t; x1, . . . , xn) :=
∑
π∈Sn

weight(π)

Example

weight(2134) = t2x2
1x2

2x3

Observe: coeff. of tr in Pn(t; 1, . . . , 1) = sn(123, r).
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Functional equations

Noonan-Zeilberger Functional Equation (NZFE)

Pn(t; x1, . . . , xn) =
n∑

i=1

xn−i
i Pn−1(t; x1, . . . , xi−1, txi+1, . . . , txn)

We can use this functional equation to compute Pn(t; 1, . . . , 1).



Introduction/Background Functional equations approach Automating existing methods Consecutive patterns

Maple implementation

Can apply other computational methods to quickly find
coeff. of tr in Pn(t; 1, . . . , 1) (i.e., sn(123, r)).
(in polynomial-time!)

Everything has been implemented in Maple:

Example

For r = 0, the first 10 terms of sn(123, r) are:
1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796

For r = 1, the first 10 terms of sn(123, r) are:
0, 0, 1, 6, 27, 110, 429, 1638, 6188, 23256

For r = 6, the values of sn(123, r) for 15 ≤ n ≤ 20 are:
327200581, 1501719377, 6773007550, 30100185693,
132099138291, 573518305776
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Some extensions

The enumeration approach can be extended to:

Any increasing pattern 12 . . . k. (joint with Zeilberger)
(For example, s60(1234, 1) is:
234261080605837210966025910570764305425250198302448)

Patterns 132, 1243, and more generally 12 . . . (k − 2)k(k − 1).
(For example, s60(1243, 1) is:
286623815577790281658919162159812759051739532188787)

Certain cases of multiple patterns

Refining by inversions
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Additional extensions

This approach can be generalized to handle other patterns by
considering more complicated catalytic variables xi ,j ’s.

Some additional patterns that can be handled with this approach:

Patterns 231, 2341, and more generally 23 . . . k1.

The pattern 1324
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Set-up for 1324

We consider the catalytic variables:

xi ,j (1 ≤ i ≤ j ≤ n)

yi ,j (1 ≤ j ≤ i ≤ n).

Variables xi ,j will be written as a matrix of variables:

Xn :=



x1,1 · · · x1,n
. . .

... xi ,i
...

. . .

xn,1 · · · xn,n


(similarly for variables yi ,j and matrix Yn)
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Functional equation for 1324

We define a polynomial Pn(t; Xn,Yn) so that coeff. of tr in
Pn(t; 1, 1) is exactly sn(1324, r).

We can then derive the functional equation:

Pn(t; Xn,Yn) =
n∑

i=1

xn−i
i ,i xn−i−1

i ,i+1 . . . x1
i ,n−1 · Pn−1(t; R2(Xn,Yn, i), R1(Yn, i))

(with some matrix operators R1 and R2).
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Improvements to 1324

We can also specialize the functional equation for the r = 0 case.

This allows us to compute the first 23 terms.
For example, s23(1324) = 94944352095728825.

Easy to refine by the number of inversions.
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Generating function

Definition

Given a pattern τ and fixed r ≥ 0, define

F r
τ (x) :=

∞∑
n=0

sn(τ, r)xn.

Recall that Dyck paths are counted by the Catalan numbers.

Generating function: C (x) = 1−
√
1−4x
2x .
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Fulmek’s approach

We will consider the pattern 312.

Fulmek gave an approach to compute F r
312(x) for r = 1, 2.

GENERAL IDEA:

Map permutation into a “generalized Dyck path” (a Dyck
path where down-jumps are allowed).

Count the relevant paths.

Mapping is injective, and the down-jumps will mark the
occurrences of 312.

GOAL: study Fulmek’s approach and extend it to larger r .
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Finding F 1
312(x)

The permutation 312 has the corresponding path:

The paths corresponding to permutations with 1 copy of 312 will
contain this subpath (and no other down-jumps).

Find the generating function counting such paths.
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Finding F 1
312(x) (cont’d)

“weight” of up/down-steps = x1/2; “weight” of down-jumps = 1

“weight” of T = x5/2

“weight” of all P1 paths = “weight” of all P2 paths = xL/2CL+1

F 1
312(x) =

1

x1/2

∞∑
L=1

weight(P1) · weight(T ) · weight(P2) =
C 4x3

1− C 2x
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Finding F 2
312(x)

“ROUGH IDEA”:

Find “base permutations” for two occurrences of 312:
3412, 4132, 4213, 4312, 31524, 312645, 316452, 423615

Find the generating function for each one.

Add the generating functions together to get F 2
312(x).

By again considering subpaths in generalized Dyck paths, we can
reduce the number of cases that need to be handled.
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Finding F 2
312(x): 3412 case

The base permutation 3412 has the corresponding path:

And the corresponding generating function is:

C 4x4

1− C 2x
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Finding F 2
312(x): two 312’s

For two disjoint 312 patterns, we have the path structure:

For example, the path for 316452 is:
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Finding F 2
312(x) and more

Combining all the generating functions, we can find F 2
312(x).

NOTE: Fulmek did this in his paper but used various observations
to handle some cases.

We were able to make this approach more systematic and
automate it in Maple.

We can compute F 3
312(x) and F 4

312(x) through this same approach.
NOTE: These were also discovered by Mansour and Vainshtein
through a different approach.
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Consecutive patterns

Definition

Given a pattern σ = σ1 · · ·σk , we say that permutation
π = π1 · · ·πn contains the pattern σ consecutively if there exists
an i such that red(πi · · ·πi+k−1) = σ.

Example

If σ = 1243,

π = 123654 contains σ consecutively since red(2365) = 1243.

π = 12453 avoids σ.
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Consecutive avoidance

Definition

Given a pattern σ, define

ασ(n) = # of π ∈ Sn such that π avoids σ consecutively.

Definition

Define the EGF of α(n) as

Aσ(z) =
∞∑
n=0

α(n)
zn

n!
.
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Background

There are more patterns to consider in consecutive case.

Length 3 patterns: 123 and 132.
(these were equivalent in classical pattern avoidance)

Length 4 patterns: 1234, 2413, 2143, 1324, 1423, 1342, and 1243.
(only 3 patterns in classical pattern avoidance)

Many current “solutions” for the EGF are given as differential
equations that A(z) satisfies or as complicated recurrences.
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Cluster method

We develop an automated approach based off of an extension of
the cluster method.

For any given pattern σ, we can derive a corresponding recurrence:

α(n) = nα(n − 1) +
n∑

k=1

(
n

k

)
C (k)α(n − k)

where C (k) is a weighted sum of length k “clusters” of σ.

Computing the C (k) terms will determine α(n).
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Example: cluster recurrence for 132

If pattern σ = 132:

C (k) =
∑

1≤x1<···<x3≤k
C (k ; [x1, . . . , x3]).

For k < 3:

C (k ; [x1, x2, x3]) = 0

For k = 3:

C (k ; [x1, x2, x3]) = −1

For k > 3:

C (k; [x1, x2, x3]) =
∑

1≤y1<y2<y3≤k−2
y2=x1

−C (k − 2; [y1, y2, y3])
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Automated enumeration

We can “teach” a computer to compute α(n) for any given pattern
and a specific value of n with the steps:

1 Derive recurrence for C (k ; [x1, . . . , xm]).

2 Compute C (k) terms.

3 Compute α(n) using recurrence on α(n) and C (k).

(NOTE: the C (k; [x1, . . . , xm]) recurrence can be converted to a
functional equation)

Example

For the pattern σ = 2143, we can easily compute α(45):

18254422823435608071181593760653117312533839888747230660
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Consecutive Wilf-equivalence

The previous approach provides a rigorous result:

Theorem (Khoroshkin and Shapiro; N.)

Given patterns σ and τ of the same length, if they have the “same
self-overlaps”, then Aσ(z) = Aτ (z) (consecutively Wilf-equivalent).

The theorem along with the previous algorithm allows us to classify
all c-Wilf-equivalence classes up to length 6 patterns∗.



Introduction/Background Functional equations approach Automating existing methods Consecutive patterns

Thank you

Thank you!
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