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Dissertation Director: Swastik Kopparty

In this thesis, we study the probability of a small deviation from the mean of a sum of

independent or semi-independent random variables. In contrast with the rich history of

large deviation inequalities, small deviations have only recently gained attention, and

we make contributions to several problems on this topic.

Perhaps the most significant result in this field was an inequality proved by Feige

[6]. Let X1, . . . , Xn be nonnegative independent random variables, with E[Xi] ≤ 1 ∀i,

and let X =
∑n

i=1Xi. Then for any n,

Pr[X < E[X] + 1] ≥ α > 0,

for some α ≥ 1/13. This bound was later improved to 1/8 by He, Zhang, and Zhang [7].

Building off their work, we improve the bound to approximately .14. The conjectured

true bound is 1/e ' .368, so there is still (possibly) quite a gap left to fill.

We also consider whether or not such small deviation inequalities hold for k-wise

independent random variables. We show that for some classes of random variables, 4-

wise independence is sufficient for a constant lower bound of α = 1/6, which we show to

be tight. Furthermore, we present counterexamples showing that 3-wise independence

is insufficient for a positive constant lower bound.

For sums of Bernoulli random variables, we can let α = 1/e. We also show that

k-wise independence can bring us arbitrarily close to that bound for large enough k.
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Chapter 1

Introduction

We will study the problem of bounding the probability that a sum of independent

random variables deviates from the mean by some amount. We present several results

on this topic, which are useful when the deviation is a small constant. In particular,

we improve the best-known bound for Feige’s Theorem [6]. We also investigate this

question applied to k-wise independent random variables. In this context, we will see

that 4-wise independence is much stronger than 3-wise.

1.1 Deviation Inequalities

For a real-valued random variable X, we often want to find an upper bound for

Pr[X ≥ E[X] + δ] (1.1)

where δ ≥ 0. This is of course a well-studied problem. If X is nonnegative, then

Markov’s inequality gives

Pr[X ≥ E[X] + δ] ≤ E[X]

E[X] + δ
.

If we know that Var[X] = σ2 (and X is not necessarily nonnegative), then Cantelli’s–or

one-sided Chebyshev’s–inequality says that

Pr[X ≥ E[X] + δ] ≤ σ2

σ2 + δ2
.

We will consider the case where δ is a small constant, whereas the mean and variance

of X are arbitrarily large. In various situations, we will want to find a constant upper

bound for (1.1), which is less than 1. In this case, the classic inequalities above are

clearly insufficient, so we will need more information than just the first and second

moments.
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If X is a sum of independent random variables, we have Chernoff-type bounds for

(1.1), but again if we are after an upper bound away from 1, these are ineffective

for small deviations. For this problem, Feige [6] made a remarkable discovery. Let

X1, . . . , Xn be nonnegative independent random variables, with E[Xi] ≤ 1 for each i.

Let X =
∑n

i=1Xi. There exists a constant α > 0 such that

Pr[X < E[X] + 1] ≥ α. (1.2)

Feige showed that α ≥ 1/13. In [7], He, Zhang, and Zhang improved the constant to

1/8. However, it is believed that α can be improved to 1/e. This bound would be tight,

as consider letting all Xi have mean 1 and support {0, n+ 1}. Then

Pr[X1 + . . .+Xn < n+ 1] =

(
1− 1

n+ 1

)n
−→ 1

e
.

We point out that raising the deviation of δ = 1 to a higher constant results in the

same asymptotic bound in the conjectured tight example. However, as Feige pointed

out, we cannot lower δ too much and hope for the same constant bound. Consider X1

having mean 1 and support {0, 1 + δ}, and Xi ≡ 1 for i ≥ 2. In this case,

Pr[X1 + . . .+Xn < n+ δ] =
1

1 + δ
. (1.3)

Related to Feige’s conjecture that α = 1/e in (1.2) is the more general:

Conjecture 1.1.1 (Samuels). Let X1, . . . , Xn be nonnegative independent random vari-

ables with E[Xi] = µi for each i. Assume that 0 ≤ µ1 ≤ . . . ≤ µn. If
∑n

i=1 µi < 1,

then

Pr[X1 . . .+Xn < 1] ≥ min
t=0,...,n−1

n∏
i=t+1

(
1− µi

1−
∑t

j=1 µj

)
. (1.4)

Note that for a particular t,

Pr[X1 . . .+Xn < 1] =

n∏
i=t+1

(
1− µi

1−
∑t

j=1 µj

)
,

when Xi ≡ µi for i ≤ t and Xi has support {0, 1 −
∑t

j=1 µj} and mean ui for i > t.

Samuels established that his conjecture is true for n ≤ 4 (n = 1 is actually Markov’s

inequality, and n = 2 had been shown previously). This implies that for n ≤ 4, in (1.2)
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we can let α = 1/e. Further work in [12] also immediately implies that if in (1.2), X is

a sum of independent Bernoulli random variables, then α = 1/e (we explain in Section

4.1).

1.2 Our Results

In Chapter 3, we improve the constant in Feige’s Theorem from the current .125 to .14.

Theorem 1.2.1. Let X1, . . . , Xn be nonnegative independent random variables, with

E[Xi] ≤ 1 for each i. Let X =
∑n

i=1Xi. Then

Pr [X < E[X] + 1] ≥ 7

50
. (1.5)

In the previous improvement, He, Zhang, and Zhang [7] applied bounds they had

developed for the more general (1.1) in terms of the first, second, and fourth moments.

The source of our improvement comes from also considering the central third moment,

and what happens in the cases where it is positive versus negative. This idea is best

illustrated by a (tight) moment bound we prove in Section 2.1:

Theorem 1.2.2. Let X be a random variable with E[X] = 0,E[X2] = σ2, and E[X3] ≥

0. If E[X4] ≤ cσ4, then

Pr[X ≥ 0] ≤ 1− 1

2c
.

The assumption on the third moment allows for a slightly smaller bound than the

one proved in [8], which made no mention of the third moment (but otherwise had an

identical hypothesis).

We also consider whether we can obtain similar small deviation bounds if the random

variables are only k-wise independent for some k ≥ 2. Recall that a collection of random

variables is k-wise independent if any k-sized subcollection is mutually independent.

This is a natural consideration, since calculating up to the kth moment of a sum of

independent random variables in fact only uses the assumption that they are k-wise

independent. In addition, k-wise independent random variables are of particular interest

in the field of computer science. For many randomized algorithms, k-wise independence

is just as adequate as full independence, and the benefit of using the former is that it
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requires much less randomness to generate. In this realm, we show that for certain types

of random variables, 4-wise independence is sufficient for a nontrivial small deviation

bound. Our most general result of this type, which we prove in Chapter 2, is

Theorem 1.2.3. Let X1, . . . , Xn be a 4-wise independent collection of random variables

where for each i, E[Xi] = 0, and |Xi| ≤ 1. Let X =
∑n

i=1Xi. Then if δ ≥ 1/3,

Pr[X < δ] ≥ 1

6
.

In Section 4.4, we show that 1/6 is the best possible constant bound for this and

other related theorems. Similar to the conjectured α = 1/e in (1.2), the bound 1/6

cannot be improved by raising δ to a higher constant, but in this case the bound does

not hold when δ < 1/5, due to the same example that produces (1.3). Thus, there may

be some slight room for improvement to the above theorem, but not much. As we will

see in our approach to Theorem 1.2.1, letting δ be as small as possible is a worthwhile

endeavor. As an obvious corollary to Theorem 1.2.3,

Corollary 1.2.4. Let X1, . . . , Xn be a collection of 4-wise independent Bernoulli ran-

dom variables with respective marginal probabilities p1, . . . , pn ∈ [0, 1]. Let X =
∑n

i=1Xi.

Then

Pr[X < E[X] + 1/3] ≥ 1

6
.

If the Bernoulli random variables have marginal probabilities at most 1/2, we can

drop the deviation to δ = 0, while keeping the same bound. We prove this in Section

4.2.

Theorem 1.2.5. Let X1, . . . , Xn be a collection of 4-wise independent Bernoulli ran-

dom variables, with respective marginal probabilities p1, . . . , pn ∈ (0, 1/2]. Let X =∑n
i=1Xi. Then

Pr
[
X < E[X]

]
≥ 1

6
. (1.6)

In Section 4.5, we present a counterexample to show that 3-wise independence is

insufficient for any nontrivial small deviation bound on a sum of random variables. This

settles a question in [7], regarding whether or not a nontrivial bound can be obtained
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from only the first, second, and third moments. In addition, the assumption of pairwise

independence does not lead to an improvement on Markov’s inequality for a deviation

bound on a sum of nonnegative random variables.

Theorem 1.2.6. Let δ > 0. If (n + δ)/(δ + 1) ∈ Z, then there exists a collection of

nonnegative pairwise independent random variables X1, . . . , Xn, each with mean 1 such

that

Pr[X1 + . . .+Xn < n+ δ] =
δ

n+ δ

Theorem 1.2.7. Let δ > 0. If (n + δ)/(δ + 2) ∈ Z, then there exists a collection of

nonnegative 3-wise independent random variables X1, . . . , Xn, each with mean 1 such

that

Pr[X1 + . . .+Xn < n+ δ] =
(δ + 1)2

(δ + 2)(n+ δ)
.

At the end of Chapter 4, we show that for a sum of Bernoulli random variables, if

the marginal probabilities are bounded away from 1, we can get a bound ε-close to 1/e

with K-wise independence for large enough K. This relies on the bound of 1/e already

established for mutually independent Bernoullis.

Theorem 1.2.8. Let 0 < ε ≤ 1/16 and 0 < a < 1. There exists an integer K := K(ε, a)

such that if X1, . . . , Xn is a K-wise independent collection of Bernoulli random variables

with respective means p1, . . . , pn, where pi ≤ 1− a for all i, then

Pr

[
X1 + . . .+Xn <

n∑
i=1

pi + 1

]
≥ 1

e
− ε.

1.3 Other Related Work

In [3], Berger showed that 4-wise independence is sufficient–and 3-wise independence

is insufficient–for a good lower bound on E[|X1 + . . . + Xn|], where each Xi = ±ai for

ai > 0, and E[Xi] = 0. Thus, for more than one reason, 4-wise independence is much

stronger than 3-wise when dealing with a sum of random variables.

In a recent paper [11], Peled, Yadin, and Yehudayoff studied k-wise independent

Bernoulli random variables with identical marginal probability p, and bounded the

probability that all random variables are equal to 1. They mention the existence of a
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3-wise independent distribution where this probability is ω( 1
n), to be presented in an

upcoming paper. Although it was discovered with a different goal in mind, the example

given in this paper also happens to have that property. We acknowledge that their

work inspired our approach to proving the results on 4-wise independence.

Our proof of Theorem 1.2.8 is modeled off of the work in [5], wherein they showed

that bounded independence is sufficient to fool linear threshold functions with random

unbiased inputs. The difference is we look at a particular threshold function, and the

marginal probabilities may be biased and differ from each other.
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Chapter 2

Sums of 4-wise Independent Random Variables

2.1 A Moment Problem and Setup

Many of our results and their proofs will be versions of a standard moment problem.

Let X be a real-valued random variable. Given information of the moments of X up to

some k, we want to bound the probability that X lies in a set S. This is a well-studied

optimization problem that gives rise to an elegant dual problem, first utilized in [9] and

[10], and treated extensively in [4]. The setup of the general problem is

maximize
X

Pr[X ∈ S]

subject to E[Xi] = Mi, 0 ≤ i ≤ k.

Of course, M0 = 1 always. The dual problem is then

minimize
y

k∑
i=0

yiMi

subject to
k∑
i=0

yix
i ≥ 1{x∈S}

In other words, this minimizes E[Q(X)] over all polynomials Q of degree up to k, where

Q ≥ 1S .

For most of this paper, we let k = 4 and S = {x : x ≥ E[X] + δ}. Without loss of

generality, assume M1 = E[X] = 0. Thus for the dual problem, we need a polynomial

Q of degree at most 4 such that Q(x) ≥ 1{x≥δ}(x) for all x. The polynomial, which we

will denote Q`,r for `, r > 0, we use throughout the paper will be uniquely determined

by the following properties:

• Q`,r(x) has a double root at x = −`.

• Q`,r(0) = 1 (we will often just shift by the small value δ when needed).
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−` r

1

Figure 2.1: Q`,r

• Q`,r(x)− 1 has a double root at x = r.

Most often, r = `, in which case we will denote it as Qr. In that case,

Qr(x) = 1 +
3

4r
x− 1

r2
x2 − 1

4r3
x3 +

1

2r4
x4. (2.1)

We first use this approach to prove Theorem 1.2.2, restated here:

Theorem 2.1.1. Let X be a random variable with E[X] = 0,E[X2] = σ2, and E[X3] ≥

0. If E[X4] ≤ cσ4, then

Pr[X ≥ 0] ≤ 1− 1

2c
.

Proof. Consider the polynomial

Q(x) = Q√cσ(x) = 1 +
3

4
√
cσ
x− 1

cσ2
x2 − 1

4c3/2σ3
x3 +

1

2c2σ4
x4,

which satisfies Q(x) ≥ 1{x≥0} for all x (we prove this for the more general expression

of Q`,r in the next section). Using the assumptions on the moments, we have

Pr[X ≥ 0] = E[1X≥0] ≤ E[Q(X)] ≤ 1− 1

cσ2
σ2 +

1

2c2σ4
cσ4 = 1− 1

2c
.
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Note that the bound is tight if we consider, for any a > 0 and p < 1/2,

X =


−a, with probability p

0, with probability 1− 2p

a, with probability p

(2.2)

This happens to also be a tight example to Chebyshev’s inequality. Without any as-

sumption on the third moment, He et al proved an upper bound of 1− (2
√

3− 3)/c [8].

Using our Q`,r, we can choose ` = (1 +
√

3)r/2 (which makes the degree-3 coefficient

0) and optimize over r, to get the same bound.

Many of our proofs will be of the same flavor as Theorem 1.2.2, with c = 3 (which,

not coincidentally, is the kurtosis of the normal distribution). However, two complica-

tions will often arise, which one can predict by examining the idealistic conditions of

the previous theorem. Namely, the third moment could be negative, and the fourth

moment may be a bit larger than cσ4 for the optimal c we are after. Consider, for

example, a sum of bounded independent random variables.

Let {Xi}i≤1≤n be independent random variables with E[Xi] = 0 for each i. Let

X =
∑n

i=1Xi. If |Xi| ≤ 1 for each i, then

∣∣E[X3]
∣∣ =

∣∣∣∣∣
n∑
i=1

E[X3
i ]

∣∣∣∣∣
≤

n∑
i=1

E[|Xi|3]

≤
n∑
i=1

E[X2
i ]

= E[X2].
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In addition,

E[X4] =
n∑
i=1

E[X4
i ] + 6

∑
i<j

E[X2
i ]E[X2

j ]

= 3

(
n∑
i=1

E[X2
i ]

)2

+
n∑
i=1

(
E[X4

i ]− 3E[X2
i ]2
)

= 3E[X2]2 +
n∑
i=1

(
E[X4

i ]− 3E[X2
i ]2
)

≤ 3E[X2]2 +
n∑
i=1

E[X2
i ]

= 3E[X2]2 + E[X2].

So we see in this case that even if E[X3] is negative, it can only be as low as −E[X2],

and E[X4] can only exceed 3E[X2]2 by as much as E[X2]. This will not present much

of a problem asymptotically when the variance is large, but it will cause issues for small

variances. In that case, we just modify the polynomial. However, in general, we cannot

achieve the constant upper bound of 5/6 unless we allow some deviation δ > 0.

Note that if {Xi}i≤1≤n are only 4-wise independent, then X will have the same

moments above. Since we will only use the first four moments of X to prove Theorem

1.2.3 and the related Lemmas in Chapter 3, we can assume the random variables are

only 4-wise independent. In each situation, we will use this information on the moments

to show there exist `, r > 0 such that

E[Q`,r(X − δ)] ≤
5

6
. (2.3)

Therefore,

Pr[X ≥ δ] = E[1{x≥δ}(X)] ≤ E[Q`,r(X − δ)] ≤
5

6
, (2.4)

where the first inequality is shown in the next section.

2.2 Q`,r

The polynomial Q`,r described in the previous section is explicitly given as

Q`,r(x) =

n∑
i=0

qix
i, (2.5)
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where

q0 = 1,

q1 =
2r2(2`+ r)

`(`+ r)3
,

q2 =
r(−8`2 − `r + r2)

`2(`+ r)3
,

q3 =
4`2 − 4`r − 2r2

`2(`+ r)3
,

q4 =
3`+ r

`2(`+ r)3
. (2.6)

If ` = r, then these coefficients simplify to

q0 = 1, q1 =
3

4r
, q2 = − 1

r2
, q3 = − 1

4r3
, q4 =

1

2r4
. (2.7)

We will show directly that this polynomial satisfies

Lemma 2.2.1. Let `, r > 0. For all x ∈ R, Q`,r(x) ≥ 1{x≥0}.

Proof.

Q`,r(x) =
1

`2(`+ r)3
(`+ x)2

(
(`+ r)3 − 2(`2 + 3`r + r2)x+ (3`+ r)x2

)
,

which is zero if x = −`. Otherwise, since

`2(`+ r)3Q`,r(x)

(`+ x)2
= (`+ r)3 − 2(`2 + 3`r + r2)x+ (3`+ r)x2

≥ (`+ r)3 − 2(`2 + 3`r + r2)

(
`2 + 3`r + r2

3`+ r

)
+ (3`+ r)

(
`2 + 3`r + r2

3`+ r

)2

=
(3`+ r)(`+ r)3 − (`2 + 3`r + r2)2

3`+ r

=
2`4 + 4`3r + `2r2

3`+ r
≥ 0,

we have Q`,r(x) ≥ 0 ∀x. On the other hand,

Q`,r(x)− 1 =
1

`2(`+ r)3
x
(
4`2 + 2`r + (3`+ r)x

)
(−r + x)2

≥ 0, for all x ≥ 0.
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Now, let E[X] = 0, and δ > 0. Then

E[Q`,r(X − δ)] =
4∑
i=0

qi E[(X − δ)i]

=
4∑
i=0

qi E[(X)i] +
4∑
i=1

(−1)iδiqi + (6δ2q4 − 3δq3)E[X2]− 4δq4 E[X3]

=

4∑
i=0

(−1)iδiqi + (q2 − 3δq3 + 6δ2q4)E[X2] + (q3 − 4δq4)E[X3] + q4 E[X4].

(2.8)

Looking at the coefficients in (2.6), notice that q4 > 0 always, and if ` ≤ (1 +
√

3)r/2,

then q3 < 0. In fact, we will always choose ` ≤ r. Therefore, we will always have

q3 < 0, and q4 > 0. (2.9)

Thus, if X satisfies the inequalities (2.13) below, then

E[Q`,r(X − δ)] ≤
4∑
i=0

(−δ)iqi + (q2− 3δq3 + 6δ2q4)σ
2 + (q3− 4δq4)(−σ2) + q4(3σ

4 + σ2).

(2.10)

We will often let ` = r =
√

3σ. In that case, (2.7) becomes

q0 = 1, q1 =
3

4
√

3σ
, q2 = − 1

3σ2
, q3 = − 1

12
√

3σ3
, q4 =

1

18σ4
. (2.11)

Plugging these into (2.10) and simplifying yields

E[Q√3σ(X − δ)] ≤ 5

6
+

2δ4 +
√

3δ3σ + (2 + 8δ)σ2 + (
√

3− 6
√

3δ)σ3

36σ4
. (2.12)

2.3 Proof of Theorem 1.2.3

We restate it here in an equivalent form.

Theorem 2.3.1. Let X1, . . . , Xn be a 4-wise independent collection of random variables

where for each i, E[Xi] = 0, and |Xi| ≤ 1. Let X =
∑n

i=1Xi. Then

Pr[X ≥ 1/3] ≤ 5

6
.

Proof. Let X1, . . . , Xn be 4-wise independent random variables with E[Xi] = 0 and

|Xi| ≤ 1 for each i. Let X =
∑n

i=1Xi (so that E[X] = 0), and let σ2 = E[X2]. At the
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end of Section 2.1, we showed that since |Xi| ≤ 1 for each i,

E[X3] ≥ −σ2,

E[X4] ≤ 3σ4 + σ2. (2.13)

As explained in the same section, it is sufficient to show that for any such X, there is

a choice of ` and r such that

E[Q`,r(X − δ)] ≤
5

6
.

For this proof, we can let ` = r for each case, so we refer to the polynomial as Qr.

First, let ` = r =
√

3σ. Referencing (2.12) with δ = 1/3, we have

E[Q√3σ(X − 1/3)] ≤ 5

6
+

1

36σ4

(
2

81
+

√
3

27
σ +

14

3
σ2 −

√
3σ3

)
.

If σ ≥ 3, then

E[Q√3σ(X − 1/3)] ≤ 5

6
+

1

36σ

(
2

81
σ−3 +

√
3

27
σ−2 +

14

3
σ−1 −

√
3

)

≤ 5

6
+

1

36σ

(
2

81
3−3 +

√
3

27
3−2 +

14

3
3−1 −

√
3

)

≤ 5

6
.

Now If we let r = aσ for a constant a > 0, and δ = 1/3, plugging the coefficients of Q

(2.7) into (2.10) yields

E[Qaσ(X−1/3)] ≤ 3− 2a2 + 2a4

2a4
+

2− a2

4a3
σ−1 +

27− 2a2

18a4
σ−2 +

1

108a3
σ−3 +

1

162a4
σ−4.

Let Ba(σ) be the quantity on the righthand side. Examining the coefficients, we see

that if 27 − 2a2 ≥ 0, then Ba is a convex polynomial in the variable σ−1. Thus, for a

fixed a, and σ1 < σ2, if we show that Ba(σ1) and Ba(σ2) are both bounded above by

5/6, then E[Qaσ(X − 1/3)] ≤ 5/6 for all σ ∈ [σ1, σ2].

First, let a = 2. Then

B2(σ) =
27

32
− 1

16
σ−1 +

19

288
σ−2 +

1

864
σ−3 +

1

2592
σ−4.

and it can be easily checked that B2(3/2) < 5/6 and B2(3) < 5/6.

If a = 9/4, then

B9/4(σ) =
1883

2187
− 49

729
σ−1 +

80

2187
σ−2 +

16

19683
σ−3 +

128

531441
σ−4,
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with B9/4(1) < 5/6 and B9/4(3/2) < 5/6.

If a = 5/2, then

B5/2(σ) =
549

625
− 17

250
σ−1 +

116

5625
σ−2 +

2

3375
σ−3 +

8

50625
σ−4,

with B5/2(1/2) < 5/6 and B5/2(1) < 5/6.

Thus, we have covered all σ ≥ 1/2. Lastly, we set r = 3/2, for which plugging (2.7)

into (2.10) gives

E[Q3/2(X − 1/3)] ≤ 10339

13122
+

8

27
σ4 ≤ 5

6
,

when σ < 1/2.

As we discussed in the introduction, the deviation δ = 1/3 could possibly be lowered,

but not to anything below 1/5. However, due to the small variance case, our approach

cannot allow for a δ much lower than the one we set.
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Chapter 3

Sums of Fully Independent Random Variables

In this chapter, we prove Theorem 1.2.1. First, we will need two modified versions of

Theorem 1.2.3. Although we will have full independence when we apply these lemmas,

we only assume 4-wise independence for maximal generality. We treat separately the

cases of positive and negative third moment.

3.1 Lemmas

Due to the third-degree coefficient q3 of our polynomial being negative, if we know the

central third moment is positive, we can lower the allowed deviation δ from 1/3, while

keeping the same upper bound of 5/6 on the probability. It will be important to lower

δ as much as possible, without having to raise the bound on the probability (which

would not be a good tradeoff).

Lemma 3.1.1. Let X1, . . . , Xn be a 4-wise independent collection of random variables

where for each i, E[Xi] = 0, and |Xi| ≤ 1. Let X =
∑n

i=1Xi. If E[X3] ≥ 0, then

Pr[X ≥ 4/25] ≤ 5

6
.

For the next lemma, we will assume each random variable is supported on two

points; this will be the case when we apply it in the upcoming proof. Now, if we assume

the central third moment of the sum is nonpositive and add one small condition, we

can remove the assumption of a universal upper bound (intuitively, a negative central

third moment implies the distributions of the random variables are skewed below their

means). This will also be a crucial component to the proof of the theorem.

Lemma 3.1.2. Let X1, . . . , Xn be a 4-wise independent collection of random variables

where for each i, E[Xi] = 0, and Xi has support {−ai, bi}. Assume that ai ≤ 1 for each
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i, b1 = maxi{bi}, and a1 ≥ 1/16. Let X =
∑n

i=1Xi. If E[X3] ≤ 0, then

Pr[X < 1] ≥ 1

6
.

The allowed deviation of 1 and the 1/16 assumption above can be tinkered with,

but we fixed δ = 1 in preparation for the theorem.

3.2 Proof of Theorem 1.2.1

We state it again, this time with a slightly better but also less nice-looking constant:

Theorem 3.2.1. Let X1, . . . , Xn be nonnegative independent random variables with

means µ1, . . . , µn such that µi ≤ 1 for every i. Then

Pr

[
n∑
i=1

Xi <
n∑
i=1

µi + 1

]
≥ β, (3.1)

where we set β =
46

279
e−4/25 (>

7

50
).

In his proof [6] which first established a lower bound on this probability, Feige

explained via a linear programming argument that without loss of generality, we may

assume that each Xi is non-constant and has support of size two. This was one aspect of

his overall strategy, which was to apply a sequence of transformations to the collection

of random variables, where each transformation does not increase the probability that

we wish to lower bound. The next step is to simply subtract some nonnegative amount

from each Xi, so that it has support {0, ci} for some ci > 0. This step may reduce the

mean µi but leaves the probability in (3.1) unchanged.

The goal of the next transformation, which he called “merge,” was to make the

means closer to one another. With “merge,” we take the two random variables with

the smallest means, say Xi and Xj with means µi and µj , and merge them into the

random variable X ′ = Xi +Xj with mean µ′ = µi + µj . Now X ′ possibly has support

of size up to 4, but as before, we may reduce its size to two and align it with 0. For

some threshold t ≤ 1/2, we will apply “merge” (followed by reducing the support and

aligning with 0) on the two random variables with smallest means, µi < µj , if and only

if µi < t and µj ≤ 1 − t. Thus, we will never create a random variable with a mean
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larger than 1. Furthermore, when we have finished these transformations, we have at

most one random variable with mean below t, in which case all other means are above

1− t.

Proof. As explained in the precursor to this proof, we may assume that each Xi has

support {0, ci} for some ci > 0, so that Pr[Xi = ci] = µi/ci. For each i, let si = ci − µi,

the “surplus” to the mean. We may assume

s1 ≥ . . . ≥ sn.

Using a trick from [7], fix τ > 0, and define

N = max

{
0, max

1≤k≤n
{k : sk ≥ τ(µ1 + . . . µk)}

}
.

Let m =
∑N

i=1 µi, the mean of the sum of the first N . If i > N , then

si ≤ sN+1 ≤ τ
N+1∑
i=1

µi ≤ τ(m+ µN+1) ≤ τ(m+ 1). (3.2)

Otherwise, if i ≤ N , si ≥ sN ≥ τm. If N > 0, then

Pr

[
N∑
i=1

Xi = 0

]
=

N∏
i=1

Pr[Xi = 0]

=

N∏
i=1

(
1− µi

ci

)

=

N∏
i=1

(
1− µi

si + µi

)

≥
N∏
i=1

(
1− µi

τm+ µi

)

≥
N∏
i=1

e−µi/(τm) = e−1/τ .

The utility of this splitting of the random variables is that conditioning on the sum

of first N (which has a Poisson-like distribution with low mean) being 0, the rest are

bounded by an amount comparable to the allowed deviation. Here in particular, we are

using full (as opposed to just k-wise) independence of the random variables (we also
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implicitly used full independence during the merge operation described above).

Pr

[
n∑
i=1

Xi <
n∑
i=1

µi + 1

]
≥ Pr

[
N∑
i=1

Xi = 0

]
· Pr

[
n∑

i=N+1

Xi <
n∑
i=1

µi + 1

]

≥ e−1/τ Pr

[
n∑

i=N+1

Xi <

n∑
i=1

µi + 1

]

= e−1/τ Pr

[
n∑

i=N+1

Xi <
n∑

i=N+1

µi + (m+ 1)

]
,

and we will now focus on the latter probability. We fix τ = 25/4. Assume N < n,

otherwise we are done. For 1 ≤ j ≤ n−N , let Yj = XN+j − µN+j , and let n′ = n−N .

Set Y =
∑n′

j=1 Yj . Each Yj has mean 0 and support {−aj , bj} where 0 < aj ≤ 1 and

0 < bj ≤ 25(m + 1)/4. We break the analysis into two cases, depending on the sign of

the third moment of Y .

Case 1 : E[Y 3] ≥ 0.

In this case, for each j, let Y ′j =
4

25(m+ 1)
Yj , and Y ′ =

∑n′

i=1 Y
′
j . Note that E[(Y ′)3] ≥

0, and for each j, |Y ′j | ≤ 1. By Lemma 3.1.1,

Pr

 n′∑
j=1

Yj < (m+ 1)

 = Pr

 n′∑
j=1

Y ′j < 4/25

 ≥ 1

6
.

Thus, we have

Pr

[
n∑
i=1

Xi <
n∑
i=1

µi + 1

]
≥ e−4/25

6
> β.

Although proving this case was immediate, it required the bounding of the latter random

variables and drove the choice of τ = 25/4.

Case 2 : E[Y 3] < 0.

The major fact about Lemma 3.1.2 we use in this case is that we do not need an upper

bound on the Yj ’s. Above we had to divide the random variables by some amount in

order to apply our positive third moment lemma, which lowered the allowed deviation

in our strict application of the statement. This time, we do not have to do so, and the

allowed deviation δ remains at least 1.

Now, each Yj has support {−aj , bj}, where 0 < aj ≤ 1 for each i. Since bj = sN+j ,

we have b1 ≥ . . . ≥ bn′ . If a1 ≥ 1/16, we can immediately apply Lemma 3.1.2, and we

are done. So we can assume a1 < 1/16. Since Yj = XN+j − µN+j , each aj = µN+j .
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Thus, µN+1 < 1/16. By the stopping condition of the merge process, this means that

all other means exceed 15/16.

We may also assume at this point that b1 ≥ 3(m+ 1). Otherwise, like in Case 1, we

can divide by 3(m+ 1), and by Theorem 1.2.3,

Pr

 n′∑
j=1

Yj < (m+ 1)

 = Pr

 n′∑
j=1

Y ′j < 1/3

 ≥ 1

6
.

Thus, considering

Pr[Y1 = b1] =
a1

a1 + b1
≤ 1

48(m+ 1)
,

this variable being positive is quite unlikely, and in order to discard it, we will also

condition on this not occurring. Once we do so, we must take note that the third

moment of the remaining sum is also negative, as we have subtracted from it

E[Y 3
1 ] = a1b1(b1 − a1) > a1b1(3− 1/16) > 0.

Furthermore, for j ≥ 2, aj > 1/16 (in fact aj ≥ 15/16), so we can apply Lemma 3.1.2

to the remaining sum. Now we consider two cases: N = 0 and N ≥ 1.

If N = 0, then m = 0, and

Pr

[
n∑
i=1

Xi <

n∑
i=1

µi + 1

]
= Pr

 n∑
j=1

Yj < 1


≥ Pr[Y1 = 0] · Pr

 n∑
j=2

Yj < 1


≥
(

1− 1

48

)
· 1

6
(by Lemma 3.1.2)

> β
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If N ≥ 1, m ≥ E[X1] ≥ 15/16, and

Pr

[
n∑
i=1

Xi <
n∑
i=1

µi + 1

]
≥ e−4/25 Pr

 n′∑
j=1

Yj < m+ 1


≥ e−4/25 Pr[Y1 = 0] · Pr

 n′∑
j=2

Yj < m+ 1


≥ e−4/25

(
1− 1

48(m+ 1)

)
· Pr

 n′∑
j=2

Yj < 1


≥ e−4/25

(
1− 1

48(m+ 1)

)
· 1

6
(by Lemma 3.1.2)

≥ e−4/25
(

92

93

)(
1

6

)
= β.

We remark that given the tightness of Theorem 1.2.3 and the lemmas in this section

(which we show in Section 4.4), one cannot achieve a constant higher than 1/6 in

Theorem 1.2.1 with only the information of the first four moments. The room for

improvement in our work lies in the possibility of lowering δ = 4/25 in Lemma 3.1.1.

We could not do so (by more than a negligible amount) in our proof below. However,

perhaps a deeper analysis could allow it.

Furthermore, we believe a tractable approach to bridging some of the gap between

our 7/50 and the conjectured 1/e would be to apply a similar 2kth moment method. An

effective dual 2k-degree polynomial Q may be similarly defined as our Q`,r but possibly

with more double roots for Q and Q− 1. In addition, Q could be defined so that many

of its odd-degree coefficients are 0, at the benefit of disregarding the odd moments of

those orders.

3.3 Proofs of Lemmas

As explained at the end of Section 2.1, we will show that for any X meeting the

conditions, there is a choice of ` and r such that (2.3) and thus (2.4) hold. We will also

refer to properties of the polynomial Q`,r laid out in Section 2.2.



21

3.3.1 Lemma 3.1.1

Proof. Let X1, . . . , Xn be 4-wise independent random variables such that for each i,

E[Xi] = 0, and |Xi| ≤ 1. Let X =
∑n

i=1Xi. This time, by assumption, we have

E[X3] ≥ 0. Otherwise, E[X] = 0 and E[X4] ≤ 3σ4 + σ2, as shown in Section 2.1. Now,

from (2.8) and (2.9) we have

E[Q`,r(X − δ)] ≤
4∑
i=0

(−δ)iqi + (q2 − 3δq3 + 6δ2q4)σ
2 + q4(3σ

4 + σ2). (3.3)

With ` = r =
√

3σ,

E[Q`,r(X − δ)] ≤
5

6
+

2δ4 +
√

3δ3σ + 2σ2 − 6
√

3δσ3

36σ4
.

Letting δ = 4/25 and σ > 5/4,

E[Q√3σ(X − 4/25)] ≤ 5

6
+

1

36σ

(
2

(
4

25

)4

σ−3 +
√

3

(
4

25

)3

σ−2 + 2σ−1 − 24
√

3

25

)

≤ 5

6
+

1

36σ

(
2

(
4

25

)4(4

5

)3

+
√

3

(
4

25

)3(4

5

)2

+ 2

(
4

5

)
− 24

√
3

25

)

≤ 5

6
.

For σ ∈ [0, 5/4], we will be forced to choose ` < r. In order to mitigate some of the

upcoming messiness, we refer to δ = 4/25 as δ.

Let ` = 2σ and r = 5σ/2. Then using (3.3) and (2.6),

E[Q2σ,5σ/2(X − δ)] ≤
835

972
− 226δ

729
σ−1 +

68− 207δ2

2916
σ−2 +

11δ3

243
σ−3 +

17δ4

729
σ−4.

Since 68−207δ2 ≥ 0, the right-hand side is a convex polynomial of the variable σ−1 > 0.

One can check that when σ = .68 and when σ = 1.25 (and δ = .16), it is less than 5/6.

Therefore,

E[Q2σ,5σ/2(X − 4/25)] ≤ 5

6

for all σ ∈ [.68, 1.25].

Next, let ` = 15σ/7 and r = 3σ. Then

E[Q15σ/7,3σ(X−δ)] ≤ 256957

291600
−10633δ

32400
σ−1+

26411− 128625δ2

1749600
σ−2+

7889δ3

194400
σ−3+

26411δ4

1749600
σ−4.
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Again, this is a convex polynomial of the variable σ−1 > 0, since the coefficient of σ−2

is positive for δ = 4/25. One can check that when σ = .5 and when σ = .68, the

right-hand side is less than 5/6. Therefore,

E[Q(15σ/7),3σ(X − 4/25)] ≤ 5

6

for all σ ∈ [.5, .68].

Lastly, let ` = 1 and r = 2. Then

E[Q1,2(X − 4/25)] ≤ 62573

78125
− 59

3375
σ2 +

5

9
σ4.

One can verify with the quadratic formula or by other means that the right-hand side

is bounded above by 5/6 when σ ∈ [0, 1/2].

Overall, we have provided a suitable polynomial Q for every σ ≥ 0.

3.3.2 Lemma 3.1.2

Proof. Let X1, . . . , Xn be 4-wise independent mean-zero random variables distributed

as

Xi =


−ai, with probability

bi
ai + bi

bi, with probability
ai

ai + bi
,



23

where ai ≤ 1 for each i, b1 = maxi{bi}, and a1 ≥ 1/16. Then

E[X] = 0,

E[X2] := σ2 =

n∑
i=1

aibi ,

E[X3] =

n∑
i=1

aibi(bi − ai)

≥ −
n∑
i=1

a2i bi

≥ −
n∑
i=1

aibi = −σ2,

E[X4] ≤ 3σ4 +

n∑
i=1

E[X4
i ]

= 3σ4 +

n∑
i=1

aibi(a
2
i + b2i )

≤ 3σ4 +
n∑
i=1

a3i bi +
n∑
i=1

aib
3
i

≤ 3σ4 + σ2 +
n∑
i=1

aib
3
i

Now we will show
∑n

i=1 aib
3
i ≤ 4σ3. Despite the lack of an upper bound on the bi’s,

the nonpositivity of the third moment, along with the prescribed interval of a1, brings

the sum under control (the latter condition, simply put, prevents an extremely large b1

being “hidden” by an extremely small a1). First, note that E[X3] ≤ 0 implies
n∑
i=1

aib
2
i ≤

n∑
i=1

a2i bi ≤ σ2.

Then
n∑
i=1

aib
3
i ≤ b1

n∑
i=1

aib
2
i

≤ b1σ2

=
√
b21σ

2

=

(
1
√
a1

√
a1b21

)
σ2

≤
(

4
√∑

aib2i

)
σ2

≤ (4
√
σ2)σ2 = 4σ3.
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From (2.8) and (2.9), we have

E[Q`,r(X−1)] ≤
4∑
i=0

(−1)iqi+(q2−3q3 +6q4)σ
2 +(q3−4q4)(−σ2)+q4(3σ

4 +4σ3 +σ2).

(3.4)

If ` = r =
√

3σ,

E[Q√3σ(X − 1)] ≤ 5

6
+

2 +
√

3σ + 10σ2 + (8− 5
√

3)σ3

36σ4
.

If σ ≥ 16,

E[Q√3σ] ≤ 5

6
+

1

36σ
(2(16)−3 +

√
3(16)−2 + 10(16)−1 + 8− 5

√
3) ≤ 5

6
.

For the rest of this proof, we will still have ` = r. We will find a Qr for each σ ∈ [0, 16].

First, let r = 19σ/10. From (3.4), we have

E[Q(19σ/10)(X − 1)] ≤ 218442− 24885σ−1 + 37800σ−2 + 9500σ−3 + 10000σ−4

260642
.

As in the cases in the other proofs, the right-hand side is a convex polynomial of the

parameter σ−1 > 0. One can check that for σ = 5/2 and σ = 16, the right-hand side is

less than 5/6. Therefore,

E[Q(19σ/10)(X − 1)] ≤ 5

6

when σ ∈ [5/2, 16].

For the remaining σ, we can let r = 5. Then (3.4) becomes

E[Q5(X − 1)] ≤ 1016− 29σ2 + 4σ3 + 3σ4

1250

≤ 5

6
when σ ∈ [0, 5/2],

and the last inequality can be verified using basic calculus. All cases are covered.



25

Chapter 4

Sums of Bernoulli Random Variables

4.1 Full Independence

For µ1, . . . , µn satisfying 0 ≤ µ1 ≤ . . . ≤ µn, define S(µ1, . . . , µn) to be the set of all n-

tuples of nonnegative independent random variables (X1, . . . , Xn) satisfying E[Xi] = µi

∀i. We restate Samuels’ conjecture with this notation:

Conjecture 4.1.1 (Samuels). If
∑n

i=1 µi < 1, then

inf
(X1,...,Xn)∈S(µ1,...,µn)

Pr[X1 . . .+Xn < 1] = min
t=0,...,n−1

n∏
i=t+1

(
1− µi

1−
∑t

j=1 µj

)
. (4.1)

In their discussion of this conjecture, the authors of [1] showed that

Lemma 4.1.1 ([1]). If µ1 = . . . µn = x, where 0 < x ≤ 1
n+1 , then the righthand side of

(4.1) is minimized at t = 0.

Now let Bk(µ1, . . . , µn) be the subclass of S(µ1, . . . , µn) where for each i, Xi has

support {0, bi} for some bi > 0, and for any k-sized subset of {b1, . . . , bn}, we have

k∑
j=1

bij < 1

whereas for any (k + 1)-sized subset we have

k+1∑
j=1

bij ≥ 1.

Let B(µ1, . . . , µn) = ∪n−1k=0Bk(µ1, . . . , µn). In [12], Samuels proved that his conjecture

holds for this subclass.

Lemma 4.1.2 ([12]). Conjecture 5.1 is true for S(µ1, . . . , µn) replaced with B(µ1, . . . , µn).

Together, these show
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Theorem 4.1.3. For any p > 0, if X ∼ B(n, p), then

Pr[X < (n+ 1)p] >
1

e
. (4.2)

Proof. Let X1, . . . , Xn be i.i.d. random variables where X1 ∼ 1
(n+1)pBer(p) for p > 0,

then it is easy to see that (X1, . . . , Xn) ∈ B( 1
n+1 , . . . ,

1
n+1) and that they also satisfy

the conditions in Lemma 4.1.1. Therefore

Pr[X1 + . . .+Xn < 1] ≥
(

1− 1

n+ 1

)n
> 1/e,

and (4.2) follows.

With the benefit of Samuels’ lemma, it is also not hard to show

Theorem 4.1.4. Let X1, . . . , Xn be Bernoulli random variables with respective proba-

bilities p1, . . . , pn. Let X =
∑n

i=1Xi. Then

Pr

[
X <

n∑
i=1

pi + 1

]
>

1

e
.

Proof. Let µ =
∑n

i=1 pi, Yi = Xi/(µ + 1), and Y =
∑n

i=1 Yi. Now (Y1, . . . , Yn) ∈

B( p1
µ+1 , . . . ,

pn
µ+1), so by Lemma 4.1.2,

Pr[Y1 . . .+ Yn] = min
t=0,...,n−1

n∏
i=t+1

(
1− pi

µ+ 1−
∑t

j=1 pj

)

= min
t=0,...,n−1

n∏
i=t+1

(
1− pi∑n

j=t+1 pj + 1

)

Let t = k be the integer at which the above attains its minimum. Then

Pr[Y1 . . .+ Yn] =
n∏

i=k+1

(
1− pi∑n

j=k+1 pj + 1

)

≥
n∏

i=k+1

(
1− pi∑n

j=k+1 pj + pi

)

≥
n∏

i=k+1

e
−pi∑n

j=k+1
pj

= e−1.
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Figure 4.1: Q′`,r

4.2 Probabilities at most 1/2

For nontrivial Bernoulli random variables with probabilities at most 1/2, we can strengthen

Corollary 1.2.4 by reducing the allowed deviation to 0. We can do this mainly because

we now benefit from knowing that the sum can only be a nonnegative integer (and the

restriction on the probabilities ensures that the central third moment of every random

variable is nonnegative). This means that for the polynomial in the dual problem, we

can use a modified version of Q`,r described in Section 2.1. Now we let Q′`,r be the

degree-4 polynomial uniquely defined by interpolating through the following points:

(−`, 0), (−`+ 1, 0), (0, 1), (r − 1, 1), (r, 1),

where `, r ≥ 2 are integers. Thus, it will pass through the lines y = 0 and y = 1, but

only at integers. The amount gained by this alteration is negligible for large ` and r

but will be critical for dealing with the Poisson-like case. We elaborate in the proof.

Theorem 4.2.1. Let Y1, . . . , Yn be 4-wise independent Bernoulli random variables, with

marginal probabilities (p1, . . . , pn) ∈ (0, 1/2]n. Then

Pr[Y1 + . . .+ Yn ≥
n∑
i=1

pi] ≤
5

6
. (4.3)
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Proof. For each i, let Xi = Yi − pi, and let X =
∑n

i=1Xi. We have

E[X] = 0,

E[X2] := σ2 =
n∑
i=1

pi(1− pi),

E[X3] =
n∑
i=1

pi(1− pi)(1− 2pi),

E[X4] = 3σ4 +
n∑
i=1

pi(1− pi)(1− 6pi + 6p2i )

Since 0 < pi ≤ 1/2 for each i,

0 ≤ E[X3] ≤ σ2,

and

E[X4] = 3σ4 +
n∑
i=1

pi(1− pi)(1− 2pi)
2 − 2

n∑
i=1

p2i (1− pi)2

≤ 3σ4 +
n∑
i=1

pi(1− pi)(1− 2pi)
2

≤ 3σ4 +
n∑
i=1

pi(1− pi)(1− 2pi) (0 ≤ 1− 2pi ≤ 1 ∀i)

≤ 3σ4 + E[X3].

As in the proofs of Theorems 1.2.2 and 1.2.3, if suffices to show that in each case there

exists a suitable polynomial Q(x) in the dual problem such that

E[Q(X)] ≤ 5

6
.

First, as usual, we use Q√3σ (see Sections 2.1 and 2.2). In this case,

Q√3σ(X) = 1 +
3

4
√

3σ
E[X]− 1

3σ2
E[X2]− 1

12
√

3σ3
E[X3] +

1

18σ4
E[X4]

≤ 5

6
+

E[X3]

36σ4
(2−

√
3σ)

≤ 5

6
, for σ ≥ 2√

3
.

Now let us take a closer look at the third and fourth moments of X. We can assume

that p1 ≤ . . . ≤ pn. Let c = 1/2−
√

3/6, chosen because

1− 6pi + 6p2i ≤ 0, for pi ∈ [c, 1/2].
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If pi ≥ c for all i, then E[X4] ≤ 3σ4, and

Q√3σ(X) ≤ 1− 1

3σ2
σ2 +

1

18σ4
σ4 =

5

6
.

Otherwise, let N = max1≤k≤n{k : pk < c}. Then

E[X3] ≥
N∑
i=1

pi(1− pi)(1− 2pi) ≥
1√
3

N∑
i=1

pi(1− pi),

and

E[X4] ≤ 3σ4 +

N∑
i=1

pi(1− pi)(1− 6pi + 6p2i )

≤ 3σ4 +
N∑
i=1

pi(1− pi).

Let us denote this partial variance as t :=
∑N

i=1 pi(1 − pi). Now we will use Q′`,r, as

defined in the previous section. Let µ =
∑n

i=1 pi. Since Y can only take on integer

values,

Pr[Y ≥ µ] = Pr[Y ≥ dµe].

We will use the fact that Q′`,r(z) ≥ 1{z≥0} for all z ∈ Z (technically we have not proved

this property for all ` and r but it will be easily verifiable for the specific two cases in

which we use this polynomial). Thus,

Pr[Y ≥ dµe] ≤ E[Q′`,r(Y − dµe)].

Let δ = dµe − µ. Since we are centering about dµe, we may have an allowed deviation

from the mean, 0 ≤ δ < 1. This will be much needed when µ < 1. However, note that

by Theorem 3.1.1, we can assume that 0 ≤ δ ≤ 4/25. For each of our next polynomials,

denoted Q(x) =
∑4

i=1 qix
i, we have

E[Q(Y − dµe)] = E[Q(X − δ)]

=
4∑
i=0

qi E[Xi] + ErrQ(δ),

where

ErrQ(δ) = (−q1 − 3q3σ
2 − 4q4 E[X3])δ + (q2 + 6q4σ

2)δ2 − q3δ3 + q4δ
4.
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For 5/7 ≤ σ2 ≤ 4/3, we let ` = 2 and r = 3.

Q′2,3(x) = 1 +
17

20
x− 43

120
x2 − 3

20
x3 +

7

120
x4.

First, note that for this polynomial and our range of σ2,

Err(δ) =
27σ2 − 14E[X3]− 51

60
δ +

42σ2 − 43

120
δ2 +

3

20
δ3 +

7

120
δ4

≤ 27(4/3)− 51

60
δ +

42(4/3)− 43

120
δ2 +

3

20
δ3 +

7

120
δ4

= δ

(
−1

4
+

13

120
δ +

3

20
δ2 +

7

120
δ3
)

≤ δ

(
−1

4
+

13

120

(
4

25

)
+

3

20

(
4

25

)2

+
7

120

(
4

25

)3
)

≤ 0.

Hence, for 5/7 ≤ σ2 ≤ 4/3,

E[Q′2,3(X − δ)] ≤ E[Q′2,3(X)]

= 1 +
17

20
E[X]− 43

120
E[X2]− 3

20
E[X3] +

7

120
E[X4]

≤ 1− 43

120
σ2 − 3

20

(
t√
3

)
+

7

120
(3σ4 + t)

≤ 1− 43

120
σ2 +

7

120
(3σ4)

≤ 5

6
.

Now let ` = r = 2. Then

Q′2,2(x) = 1 +
7

12
x− 5

8
x2 − 1

12
x3 +

1

8
x4.

Again, we must examine the error term (4/9 < σ2 ≤ 5/7 < 1):

Err(δ) =
3σ2 − 6E[Y 3]− 7

12
δ +

6σ2 − 5

8
δ2 +

1

12
δ3 +

1

8
δ4

≤ −1

4
δ +

1

8
δ2 +

1

12
δ3 +

1

8
δ4

= δ

(
−1

4
+

1

8
δ +

1

12
δ2 +

1

8
δ3
)

≤ δ

(
−1

4
+

1

8

(
4

25

)
+

1

12

(
4

25

)2

+
1

8

(
4

25

)3
)

≤ 0.
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Now for 4/9 ≤ σ2 ≤ 5/7,

E[Q′2,2(X − δ)] ≤ E[Q′2,2(X)]

= 1 +
7

12
E[X]− 5

8
E[X2]− 1

12
E[X3] +

1

8
E[X4]

≤ 1− 5

8
σ2 − 1

12

(
t√
3

)
+

1

8
(3σ4 + t)

= 1− 5

8
σ2 +

3

8
σ4 +

9− 2
√

3

72
t

≤ 1− 5

8
σ2 +

3

8
σ4 +

9− 2
√

3

72
σ2

≤ 1− 13

24
σ2 +

3

8
σ4

≤ 5

6
.

Now we can assume σ2 < 4/9. Here we will use the fact that

0 ≤ µ =
n∑
i=1

pi ≤ 2
n∑
i=1

pi(1− pi) = 2σ2 <
8

9
,

given our range of probabilities. Thus, δ = dµe − µ > 1/9. We will take advantage of

this guaranteed deviation. In addition,

σ2 < 1/4 =⇒ µ < 1/2 =⇒ δ > 1/2,

and we would apply Theorem 3.1.1, as previously mentioned. Thus, we can assume

that 1/2 ≤ σ2 < 4/9, as well as 1/9 < δ < 4/25. Now

Err(δ) =
3σ2 − 6E[Y 3]− 7

12
δ +

6σ2 − 5

8
δ2 +

1

12
δ3 +

1

8
δ4

≤ 3σ2 − 2
√

3t− 7

12
δ +

6σ2 − 5

8
δ2 +

1

12
δ3 +

1

8
δ4

=

(
− 7

12
δ − 5

8
δ2 +

1

12
δ3 +

1

8
δ4
)

+

(
1

4
δ +

3

4
δ2
)
σ2 −

√
3

6
δt.

We will need to combine this with the bound on E[Q′2,2(X)] given above:

E[Q′2,2(X − δ)] ≤ E[Q′2,2(X)] + Err(δ)

≤
(

1− 7

12
δ − 5

8
δ2 +

1

12
δ3 +

1

8
δ4
)

+
6δ2 + 2δ − 5

8
σ2 +

3

8
σ4 +

9− 2
√

3− 12
√

3δ

72
t

≤
(

1− 7

12
δ − 5

8
δ2 +

1

12
δ3 +

1

8
δ4
)
− 2829

5000
σ2 +

3

8
σ4 +

27− 10
√

3

216
σ2,
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where we used the fact that 1/9 ≤ δ ≤ 4/25, and t ≤ σ2. It is also not hard to verify

that for this range of δ,(
1− 7

12
δ − 5

8
δ2 +

1

12
δ3 +

1

8
δ4
)
≤

(
1− 7

12

(
1

9

)
− 5

8

(
1

9

)2

+
1

12

(
1

9

)3

+
1

8

(
1

9

)4
)

=
6086

6561
.

Thus, for 1/4 ≤ σ2 ≤ 4/9

E[Q′2,2(X − δ)] ≤ E[Q′2,2(X)] + Err(δ)

≤ 6086

6561
− (29754 + 3125

√
3)

67500
σ2 +

3

8
σ4

≤ 13

14
− 1

2
σ2 +

3

8
σ4

≤ 5

6
.

Since this was the last case to consider, we are done.

4.3 Equal Marginal Probabilities

Using notation from [11], let A(n, k, p) be the set of all collections of n k-wise indepen-

dent Bernoulli random variables with equal marginal probabilities p. We denote

ZP (n, k, p, δ) = max
(X1,...,Xn)∈A(n,p,k)

Pr[X1 + . . . Xn ≥ np+ δ]. (4.4)

We can find the above quantity using linear programming. Let S = X1 + . . . + Xn.

Since we are interested in the symmetric event {S ≥ np + δ}, there is no loss in

assuming that our identically distributed random variables are also symmetric. Hence,

our programming problem will be in the n+ 1 variables p0, . . . , pn, where

pr := Pr[S = r]. (4.5)

Let X ∼ Bin(n, p). For k-wise independence to hold, it is sufficient for the moments of

S and X to be identical up to order k. Thus, we have the constraints

E[Xi] = E[Si] =

n∑
r=0

ripr, (4.6)

for 0 ≤ i ≤ k. Letting m = dnp + δe, our objective function is
∑n

r=m pr. The dual

problem is then

ZD(n, k, p, δ) = min
Q∈Pk

EX∼Bin(n,p)[Q(X)], (4.7)
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where Pk is the set of univariate polynomials Q of degree at most k, with

Q(i) ≥ 0 ∀i ∈ {0, . . . ,m(d)− 1}, and (4.8)

Q(j) ≥ 1 ∀j ∈ {m(d), . . . , n}. (4.9)

By linear programming duality, ZP = ZD (:= Z). As explained in [11], an optimal

Q0 in (4.7) would give us information about the optimal distribution S in the primal

problem (4.4). Assuming optimality of each,

n∑
i=m

Pr[S = i] = Z = E[Q0(S)] =
n∑
i=0

Q0(i) Pr[S = i].

Thus, the support of S contains only integers which are zeros of Q0 as well as the i ≥ m

where Q0(i) = 1. With this information, one can simply use the k+1 linear constraints

to solve for the probabilities.

4.4 4-wise Independence (Tightness of Bound)

4.4.1 Theorem 1.2.5

This and the following example will be a symmetric 4-wise independent collection of

Bernoulli random variables X1, . . . , Xn with equal marginal probabilities of 1/2. Let

S =
∑n

i=1Xi, and n = 12k2 for some integer k. This choice ensures that µ = n/2 = 6k2

and
√

3σ =
√

3n/2 = 3k are integers. We have seen that when S has support on

the integers, the polynomial Q′`,r can be a better choice than Q`,r when it comes to

minimizing E[Q(S − µ)] (in fact, much better when σ is small). For large variance, we

inevitably choose r = ` =
√

3σ to optimize the bound, so we do so with Q′`,r. If this

were in fact the optimal choice, the discussion at the end of the previous section tells

us that S would have support

supp(S) = {s1, s2, s3, s4, s5}

= {µ− `, µ− `+ 1, µ, µ+ r − 1, µ+ r}

= {µ−
√

3σ, µ−
√

3σ + 1, µ, µ+
√

3σ − 1, µ+
√

3σ}

= {6k2 − 3k, 6k2 − 3k + 1, 6k2, 6k2 + 3k − 1, 6k2 + 3k}
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Solving the linear system (4.6) gives

Pr[S = s1] = Pr[S = s5] =
4k − 1

4(6k − 1)
,

Pr[S = s2] = Pr[S = s4] =
3k2

4(6k − 1)(3k − 1)2
,

Pr[S = s3] =
12k2 − 8k + 1

2(3k − 1)2
.

Then

Pr[S ≥ np] = Pr[S = s3] + Pr[S = s4] + Pr[S = s5]

=
30k2 − 20k + 3

4(3k − 1)2
,

which tends to 5/6 as k grows. As explained in Section 4.3, we need only provide the

distribution of S. Thus, the bound in Theorem 1.2.5 cannot be improved to a lower

constant.

4.4.2 Other Theorems

Notice that in the above example, most of the weight of the distribution lies on the

mean itself. Specifically, Pr[S = µ] is around 2/3, whereas Pr[S > µ] ≤ 1/6. This begs

the question as to whether the 5/6 bound is still tight if we allow some slight deviation.

The answer turns out to be in the affirmative.

We show the existence of a symmetric 4-wise independent collection X1, . . . , Xn

such that, letting S =
∑n

i=1Xi and µ = E[S], Pr[S ≥ µ+1] tends to 5/6. Again, we let

p = 1/2 and n = 12k2 as in the previous section. Frankly, we had to experiment with a

few choices of the support of S until finding one that satisfies the system (4.6) (that is,

with nonnegative probabilities). We began with the assumption that, as usual, the dual

polynomial Q′`,r which minimizes E[Q(S − µ− 1)] has both ` and r near
√

3σ = 3k. It

turns out that in this case we must raise ` and r by at least one (or adjust the definition

of Q′`,r). We let

supp(S) = {s1, s2, s3, s4, s5}

= {µ−
√

3σ, µ−
√

3σ + 1, µ+ 1, µ+
√

3σ + 1, µ+
√

3σ + 2}

= {6k2 − 3k, 6k2 − 3k + 1, 6k2 + 1, 6k2 + 3k + 1, 6k2 + 3k + 2}
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With this choice, solving (4.6) yields

Pr[S = s1] =
15k2 + 6k + 4

4(3k + 1)2(6k + 1))
,

Pr[S = s2] =
12k2 + 9k + 4

12k(6k + 1)
,

Pr[S = s3] =
36k3 + 24k2 + 3k − 4

6k(3k + 1)2
,

Pr[S = s4] =
12k2 − 15k + 4

12k(6k + 1)
,

Pr[S = s5] =
3k(5k − 2)

4(3k + 1)2(6k + 1))
.

Then

Pr[S ≥ np+ 1] = Pr[S = s3] + Pr[S = s4] + Pr[S = s5]

=
540k4 + 342k3 + 24k2 − 33k − 4

12k(3k + 1)2(6k + 1)
,

which tends to 5/6 as k grows. Thus, the 5/6 bound is tight in all of our theorems

involving 4-wise independence. One may ask if this is merely a property of the p =

1/2 case, but we believe the bound is tight for any fixed p. However, in other cases,

solving the linear system is made much easier if one can first correctly guess the optimal

distribution of S.

4.5 2- and 3-wise Independence

We refer to the programming problem in Section 4.3. We will find it convenient to set

δ = dp, so that m = dnp+ dpe = d(n+ d)pe.

4.5.1 Theorem 1.2.6 (k = 2)

For k = 2, the optimal solution occurs when

p0 =
(1− p)(m− np+ p)

m
,

pm =
p(1− p)n(n− 1)

m(n−m)
,

pn =
p(np−m+ 1− p)

n−m
,
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valid as long as m ≤ np+ 1− p. Then

Pr[S ≥ m] =
p(n+m− np− 1 + p)

m
. (4.10)

The optimal polynomial in the corresponding dual problem (4.7) is

f(x) =
1

mn

(
(m+ n)x− x2

)
.

Note that f satisfies the conditions, f(0) = 0, f(m) = f(n) = 1, and

E[f(X)] =
(m+ n)np−

(
np(1− p) + n2p2

)
mn

=
p(n+m− np− 1 + p)

m
.

Therefore,

Z(n, 2, p, dp) =
p(n+m− np− 1 + p)

m
,

when m ≤ np+ 1− p. If m = np+ dp (so this number is already an integer), then this

is equivalent to p ≤ 1/(d+ 1). In this case,

Pr[S ≥ (n+ d)p] =
(n+ (d+ 1)p− 1)

n+ d
.

Setting p = 1/(d + 1) (to maximize the above) and assuming m = (n + d)p = (n +

d)/(d+ 1) ∈ Z gives the simple solution of

p0 =
d

n+ d
,

pm =
n

n+ d
,

pn = 0,

so that

Pr[X1 + . . . Xn ≥ (n+ d)p] =
n

n+ d
,

which is the same bound given by Markov’s inequality.

4.5.2 Theorem 1.2.7 (k = 3)

For k = 3, the expressions are a little messier, so we will omit some of the details

on the way to the punchline. In this case, the support of the optimal solution is
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{p0, pm, pn−1, pn}, with

Pr[S ≥ m] =
p
(
(n− 2)(1− p)2 +m(2− p)

)
m

, (4.11)

as long as m ≤ np+ 1− 2p. The optimal polynomial in the dual problem is

g(x) =
1

n(n− 1)m

(
(n2 + 2mn− n−m)x− (2n+m− 1)x2 + x3

)
.

Note that g satisfies the conditions, g(0) = 0, g(m) = g(n − 1) = g(n) = 1, and it can

be checked that E[g(X)] equals the quantity in (4.11). Therefore,

Z(n, 3, p, dp) =
p
(
(n− 2)(1− p)2 +m(2− p)

)
m

,

when m ≤ m ≤ np+1−2p. If m = (n+d)p ∈ Z, then this is equivalent to p ≤ 1/(d+2),

and again Z is maximized with p equal that value. With these choices, the solution

simplifies to

p0 =
(d+ 1)2

(d+ 2)(n+ d)
,

pm =
(d+ 1)n(n− 1)

(n+ d)(n+ nd− d)
,

pn−1 = 0,

pn =
1

(d+ 2)(n+ nd− d)
,

so that

Pr[X1 + . . . Xn ≥ (n+ d)p] = 1− (d+ 1)2

(d+ 2)(n+ d)
.

4.6 (Large k)-wise Independence

4.6.1 Preliminaries

We state some fundamental results in probability theory that we will need to use in

our next result. The first gives a guarantee on how close a sum of independent random

variables is to a normal distribution.

Theorem 4.6.1 (Berry-Esseen Theorem). Let X1, . . . , Xn be independent random vari-

ables with E[Xi] = 0 for all i, σ2 =
∑n

i=1 E[X2
i ], and ρ =

∑n
i=1 E[|Xi|3]. Let Z =
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(X1 + . . . Xn)/σ with cumulative distribution function F (x). Then

|F (x)− Φ(x)| ≤ ρ

σ3
for all x ∈ R,

where Φ(x) refers to the cdf of the standard normal.

We will apply this theorem to what is sometimes called a Poisson binomial random

variable. Let Y1, . . . , Yn be independent Bernoulli random variables with respective

means p1, . . . , pn. Let Y =
∑n

i=1 Yi, µ = E[Y ], and σ2 = Var[Y ].

Corollary 4.6.2. For Y as above, let Z = (Y − µ)/σ with cumulative distribution

function F (x). Then

|F (x)− Φ(x)| ≤ 1

σ
for all x ∈ R.

Proof. This follows immediately from the Berry-Esseen Theorem, given that

n∑
i=1

E[|Yi − pi|3] =

n∑
i=1

pi(1− pi)|1− 2pi| ≤
n∑
i=1

pi(1− pi) = σ2.

We will also use some standard Chernoff bounds, the appendix of [2] being a good

reference for these. First a lower tail bound:

Theorem 4.6.3. Let Y be a sum of independent Bernoulli random variables with

E[Y ] = µ > 0. Then for a > 0,

Pr[Y < µ− a] < e−a
2/2µ.

And we use the following upper tail bound:

Theorem 4.6.4. Let Y be a sum of independent Bernoulli random variables with

E[Y ] = µ > 0. For ε > 0,

Pr[Y > (1 + ε)µ] ≤
(
eε(1 + ε)−(1+ε)

)µ
.

We state and prove a couple of simple facts relating to the efficacy of the previous

bound. Neither should be suprising.
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Lemma 4.6.5. Let Y be a sum of independent Bernoulli random variables with E[Y ] =

µ > 0. For a constant a > 0, if we use the above bound, then

Pr[Y > µ+ a] ≤ ea(
1 + a

µ

)µ+a .
The right-hand side is nondecreasing in µ.

Proof. It suffices to show that the function

f(x) = (1 + ax−1)x+a

is nonincreasing for x > 0. We do this by showing
(

log f(x)
)′ ≤ 0 for x > 0.

(log(f(x)))′ =
(
(x+ a) log(1 + ax−1)

)′
= log(1 + ax−1)− ax−1 ≤ 0.

However, if we scale the deviation by
√
µ, the bound is better for larger µ. In-

tuitively, as Y moves from being Poisson-like to more like a normal distribution, this

upper tail bound improves.

Lemma 4.6.6. Let Y be a sum of independent Bernoulli random variables with E[Y ] =

µ > 0. By the above bound, we know that for a constant a,

Pr[Y ≥ µ+ a
√
µ] ≤ ea

√
µ(

1 + aµ−1/2
)µ+a√µ .

For any a > 0, the righthand side is nonincreasing in µ.

Proof. Clearly it suffices to show that the function

f(x) =
eax

(1 + ax−1)ax+x2

is nonincreasing for x > 0. We will do so by showing that
(
log f(x)

)′ ≤ 0 for x > 0.

(log(f(x)))′ =
(
ax− (ax+ x2) log(1 + ax−1)

)′
= 2a− (a+ 2x) log(1 + ax−1).
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By a bound on the logarithm given in [14], since ax−1 > 0,

(a+ 2x) log(1 + ax−1) ≥ (a+ 2x)
2ax−1

2 + ax−1

= 2a,

so we are done.

4.6.2 Proof of Theorem 1.2.8

We state it again for convenience.

Theorem 4.6.7. Let 0 < ε ≤ 1/16 and 0 < a < 1. There exists an integer K := K(ε, a)

such that if X = (X1, . . . , Xn) is a K-wise independent collection of Bernoulli random

variables with respective means given by p = (p1, . . . , pn), where pi ≤ 1 − a for all i,

then

Pr

[
X1 + . . .+Xn <

n∑
i=1

pi + 1

]
≥ 1

e
− ε.

Proof. Without loss of generality, assume ε = 2−i where i ≥ 4, and for this proof, let

log refer to log2. Let K be an integer at least (1/a)(1/ε)6500/
√
a. We can assume that

n > K, because otherwise Theorem 4.1.4 would hold. With a fixed p, let I refer to the

fully independent distribution on {0, 1}n with marginal probabilities given by p, and

let D refer to any such distribution which is K-wise independent. Let µ =
∑n

1=1 pi.

We prove something slightly more general by letting the deviation δ ≥ 0 be any

small constant. Let h(t) = 1{t≥0}(t). Let f = fp : {0, 1}n → {0, 1} be the linear

threshold function

f(x) = fp(x) = h
(
x1 + . . .+ xn − (µ+ δ)

)
.

We point out that

h
(
x1 + . . .+ xn − (µ+ δ)

)
= h

(
x1 + . . .+ xn − dµ+ δe)

)
,

so we can assume that (µ + δ) is a positive integer. Note that for each respective

distribution,

E[f(X)] = Pr[f(X) = 1] = Pr[X1 + . . .+Xn ≥ µ+ δ].
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By Theorem 4.1.4, it will be sufficient to show that

EX∼D[f(X)]− EX∼I [f(X)] ≤ ε. (4.12)

We show the existence of a polynomial Q : {0, 1}n → R of degree at most K such that

• Q(x) ≥ f(x) for all x ∈ {0, 1}n and

• EI [Q(x)− f(x)] ≤ ε.

Inequality (4.12) then easily follows:

ED[f(X)] ≤ ED[Q(X)] = EI [Q(X)] ≤ EI [f(X)] + ε.

Let B = B(ε) be a (large) parameter depending on ε to be specified later, and

D = 1500 log

(
1

ε

)
B + 2 < 1600 log

(
1

ε

)
B.

The work done in [5] implies the existence of a univariate polynomial P of degree at

most D with the following properties (see the remark following this proof for details):

1. P (t) ≥ h(t) for all t ∈ R;

2. P (t) ∈ [h(t), h(t) + ε/2] for t ∈ [−1/2,−1/B] ∪ [0, 1/2];

3. P (t) ∈ [0, 1 + ε/2] for t ∈ (−1/B, 0);

4. |P (t)| ≤ (4t)D for all |t| ≥ 1/2,

To summarize properties 2 and 3, the polynomial is close to h within [−1/2, 1/2] except

for a small interval in the middle where it must increase from near 0 to near 1.

Let X =
∑n

i=1Xi and σ2 = Var[X] =
∑n

i=1 pi(1 − pi). Let s = max{σ, 8/ε}.

Finally, let t(x) =

∑n
i=1 xi − (µ+ δ)

(ε/8)sB
and Q(x) = P (t(x)). Note that by property 1

above, Q(x) ≥ f(x) and Q is a polynomial of degree D. As done in [5], to show Q

satisfies inequality (1), we will condition on three events:

A1 := t(x) ∈ (−1/B, 0)

A2 := t(x) ∈ [−1/2,−1/B] ∪ [0, 1/2]

A3 := t(x) ∈ (−∞,−1/2) ∪ (1/2,∞)
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Then

E[Q(x)− f(x)] =
3∑
i=1

E[Q(x)− f(x) | Ai] Pr[Ai],

and we will bound each of the three terms on the righthand side.

Term 1: In this interval where P makes the necessary jump, the difference between

the functions could be rather high, so we will need to show that Pr[A1] is small. Note

that

Pr[A1] = Pr
[
X − (µ+ δ) ∈

(
−εs

8
, 0
)]
.

If s = 8/ε, then we have

Pr[A1] = Pr [X − (µ+ δ) ∈ (−1, 0)] = 0,

since X − (µ+ δ) can only be an integer. So we can assume that s = σ. In that case,

we use the Berry-Esseen Theorem (specifically, Corollary 4.6.2). Let Z = X−µ
σ and F

be the cdf of Z.

Pr[A1] = Pr

[
Z ∈

(
−ε

8
+
δ

σ
,
δ

σ

)]
= F

(
δ

σ

)
− F

(
−ε

8
+
δ

σ

)
≤ Φ

(
δ

σ

)
− Φ

(
−ε

8
+
δ

σ

)
+

2

σ

≤ ε

8
+
ε

4
=

3ε

8
,

since σ ≥ 8/ε. Thus the first term

E[Q(x)− f(x) | A1] Pr[A1] ≤
(

1 +
ε

2

) 3ε

8
<

7ε

16
,

given our earlier declaration that ε < 1/16.

Term 2: This is by far the easiest term to bound, as the error in this region is

small:

E[Q(x)− f(x) | A2] Pr[A2] ≤ E[Q(x)− f(x) | A2]

= E[P (t)− h(t) | t ∈ [−1/2,−1/B] ∪ [0, 1/2]]

≤ ε

2
,
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by property (2) of the polynomial P.

Term 3: Here the large error will be offset by the small probability of the event.

For each positive integer j, define

I+j =

[
j

2
,
j + 1

2

)
and

I−j =

(
−j + 1

2
,− j

2

]
.

Then

E[Q(x)− f(x) | A3] Pr[A3] =
∞∑
j=1

E[Q(x)− f(x) | t(x) ∈ I+j ] Pr[t(x) ∈ I+j ]

+

∞∑
k=1

E[Q(x)− f(x) | t(x) ∈ I−k ] Pr[t(x) ∈ I−k ]

Let S1 and S2 be the first and second respective sums above. We first focus on S1.

Note that Q(x) = P (t(x)) ≤ (4t(x))D, so when t(x) ∈ I+j , t(x) < (j + 1)/2, and

Q(x) < (2j + 2)D. Therefore

E[Q(x)− f(x) | t(x) ∈ I+j ] ≤ (2j + 2)D − 1 < (2j + 2)D.

Now we must bound the probabilities of these events.

Pr[t(x) ∈ I+j ] ≤ Pr[t(x) ≥ j/2]

= Pr

[
X − (µ+ δ)

(ε/8)Bs
≥ j

2

]
≤ Pr

[
X ≥ µ+

εBsj

16

]
= Pr

[
X ≥ µ

(
1 +

εBsj

16µ

)]
≤ e(εBsj/16)

(
1 +

εBsj

16µ

)−(µ+εBsj/16)
First, consider s = 8/ε. Then

Pr[t(x) ∈ I+j ] ≤ e(Bj/2)
(

1 +
Bj

2µ

)−(µ+Bj/2)
,

and the right-hand side increases as µ increases, by Lemma 4.6.5. We now find an

upper bound for µ. By the upper bound on the marginal probabilities,

µ =
n∑
i=1

pi ≤
1

a

n∑
i=1

pi(1− pi) =
1

a
σ2 ≤ 1

a

(
8

ε

)2

.
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This implies that for s = 8/ε,

Pr[t(x) ∈ I+j ] ≤ e(Bj/2)
(

1 +
aε2Bj

128

)−(64/aε2+Bj/2)
≤
(

128e

aε2Bj

)Bj/2
.

Together,

S1 =
∞∑
j=1

E[Q(x)− f(x) | t(x) ∈ I+j ] · Pr[t(x) ∈ I+j ]

<
∞∑
j=1

(2j + 2)D
(

128e

aε2Bj

)Bj/2

≤
∞∑
j=1

(2j + 2)1600 log(ε
−1)B

(
128e

aε2Bj

)Bj/2

=
∞∑
j=1

(
128e(2j + 2)3200j

−1 log(ε−1)

aε2Bj

)Bj/2

≤
∞∑
j=1

(
128e · 43200 log(ε−1)

aε2Bj

)Bj/2

=

∞∑
j=1

(
128e · (1/ε)6400

aε2Bj

)Bj/2
.

If s = σ > 8/ε, then since µ ≤ σ2/a,

Pr[t(x) ∈ I+j ] ≤ Pr

[
X ≥ µ+

εBσj

16

]
≤ Pr

[
X ≥ µ+

εB
√
aj

16

√
µ

]
For the latter bound, we use Lemma 4.6.6 and the fact that

µ =

n∑
i=1

pi ≥
n∑
i=1

pi(1− pi) = σ2 >
64

ε2
.

Then in this case,

Pr[t(x) ∈ I+j ] ≤ Pr

[
X ≥ µ+

εB
√
aj

16

√
µ

]
≤ e(

√
aBj/2)

(
1 +

√
aε2Bj

128

)−(64/ε2+√aBj/2)
≤
(

128e√
aε2Bj

)√aBj/2
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Thus for σ > 8/ε,

S1 =

∞∑
j=1

E[Q(x)− f(x) | t(x) ∈ I+j ] · Pr[t(x) ∈ I+j ]

≤
∞∑
j=1

(2j + 2)1600 log(ε
−1)B

(
128e√
aε2Bj

)√aBj/2

=
∞∑
j=1

(
128e(2j + 2)3200j

−1 log(ε−1)/
√
a

√
aε2Bj

)√aBj/2

≤
∞∑
j=1

(
128e · 43200 log(ε−1)/

√
a

√
aε2Bj

)√aBj/2

=

∞∑
j=1

(
128e · (1/ε)6400/

√
a

√
aε2Bj

)√aBj/2
.

Now we choose B to be an integer greater than (400/a)(1/ε)6402/
√
a. Then in either

case,

S1 <

∞∑
j=1

(
128e

400j

)Bj/2
� ε

32
.

For the other side, we have

E[Q(x)− f(x) | t(x) ∈ I−j ] ≤ (2j + 2)D ≤ e2jD,

and we use a lower tail bound:

Pr[t(x) ∈ I−j ] ≤ Pr[t(x) ≤ −j/2]

= Pr

[
X − (µ+ δ)

(ε/8)Bs
≤ −j

2

]
= Pr

[
X ≤ µ+ δ − εBsj

16

]
≤ Pr

[
X ≤ µ− εBsj

32

]
≤ e−ε2B2s2j2/64µ.
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Together, we have no trouble bounding this sum:

S2 =

∞∑
k=1

E[Q(x)− f(x) | t(x) ∈ I−k ] Pr[t(x) ∈ I−k ]

≤
∞∑
k=1

e2jDe−ε
2B2s2j2/64µ

≤
∞∑
k=1

e3200 log(ε
−1)Bje−ε

2B2s2j2/64µ

=

∞∑
k=1

exp
(
Bj(3200 log(ε−1)− ε2Bs2j/64µ)

)
≤
∞∑
k=1

exp
(
Bj(3200 log(ε−1)− ε2Bσ2j/64µ)

)
≤
∞∑
k=1

exp
(
Bj(3200 log(ε−1)− aε2Bj/64)

)
≤
∞∑
k=1

exp
(
Bj(3200 log(ε−1)− 6j/ε6400)

)
� ε

32
.

Thus, for term 3,

E[Q(x)− f(x) | A3] Pr[A3] = S1 + S2 ≤
ε

16
.

All together,

E[Q(x)− f(x)] =
3∑
i=1

E[Q(x)− f(x) | Ai] Pr[Ai]

≤ 7ε

16
+
ε

2
+

ε

16
= ε.

The proof is now complete, since ε ≤ 1/16 implies that

D ≤ 1600 log(1/ε)B ≤ 1600 log(1/ε)(400/a)(1/ε)6402/
√
a ≤ (1/a)(1/ε)6500/

√
a ≤ K.

Remarks on the polynomial P: Letting P ′ be the polynomial described in [5], our

P = (P ′ + 1)/2, since we choose to have our boolean functions map to {0, 1} rather

than {−1, 1}. Using their notation, we set c = 200. Regarding their value a, we let

B = 1/2a, and for our purposes we make this parameter much larger. This effectively

trades a tighter jump from 0 to 1 at the cost of a larger degree.
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