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What is Experimental Mathematics?

“Mathematics is not a deductive science – that’s a cliché. When
you try to prove a theorem, you don’t just list the hypotheses and
then start to reason. What you do is trial and error,
experimentation, guesswork. You want to find out what the facts
are, and what you do is in that respect similar to what a laboratory
technician does, but it is different in its degree of precision and
information. Possibly philosophers would look on us
mathematicians the same way as we look on the technicians, if
they dared.” -Paul Halmos
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What is Experimental Mathematics?

“Then, about 2300 years ago came a fellow called Euclid, and
Euclid ruined mathematics by turning it into a deductive science.”

- Doron Zeilberger
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What is Experimental Mathematics?

What are the fundamental principles of experimentation which
underlie the scientific method? The scientist

▶ Observes some interesting phenomenon

▶ Wonders what causes it and starts to reason why it is so

▶ States a hypothesis

▶ Designs an experiment with which they obtain evidence

▶ Notes that the hypothesis is supported or refuted

▶ Refines and repeats

If all goes well, a satisfactory explanation for the observed
phenomenon eventually becomes a first-author paper, a Theory, or
possibly even a Law.
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What is Experimental Mathematics?

The experimental mathematician follows a similar path. We
observe some mathematical phenomenon and wonder what causes
it. We program our computers to generate as many cases as
possible. Sometimes, this first round of results is enough for us to
see what is going on. Other times, we need to rely on the
computer to help us analyze its own output. We may need to
iterate through several generations of code to achieve the
necessary efficiency. But eventually, if all goes well, we have a
pattern, an explanation, a conjecture, a theorem...

Experimental Mathematics Techniques for Boolean Functions and Combinatorial Games - Blair Seidler - August 14, 2023



Introduction Boolean Functions Subcubes Juniper Green Conclusion

Overview

Today’s presentation includes three projects:

▶ Minimal Circuits for Boolean Functions of Few Variables

▶ Statistics on Subcubes of the Discrete n-Cube

▶ Combinatorial Game - Juniper Green

In each case, the objects being studied exhibit exponential growth
in some fashion, rendering brute force enumeration powerless at a
relatively early stage.

We use the Overlapping Stages technique described by Zeilberger
in 2004 to mitigate the exponential growth.
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Overlapping Stages

We first write programs which directly encode the definitions of
the objects we are studying. These programs are generally quite
slow and are only able to compute the smallest cases of the
problem, but they have the advantage of being relatively easy to
check for accuracy. We then

▶ Find some pruning technique or symmetry consideration

▶ Write a (hopefully) faster program

▶ Check that the smaller cases match those generated by the
previous stage

▶ Repeat until we have enough data or run out of optimizations
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Boolean Functions

Let K = {false, true}. Then f : Kn → K is a Boolean function.

In practice, K can be any two-element set. The most common
choice is K = {0, 1}. For reasons which will become clear in a
moment, we use K = {−1, 1} in our Maple implementation.
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Why use K = {−1, 1}?

The reason that we use {−1, 1} is for ease of referencing subcubes.

This is the standard Hamming cube for K 3
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Why use K = {−1, 1}?

The reason that we use {−1, 1} is for ease of referencing subcubes.

This is the standard Hamming cube for K 3

In much of the literature, the 1-dimensional subcube highlighted in
red is written as (1, ∗, 0), (1,−, 0) or (1,B, 0).
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Why use K = {−1, 1}?

The reason that we use {−1, 1} is for ease of referencing subcubes.

If we instead label this cube with K = {−1, 1}

The 1-dimensional subcube highlighted in red is written as
(1, 0,−1), which we represent in Maple as [1, 0,−1].
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Why use K = {−1, 1}?

The reason that we use {−1, 1} is for ease of referencing subcubes.

If we instead label this cube with K = {−1, 1}

We can write the 2-dimensional subcube highlighted in red as
(1, 0, 0), which we represent in Maple as [1, 0, 0].
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Representing Boolean Functions

True points in Hamming cube:
Boolean circuit:

Set of true points: {[1,−1, 1], [1, 1,−1], [1, 1, 1]}

DNF: x1x2x3 ∨ x1x2x3 ∨ x1x2x3

Reduced expression: x1 ∧ (x2 ∨ x3)
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Straight-Line Programs - Definition

We use Straight-Line Programs as our model for Boolean circuits.
These are programs with no control structures (loops, branches,
etc.). Each line is of the form yi =< expression >, and the output
of the program is the output of the last line.

We allow a gate to be any of the 10 functions on two variables
which depend on both inputs. Other line types handle reading the
input and special cases for degenerate functions.

Experimental Mathematics Techniques for Boolean Functions and Combinatorial Games - Blair Seidler - August 14, 2023



Introduction Boolean Functions Subcubes Juniper Green Conclusion

Straight-Line Programs - Gate Types

Line format Function Context

[1, i , j ] Sets yk = yi ∧ yj On line k with i , j < k
[2, i , j ] Sets yk = yi ∧ ¬yj On line k with i , j < k
[3, i , j ] Sets yk = ¬yi ∧ yj On line k with i , j < k
[4, i , j ] Sets yk = yi ⊕ yj On line k with i , j < k
[5, i , j ] Sets yk = yi ∨ yj On line k with i , j < k
[6, i , j ] Sets yk = ¬yi ∧ ¬yj On line k with i , j < k
[7, i , j ] Sets yk = yi ≡ yj On line k with i , j < k
[8, i , j ] Sets yk = yi ∨ ¬yj On line k with i , j < k
[9, i , j ] Sets yk = ¬yi ∨ yj On line k with i , j < k
[10, i , j ] Sets yk = ¬yi ∨ ¬yj On line k with i , j < k
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Straight-Line Programs - Gate Types

Line format Function Context

[i ] Sets yi = xi Appears on line i
[i ] Outputs yi (= xi ) After line i (only for 0-gate fns)

[NOT , i ] Outputs ¬yi (= ¬xi ) After line i (only for 0-gate fns)
[TRUE ] Outputs 1 Last line of constant function
[FALSE ] Outputs −1 Last line of constant function
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Straight-Line Programs - Example

So, how would we construct a straight-line program for our earlier
circuit example on input [x1, x2, x3]?

Straight-line program:

y1 = x1
y2 = x2
y3 = x3
y4 = y2 ∨ y3
y5 = y1 ∧ y4

Read Inputs

OR gate
AND gate

In Maple, we write this program as: [[1], [2], [3], [5, 2, 3], [1, 1, 4]]
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Big Equivalence Classes

We would like to define equivalence classes of functions so we can
look for fewer circuits. There are several ways to accomplish this,
but we use the scheme from Tilman Piesk’s webpage “Equivalence
classes of Boolean functions”.

A big equivalence class is a set of Boolean functions which are
equivalent under some signed permutation of the input variables.
(e.g. if f (x1, x2, x3) = g(¬x2, x3,¬x1) for all x ∈ K 3, then f and g
are in the same BEC.)

Experimental Mathematics Techniques for Boolean Functions and Combinatorial Games - Blair Seidler - August 14, 2023



Introduction Boolean Functions Subcubes Juniper Green Conclusion

Big Equivalence Classes

We use BEC’s to reduce the number of functions we need to
consider. The number of Boolean functions on n variables is
{4, 16, 256, 65536, 4294967296} for 1 ≤ n ≤ 5.

The number of BEC’s (OEIS sequence A000616) is
{3, 6, 22, 402, 1228158} for 1 ≤ n ≤ 5.

Searching for over a million 5 variable functions is not feasible, but
for the 4 variable functions 402 is a much more manageable
number than 65, 536.
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Big Equivalence Classes

Once we have a circuit for one member of a BEC, it is relatively
simple to convert that circuit to accept a different function of the
BEC given the signed permutation which maps one to the other.
We leave the structure of the gates intact.

If the variables are permuted by σ : [n] → [n], we just switch any
gate input i ∈ [n] to σ(i).

If a variable is negated by the signed permutation, we just change
the type of any gate to which it is an input (e.g. if an XOR (type
4) gate has one of its inputs negated, change the gate type to
EQUIV).
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Assigning Integers to Boolean Functions

In order to take advantage of BEC’s, we need a way to choose a
canonical representative of each class. There are 22

n
functions on

n variables, so numbering them from 0 to 22
n − 1 seems natural.

We again follow Piesk, using his numbering scheme and choosing
the lowest numbered element of each BEC as the canonical
representative. These representatives are listed in OEIS sequence
A227723. The next slide shows the numbering scheme for 2
variable functions.

Experimental Mathematics Techniques for Boolean Functions and Combinatorial Games - Blair Seidler - August 14, 2023



Introduction Boolean Functions Subcubes Juniper Green Conclusion

Assigning Integers to Boolean Functions

Input f0 f1 f2 f3 f4 f5 f6 f7
{−1,−1} -1 -1 -1 -1 -1 -1 -1 -1
{−1, 1} -1 -1 -1 -1 1 1 1 1
{1,−1} -1 -1 1 1 -1 -1 1 1
{1, 1} -1 1 -1 1 -1 1 -1 1

Input f8 f9 f10 f11 f12 f13 f14 f15
{−1,−1} 1 1 1 1 1 1 1 1
{−1, 1} -1 -1 -1 -1 1 1 1 1
{1,−1} -1 -1 1 1 -1 -1 1 1
{1, 1} -1 1 -1 1 -1 1 -1 1
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Straight-Line Programs - Number of Circuits

So how big is the haystack? For example, with 4 variables and 7
gates, how many syntactically valid SLP’s are there?

For each gate, we have 10 choices for the gate type, and each
input can be chosen from every line number smaller than the
current one, so we have:

10∏
i=4

10i2 ≈ 3.66× 1018 valid programs.

Obviously, we will need to reduce the size of the haystack to have
any hope at searching through it. We employ several pruning
techniques to accomplish this task.
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Reducing Number of SLP’s

The most obvious optimization is to eliminate any circuit where
the output of a gate is unused. Our recursive algorithm for
generating cicuits takes care of that by generating the final gate
and then creating one (possibly empty) subcircuit for each input.

The next obvious step is to restrict all gates to be of the form
[g , i , j ] with i < j .

If i = j , the gate output is either constant, yi , or ¬yi . Any such
gate can be eliminated, meaning that the Boolean function could
be computed by a circuit with fewer gates.

If i > j , we can reverse the inputs and change the gate type (by
swapping types 2 ⇔ 3 or 8 ⇔ 9) if the gate is not symmetric with
respect to its inputs.
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Reducing Number of SLP’s

A slightly less obvious simplification is to eliminate circuits and
subcircuits which are mirror images of each other. If the final gate
G (which produces the overall output of the circuit) has two inputs
representing subcircuits A and B, then there is another circuit
whose final gate has B as the first input and A as its second which
is functionally identical.

We accomplish this in our Maple code by limiting the recursive
construction of circuits. When we are building a circuit with g
gates, we only allow the first input to be a subcircuit of between 0
and ⌊(g − 1)/2⌋ gates.
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Reducing Number of SLP’s

We realized one other (admittedly minor) optimization by
restricting the inputs to any gate which has zero gates in exactly
one of its subcircuits. The input corresponding to the zero-gate
subcircuit is not allowed to match either input to the gate
producing the other input. If we permitted this situation, which we
can think of as having the child of a gate match a grandchild of
that gate, we would be able to merge the two gates into one.
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A Bridge Too Far

Our initial implementation went too far down this path in one
respect. When one or both of a gate’s subcircuits had zero gates,
we only allowed those inputs to be between 1 and n.

Why is this a problem? This has the effect of restricting the
fan-out of gates to 1, meaning that we cannot reuse the output of
a gate later. Initially, we did not think this would matter for small
circuits, but it does.
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A Bridge Too Far

In a 2006 cryptography paper, Markku-Juhani Saarinen included
the numbers of 4 variable functions with each circuit complexity.
Assuming those numbers to be accurate, some of the functions we
indentify as complexity 7 are actually complexity 6.

In theory, fixing this is easy. All we need to do is allow 0-gate
subcircuits to be any number lower than the current line number.
In practice, the number of circuits increases to an uncomfortable
number.

After allowing for gate reuse, the number of 4 variable, 6 gate
circuits is now about 42 billion, and the number of 7 gate circuits
is about 5.4 trillion.
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Circuit Complexity by BEC’s

n 0g 1g 2g 3g 4g 5g 6g 7g Total

1 3 3
2 3 3 6
3 3 3 8 5 3 22
4 3 3 8 34 59 139 130∗ 26∗ 402

The two ∗’ed entries in the table do not agree with Saarinen’s
enumeration of 4 variable functions. In a future project, we hope
to find the additional 6-gate BEC’s.
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Circuit Complexity by Functions

n 0g 1g 2g 3g 4g 5g 6g 7g Total

1 4 4
2 6 10 16
3 8 30 114 80 24 256
4 10 60 456 2474 10624 24184 24784∗ 2944∗ 65536

The two ∗’ed entries in the table do not agree with Saarinen’s
enumeration of 4 variable functions. The first two columns on that
line also disagree with Saarinen, but that is merely a difference in
definitions. Saarinen defines “NOT x1” as a gate, and we do not.
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Which Functions Are Hardest?

In the 3-variable case, there are 3 BEC’s with the maximum
complexity of 4 gates. The representative functions of these classes
are 22, 23, and 107. Function 22 is true when exactly two of the
input variables are true. Function 23 is the majority function (at
least two inputs are true). Function 107 is true when exactly one
input is true OR its first two inputs are both true.

Taking the majority function as an example, the particular SLP our
algorithm found to compute this function is
[[1], [2], [3], [4, 1, 2], [4, 1, 3], [1, 4, 5], [4, 1, 6]]. In more traditional
notation, this circuit is x1 ⊕ ((x1 ⊕ x2) ∧ (x1 ⊕ x3)). There are
certainly other ways to compute the majority function with 4
gates, but it cannot be computed with 3 or fewer gates.
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Future Work

In a future project, we hope to
find the discrepancy between our
catalog and Saarinen’s numbers.

The circuit shown at right
represents a particularly
challenging case, even with gate
reuse available. This circuit
effectively has 3 gates on each
side.
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Monotone Functions

We next turn our attention to monotone functions.

Definition: Let f be a Boolean function on Kn, and let
k ∈ {1, 2, . . . , n}. We say that f is positive (respectively, negative)
in the variable xk if f|xk=−1 ≤ f|xk=1 (respectively f|xk=−1 ≥ f|xk=1).
We say that f is monotone in xk if f is either positive or negative
in xk .

Definition: A Boolean function is positive (respectively, negative)
if it is positive (respectively, negative) in each of its variables. The
function is monotone if it is monotone in each of its variables.
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My first OEIS Sequence!

During this project, I was able to submit my first sequence
(A349743) to the OEIS. It is the subsequence of A227723
containing representatives of the big equivalence classes
representing functions which are monotone in each of their
variables.

Because of the ordering of functions in the original sequence, the
BEC representatives are actually positive functions (i.e., positive in
each of their variables). One enormous advantage of these
functions all being positive is that we only need AND and OR
gates (types 1 and 5) to represent them, so the exponential growth
of the number of circuits has a factor of 2g instead of 10g from
choice of gate types.
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Advantages of Monotone Functions

In addition to the reduction in gate types required, there are also
many fewer BEC’s of monotone functions. Specifically for n = 5,
there are 1, 228, 158 BEC’s of which only 210 represent monotone
functions.

The number of monotone BEC’s for n variables is described by the
Dedekind numbers (OEIS sequence A003182). Why the Dedekind
numbers? Because there is a bijection between antichains and
positive Boolean functions. One could specify a positive function
by choosing any antichain in the Hamming cube and letting the
function’s true points be the locus of points in Kn which are
members of the antichain with a (possibly empty) subset of the
−1’s changed to 1’s.
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Circuit Complexity by BEC’s

n 0g 1g 2g 3g 4g 5g 6g 7g Total

1 3 3
2 3 2 5
3 3 2 4 1 10
4 3 2 4 10 2 6 1 2 30
5 3 2 4 10 26 16 42 35 . . .

n 8g 9g 10g 11g 12g 13g Total

5 44 18 3 6 1 210

Again, we would like to confirm these numbers with gate reuse
available as a future project.
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Introduction

When analyzing the distribution of a combinatorial quantity or
random variable X , the statistical moments of X provide
information about the shape of the distribution.

In this project, we consider the space of all Boolean functions on n
variables. We are particularly interested in the number and sizes of
implicants contained within each Boolean function. In the
traditional view of Boolean functions, we might write a function as
f (x1, x2) = x1 ∨ x2. This function has 3 implicants containing 1
point, namely x1x2, x1x2, and x1x2. It has 2 implicants with 2
points, x1 and x2.
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Introduction

When we consider a Boolean function as the subset of points
(x1, . . . , xn) ∈ {−1, 1}n for which the function evaluates to true,
implicants are subcubes of the cube which are also subsets of the
function.

In the previous example, f would have 3 points (0-dimensional
subcubes) and 2 edges (1-dimensional subcubes) contained in the
2-dimensional cube.

We will primarily use the subset and subcube terminology
throughout the remainder of this discussion, setting aside that our
interest in these objects originally stemmed from the Boolean
function interpretation.
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Prior Work

Thanatipanonda (2020) uses linearity of expectation and a
variation of inclusion-exclusion. He first enumerates all of the
combinations of r -subcubes of size k , arranging them by how the
subcubes overlap. For example, in the case of k = 2 and r = 1, we
are considering pairs of edges. Two edges can be disjoint, overlap
at a point, or coincide.

Using inclusion-exclusion to determine the number of each such
type permits a calculation of the moment (in this example E[X 2

1 ])
by linearity of expectation.
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Prior Work

Thanatipanonda produces general formulas for the first two
moments of r -dimensional subcubes in functions of n variables.

E[X ] =

(nr)2
n−r∑

i=1

E [Xi ] =

(
n

r

)
2n−r · 1

22r

E[X 2] =
r∑

i=0

( n
i ,r−i ,r−i ,n−2r+i

)
2n−i

22r+1 ·
(
22

i − 1
)
+

[(n
r

)
2n−r

]2
22r+1

He also provides a calculation of the third moment for edges.
The number of ways the subcubes can overlap grows too quickly
for this method to remain practical beyond the third moment.
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Data Structure

Every r -dimensional subcube of {0, 1}n has the form

C = {(x1, . . . , xn) ∈ {0, 1}n | xi1 = αi1 , . . . , xin−r = αin−r },

for some 1 ≤ i1 < · · · < in−r ≤ n, (αi1 , . . . αin−r ) ∈ {0, 1}n−r .

We use row vectors of length n, in the alphabet {0, 1, ∗} to
represent subcubes, where ∗ is a wild card. For example, if n = 7

and r = 3, the 3-dimensional cube

{(x1, . . . , x7) ∈ {0, 1}7 | x2 = 1, x4 = 1, x5 = 0, x7 = 1},

is represented by ∗1 ∗ 10 ∗ 1.
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Data Structure

We are trying to find a weighted count of ordered k-tuples of
r -dimensional subcubes. The natural data structure for these is the
set of k by n matrices in the alphabet {0, 1, ∗} where every row
has exactly r wildcards.

For any specific, numeric n, there are (2n−r
(n
r

)
)k of these matrices,

and for each and every one of them one can find the cardinality of
the union of the corresponding subcubes, let’s call it v , and add to
the running sum 1/2v .

By Linearity of Expectation, this sum is the moment E[X k
r ].
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Kernels and Remainders

A key object in our approach is the kernel. Given a k × n matrix
M in the alphabet {0, 1, ∗}, we call a column active if it contains
at least one ‘∗’. Note that the matrix has exactly k · r ‘∗’s, hence
the number of active columns, say a, is between r and k · r .

We will say that a matrix is in canonical form if the active
columns are occupied by the a leftmost columns (i.e. its kernel is
contiguous starting in the first column). Obviously, there are

(n
a

)
ways to choose which of the n columns are active, therefore we can
compute the contribution to the expectation for the set of matrices
in canonical form and multiply by

(n
a

)
.
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Kernels and Remainders

We then do a weighted-count, where every matrix gets ‘credit’
1/2v , where v is the cardinality of the union of the subcubes
represented by the k rows, for the set of matrices in canonical
form. Note that there are only finitely many choices for the a
leftmost columns.

We divide these into equivalence classes obtained by permuting
rows and columns and transposing 0 and 1 in any given column.
For each equivalence classes, we examine a representative and
multiply the weight by the cardinality of the class.
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Kernels and Remainders

But what about the n − a rightmost columns? We refer to these
submatrices as remainders. There are 2k(n−a) possible submatrices;
there are no wildcards in this region, so the alphabet here is {0, 1}.
Almost all of these have distinct rows, more precisely,(

2n−a

k

)
k!

of them, and these will produce the smallest possible weight in
conjunction with any kernel.

The other extreme is that all the rows of the remainder are
identical, and then there are only 2n−a choices to fill them in.
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Kernels and Remainders

Now for each a and for each set-partition,our Maple code generates
the finite set of k × a matrices in the alphabet {0, 1, ∗}. Each of
the members of the set partition has its own submatrix, and we ask
our computer to find the number of vertices in the corresponding
union of subcubes corresponding to each member of the examined
set partition. Since they are disjoint, we add them up, getting v
for that particular pair (matrix, set-partition), giving credit 1/2v .
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Moments of Numbers of 1-dimensional Subcubes

Fourth (raw) moment for edges:

E[X 4
1 ] =

1

4096
(n424n + 24n423n + 144n422n + 160n42n + 12n323n

+ 48n322n − 192n32n + 12n222n + 48n22n − 64n2n)

Fourth central moment for edges:

E[(X1 − µ1)
4] =

1

1024
(40n42n − 48n32n + 12n22n − 16n2n + 12n422n

+ 12n322n + 3n222n)
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Moments of Numbers of 1-dimensional Subcubes

Fifth (raw) moment for edges:

E[X 5
1 ] =

n22n

32768
(n324n + 40n323n + 480n322n + 1760n32n + 640n3

+ 20n223n + 240n222n − 480n22n − 3840n2

+ 60n22n + 240n2n + 1280n − 320 · 2n)

Fifth central moment for edges:

E[(X1 − µ1)
5] =

5n32n

1024

(
6n22n + 4n2 + 3n2n − 24n + 8

)
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Moments of Numbers of 1-dimensional Subcubes

Sixth (raw) moment for edges:

E[X 6
1 ] =

n2n

262144
(n525n + 60n524n + 1200n523n + 9120n522n + 19200n52n

− 14336n5 + 30n424n + 720n423n + 1440n422n − 29760n42n

− 42240n4 + 180n323n + 1440n322n + 4800n32n + 30720n3

− 840n222n − 2400n22n + 30720n2 − 1920n2n

− 53760n + 38912)
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Moments of Numbers of 1-dimensional Subcubes

Sixth central moment for edges:

E[(X1−µ1)
6] =

n2n

32768
·
(
120n522n + 1920n52n − 1792n5 − 840n42n + 180n422n

− 5280n4 + 90n322n − 360n32n + 3840n3 + 15n222n

− 300n22n + 3840n2 − 240n2n − 6720n + 4864
)
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Moments of Numbers of 1-dimensional Subcubes

From these moments, it follows that as n approaches infinity, the
third through sixth scaled moments about the mean converge to 0,
3, 0, and 15 respectively. This suggests that the random variable
X1 is asymptotically normal.

Urszula Konieczna (1993) proved the asymptotic normality of Xr

in the more general case where each subcube appears with
probability p ∈ (0, 1).

Our approach inspied a new proof of this particular case by Svante
Janson (2023) in a joint paper with S. and Zeilberger.
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Moments of Numbers of 2-dimensional Subcubes

Third (raw) moment for squares:

E[X 3
2 ] =

n(n − 1)2n

2097152
(n422n + 48n42n + 576n4 − 2n322n + 384n3

+ n222n + 24n22n + 1344n2 − 72n2n

− 1024n − 2176)

Third central moment for squares:

E[(X2 − µ2)
3] =

n (n − 1) 2n

32768

(
9n4 + 6n3 + 21n2 − 16n − 34

)
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Moments of Numbers of 2-dimensional Subcubes

Fourth (raw) moment for squares:

E[X 4
2 ] =

n(n − 1)2n

268435456
(n623n + 96n622n + 3072n62n + 33280n6 − 3n523n

− 96n522n − 1536n5 + 3n423n + 48n422n + 5376n42n

+ 81408n4 − n323n − 192n322n − 10240n32n

− 53760n3 + 144n222n − 5184n22n − 334848n2

+ 6976n2n − 177152n + 15360)
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Moments of Numbers of 2-dimensional Subcubes

Fourth central moment for squares:

E[(X2 − µ2)
4] =

n (n − 1) 2n

4194304
·
(
12n62n + 520n6 + 12n52n − 24n5 + 24n42n

+ 1272n4 − 12n32n − 840n3 − 9n22n

− 27n2n − 5232n2 − 2768n + 240
)

Experimental Mathematics Techniques for Boolean Functions and Combinatorial Games - Blair Seidler - August 14, 2023



Introduction Boolean Functions Subcubes Juniper Green Conclusion

Moments of Numbers of 3-dimensional Subcubes

Third (raw) moment for cubes:

E[X 3
3 ] =

n(n − 1)(n − 2)2n

1855425871872
(n622n + 192n62n + 10752n6 − 6n522n − 288n52n

+ 18432n5 + 13n422n + 3360n42n + 367872n4

− 12n322n + 6480n32n + 1571328n3

+ 4n222n − 44592n22n + 5206272n2

+ 34848n2n + 11860992n − 17750016)
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Moments of Numbers of 3-dimensional Subcubes

Third central moment for cubes:

E[(X3 − µ3)
3] =

n(n − 1)(n − 2)2n

2415919104
(14n6 + 24n5 + 479n4 + 2046n3

+ 6779n2 + 15444− 23112)
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Mixed Moments

We also compute a number of mixed moments, such as E [X1X2].
These moments are of interest because they provide insight into
the correlation between the presence of subcubes of different sizes.

The first method for producing these mixed moments is the brute
force enumeration of functions. As in previous cases, this is only
feasible up to n = 4. Using the Maple program we use to generate
the moments previously discussed, we can generate mixed
moments up to 10-dimensional subcubes.
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Mixed Moments

The first six mixed moments are:

E[X0X1] =
n2n

16
(2n + 2)

E[X0X2] =
n(n − 1)2n

256
(2n + 4)

E[X0X3] =
n(n − 1)(n − 2)2n

24576
(2n + 8)

E[X1X2] =
n(n − 1)2n

1024
(n2n + 8n + 8)

E[X1X3] =
n(n − 1)(n − 2)2n

98304
(n2n + 16n + 24)

E[X2X3] =
n(n − 1)(n − 2)2n

1572864
(n22n − n2n + 32n2 + 64n + 240)
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Mixed Moments

We generalize Thanatipanonda’s formula for second moments to
the case of the mixed moment E[XrXs ] as follows:

E[XrXs ] =

min(r ,s)∑
i=0

2r+s−2i

(
n

i , r − i , s − i , n − r − s + i

)
2n−r−s+i

22r+2s−2i
+

Rest

22r+2s
=

min(r ,s)∑
i=0

( n
i ,r−i ,s−i ,n−r−s+i

)
2n−i

22r+2s
·
(
22

i − 1
)
+

(n
r

)
2n−r

(n
s

)
2n−s

22r+2s

where Rest =(
n

r

)
2n−r

(
n

s

)
2n−s −

min(r ,s)∑
i=0

(
n

i , r − i , s − i , n − r − s + i

)
2n−i .
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Mixed Moments

As suggested in Thanatipanonda’s original paper, we can think of
the i in the summation as the dimension of the intersection
between two subcubes. This intersection can be no larger than
min(r , s). The multinomial coefficient represents the number of
ways to select the i columns with wildcards in both rows, r − i and
s − i columns with a wildcard in one row but not the other, and
n − r − s + i columns with no wildcards.

This generalized formula computes mixed moments more efficiently
than generating the matrices. We are now able to compute mixed
moments up to E[X19X20].
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Correlations

Recall that the correlation of two random variables X ,Y is:

Cor(X ,Y ) =
E[XY ]− E[X ]E[Y ]√

(E[X 2]− E[X ]2) (E[Y 2]− E[Y ]2)

Now, having the ability to calculate mixed moments lets us find
correlations. It certainly seems reasonable that the correlation
between any two sizes of subcube should approach 1 as n → ∞,
since functions with more edges will also have more squares, etc. It
seems natural to wonder how quickly the correlations approach 1.
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Correlations

Cor(X1,X2) = 1− 1

4n
− 37

32n2
+

131

128n3
+

115

2048n4
− 10543

8192n5
+ O

(
1

n6

)
Cor(X1,X3) = 1− 1

n
− 45

4n2
− 79

4n3
+

7595

32n4
− 21735

32n5
+ O

(
1

n6

)
Cor(X1,X4) = 1− 9

4n
− 1485

32n2
− 88509

128n3
− 78400125

2048n4

+
2327192169

8192n5
+ O

(
1

n6

)
Cor(X1,X5) = 1− 4

n
− 131

n2
− 5000

n3
− 4357195

4n4

− 8037710954

n5
+ O

(
1

n6

)
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Correlations

It is obvious that the coefficient on 1
n must be negative, since the

correlation can never exceed 1. More specifically, the coefficient of
1
n in Cor(Xr ,Xs) is always

(r−s)2

4 . The coefficients of lower order
terms are more complicated, so we find these by computing
Cor(Xr ,Xs) for as many particular pairs (r , s) as possible and
analyzing the pattern of the coefficients.

For each 1
ni
, we treat the matrix of coefficients of that term in

Cor(Xr ,Xs) as a function of r and s. We then attempt to find a
polynomial which describes that function whose degree in r
(respectively s) is at least two less than the number of rows
(respectively columns) of the coefficient matrix.

Experimental Mathematics Techniques for Boolean Functions and Combinatorial Games - Blair Seidler - August 14, 2023



Introduction Boolean Functions Subcubes Juniper Green Conclusion

Correlations

1

n
: −(r − s)2

4
1

n2
: −(r − s)2

32

(
11r2 + 26rs + 11s2 − 28r − 28s + 14

)
1

n3
: −(r − s)2

384

(
661r4 + 1388r3s + 2166r2s2 + 1388rs3 + 661s4

− 4380r3 − 9012r2s − 9012rs2 − 4380s3

+ 10078r2 + 17236rs + 10078s2

− 9600r − 9600s + 3256
)
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Correlations

We observe that for each 1
ni
, the degree of the corresponding

polynomial for its coefficients is 2i .

Each polynomial is uniformly 0 when r = s, which we expect
because Cor(Xr ,Xr ) = 1 by definition.

We also note that these polynomials are symmetric in r , s, which
must be true because Cor(Xr ,Xs) = Cor(Xs ,Xr ).
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Definitions

A combinatorial game is an open-information game without
randomness (in the form of dice or similar devices) in which any
current position of the game leads to a finite number of new
positions via a legal move by the player whose turn it is. Each
player has “perfect information” in the sense that they are aware of
the current state of the game and know what moves are available
to every player. We will generally refer to the current state of the
game as the position of the game. Frequently, the goal of the
game is to be the last player to make a legal move.
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Definitions

A combinatorial game is finite if it is guaranteed to produce a
winner after some finite sequence of moves. In particular, this
means that there can not be any cyclical sequence of moves (i.e. a
situation in which the position of the game is identical before and
after a non-zero number of moves). In some sense, this is
equivalent to saying that the space of eventually reachable
positions of the game is strictly decreasing.

Tic-tac-toe is a finite combinatorial game because each move
permanently uses one square on the board, so the total number of
moves to reach a conclusion cannot exceed the number of spaces.
Checkers is not a finite game; if each player has promoted at least
one checker to a king, those kings can move between spaces in a
manner which repeats a previous position.
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Definitions

A combinatorial game is called impartial if any move that is legal
for one player is also legal for the other.

Chess is a combinatorial game by these definitions, but it is not
impartial. All of the pieces are visible, and the possible moves for
each piece depend only on the current position, so the perfect
information requirement is met. The first player can only move the
white pieces, and the second the black, so the same moves are not
legal for both of them.
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Position Graphs

We can model a finite combinatorial game as a directed graph.
The vertices represent positions, and there is an edge from position
A to position B if and only if there is a legal move from position A
which results in position B. There is one distinguished vertex
representing the initial position of the game (e.g. the empty
tic-tac-toe board). There can be no cycles if the game is finite, but
the underlying undirected graph need not be a tree. It may be
possible for multiple sequences of moves to arrive at identical
positions.

We will use the notation N (A) = {B1,B2, . . . ,Bk} to indicate that
from position A, there are legal moves resulting in positions
B1 . . .Bk . If N (A) = ∅, there are no legal moves from that
position - the current player has lost the game.
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Position Graphs

We can classify every position as either a P-position (the player
who made the previous move achieving this position will win the
game) or an N-position (the player about to make the next move
from this position will win the game). These statements about
who will win do rely on both players choosing rationally among
their available moves. The algorithm for classifying all positions as
N or P from the directed graph is as follows:
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Position Graphs

1. Label every position V such that N (V ) = ∅ as a P-position
because the next player has no legal move and the previous
player has won.

2. For every unlabeled position W , check whether any position
in N (W ) is already labeled as a P-position. If so, label W as
an N-position because the player about to move can choose
to go to a P-position and win.

3. For every unlabeled position X , check whether every position
in N (X ) is already labeled as an N-position. If so, label X as
a P-position because every possible move for the current
player gives the opponent a winning strategy.

4. If any position remains unlabeled, repeat steps 2 and 3.
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Sprague-Grundy Values

We define the minimum excluded number of a set A, denoted
mex(A), as the smallest non-negative integer which is not an
element of A. Some examples:

mex({0, 1, 2, 3, 5, 6, 7}) = 4

mex({1, 2, 3}) = 0

mex(∅) = 0
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Sprague-Grundy Values

The Sprague-Grundy value of a position V (often called the
Grundy value) is defined recursively as follows:

G(V ) =

{
0 if N (V ) = ∅
mex(N (V )) otherwise

The Sprague-Grundy value of a position V is 0 if and only if V is a
P-position. The reason for this is that the two ways that G(V ) can
be assigned the value 0 are because N (V ) = ∅ or because
mex(N (V )) = 0. In the former case, there is no legal move. In
the latter case, every legal move has a nonzero Sprague-Grundy
value, so there are no winning options for the current player.
Therefore G(V ) includes the information of whether V is a
P-postion or an N-position.
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Sprague-Grundy Values

Sprague-Grundy values also provide deeper information. One way
to see this is in the game Nim. Nim with one nonempty pile is
trivial: the current player can remove all of the objects in the pile
to win. From the definition above, a position in a single-pile Nim
game has a Sprague-Grundy value equal to the number of
objects.For single-pile Nim, the Sprague-Grundy value essentially
measures how many different mistakes the current player can make.

For Nim with more than one pile, the power of the Sprague-Grundy
value becomes apparent. We denote a position in k-pile Nim as
X = (x1, x2, . . . , xk) where xi is the number of objects remaining in

pile i . It is well-known that G(X ) =
k⊕

i=1
xi , i.e. the Sprague-Grundy

value of the position is the bitwise XOR of the pile sizes.
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Juniper Green

Juniper Green is a two-player impartial combinatorial game
invented by teacher Richard Porteous. The basic game uses a
board labeled with the integers 1 to n, with a typical value of
n = 100. The first player chooses any number on the board. The
second player then chooses any integer in [1, n] which is either a
factor or an integer multiple of the first. The players alternate
selecting a factor or multiple of the current number, but they may
not choose any number which has been selected previously.
Whichever player is left without a legal move loses.

The standard version of the game (“hard” in our Maple package),
and the one that is typically played, adds one additional rule: the
first player must select an even number.
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Direct Approach

The direct method for computing Sprague-Grundy values is with a
recursive procedure which

▶ Computes every available move from the current position P

▶ Returns 0 if N (P) = ∅
▶ Returns mex(N (P)) otherwise

This method is very slow for n > 25, as the position graph grows
exponentially with n.
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Winning Initial Positions

For the standard game, Julien Lemoine (2022) has determined
whether the first player has a winning strategy for all values of n.
He models the game as an undirected graph in which each integer
from 1 to n is represented by a vertex, and two vertices are
connected if and only if the larger number is a multiple of the
smaller number. We will refer to this as an adjacency graph to
distinguish it from a position graph.

When the next number is selected, the highlighted vertex and its
associated edges are deleted from the graph. This method
simplifies the analysis because once the graph becomes
disconnected, one need only consider the component containing
the active vertex.
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Pruning the Adjacency Graph

Lemoine also notes that a player selecting 1 loses when the
opponent next chooses a prime p > n/2. He therefore deletes the
vertex 1 and all of the vertices for primes greater than n/2 from
the adjacency graph, since these are now isolated vertices not
available for initial selection.

It seems natural to try this simplification for the computation of
Sprague-Grundy values. Unfortunately, pruning the adjacency
graph this way does not preserve Sprague-Grundy values, as shown
by the following example.
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Pruning the Adjacency Graph

G({2}) = G({4}) = G({8}) = 0
G({6}) = 2
So G({}) = 1

G({2}) = G({4}) = G({8}) = 0
G({6}) = 1
So G({}) = 2
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Storing the Adjacency Graph

One improvement which does
speed the code somewhat is
storing the adjacency table.

Although we still need to iterate
through the position graph, we
do not need to recompute the
legal moves at each step.
Instead, we subtract the set of
previously selected numbers from
the list of factors and multiples
of the current number.

Index Entry

1 {2, 3, 4, 5, 6, 7, 8, 9, 10}
2 {1, 4, 6, 8, 10}
3 {1, 6, 9}
4 {1, 2, 8}
5 {1, 10}
6 {1, 2, 3}
7 {1}
8 {1, 2, 4}
9 {1, 3}
10 {1, 2, 5}
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Results

Using this improvement, we are able to produce the
Sprague-Grundy values for 1 ≤ n ≤ 35. These values are

[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,

2, 0, 0, 2, 2, 0, 2, 2, 0].

The cases above n = 30 take a long time to run, even with the
improved speed. The exponential growth of the position graph
quickly overwhelms any gains. We know from Lemoine’s results
that the last 0 in the sequence of Sprague-Grundy values appears
at n = 118, so any attempts to discern periodic behavior would
need to extend well beyond that case.
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Factor Restriction Variation

At this point, we turn our attention to two new variations of
Juniper Green.

In the factor restriction variation, we have two additional game
parameters, positive integers a and b. Player 1 starts the game by
selecting an even number on the board. Players then alternate
selecting unused numbers which are factors or multiples of the
current number c , with the additional restriction that the largest
permissible divisor is a and the largest permissible multiplier is b.
More precisely, the set of legal moves from a postion where c is
the current selection is

({x : x = c/a1, a1 ≤ a} ∪ {x : x = c ∗ b1, b1 ≤ b})
\ {x : x has been selected previously}
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Factor Restriction: Symmetric Cases

For the simplest of these cases, A = B = 2, we see the following
pattern of Sprague-Grundy values:

[1, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2,

2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3]

We further note that the Sprague-Grundy value remains 3 for all
n > 30, having tested cases up to n = 600. This case is trivial in
the sense that once player one has made the initial selection, there
are only two possible ways the game can proceed: player two can
either divide by two or multipy by two. After that point, each
player has as most one legal option until one end of the board is
reached.
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Factor Restriction: Symmetric Cases

For A = B = 3, each player is permitted to multiply or divide the
current number by 2 or 3. The first 20 Sprague-Grundy values are:

[1, 0, 2, 0, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3]

Starting at n = 18, we see alternating blocks of 3’s and 4’s. The
blocks of 3’s are of lengths 9, 22, 71, and 29. The blocks of 4’s are
of length 5, 10, 25, and 54. We suspect that these blocks will
continue to alternate, but we do not have a conjecture for the
block lengths.
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Factor Restriction: Symmetric Cases

For A = B = 4, each player is permitted to multiply or divide the
current number by 2, 3, or 4. The first 20 Sprague-Grundy values
are:

[1, 0, 2, 0, 3, 1, 1, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 3, 3, 3]

Starting at n = 18, we see alternating blocks of 3’s and 4’s. The
blocks of 3’s are of lengths 9, 28, and 4. The blocks of 4’s are of
length 5, 20, and 28. Once again, we suspect that these blocks will
continue to alternate, but we do not have a conjecture for the
block lengths.
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Factor Restriction: Asymmetric Cases

For A = 2,B = 3, we see the following pattern of Sprague-Grundy
values for 1 ≤ n ≤ 50:

[1, 0, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Here, the blocks of 3’s and 4’s start at n = 4. It appears that the
Sprague-Grundy value remains 4 for all n ≥ 162, which we have
confirmed for 162 ≤ n ≤ 500.
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Factor Restriction: Asymmetric Cases

For A = 3,B = 2, we see the following for 1 ≤ n ≤ 80:

[1, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

The block of 3’s at the end of that list runs from n = 48 to
n = 127. It is followed by a block of 4’s from n = 128 to n = 335,
after which there is another block of 16 3’s, and then a block of
4’s which extends at least to n = 500.
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Additive Variation

In the additive variation, we have two additional game parameters,
sets of positive integers A and B. Player 1 starts the game by
selecting any number on the board. We do not restrict the initial
selection to an even number. Players then alternate selecting
previously unused numbers by subtracting an element of A from
the current number c or adding an element of B to c . That is, the
legal moves from a position where c is currently selected are:

({x : x = c − a, a ∈ A} ∪ {x : x = c + b, b ∈ B})
\ {x : x has been selected previously}
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Additive Variation: Equal Singleton Sets

In the case where A and B each contain the same single integer,
say i , the analysis is relatively simple. In all such games, the first
player chooses any number c to start the game. The second player
then has at most two options: c − i and c + i . Neither player has
any options after that point and must continue in the same
direction. It is clear that the Sprague-Grundy value of the position
after the initial selection can be at most 2, since there are only two
legal moves from that position. Therefore, we know that the
Sprague-Grundy value of the game before the inital selection is at
most 3. These cases are simple enough for computation by hand.
We will denote the Sprague-Grundy value of the game with n
numbers and A = B = {m} as Gm(n).
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Additive Variation: Equal Singleton Sets

In fact, the sequence of Sprague-Grundy values for A = B = {m} is

1m 2m−1 0 2m−1
(
2 3m−1 0 3m−1

)∗
where the exponents indicate the number of times a particular
Sprague-Grundy value repeats. The ∗ after the final parenthesis
indicates that the values inside the parentheses repeat for all
subsequent values of n.
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Additive Variation: Unequal Singleton Sets

When A = {a} and B = {b} are distinct singleton sets, the
gameplay is somewhat more complicated than the A = B case.
One obvious difference is that for any initial selection which is not
near 1 or n, player one will have two options at their second turn.

Even so, when there are max(a, b) consecutive numbers which
have already been selected, the remainder of the game will
necessarily be played entirely on one side of that group. Effectively,
this means that the remaining moves are isomorphic to a game
with a smaller value of n where the current selection is near one of
the endpoints of the range.
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Additive Variation: Unequal Singleton Sets

One other observation is that the sequences of Sprague-Grundy
values for A = {a},B = {b} and A = {b},B = {a} must be
identical. This occurs because an initial selection of c by player
one in the former case is isomorphic to an initial selection of
n − c + 1 in the latter case. Therefore, without loss of generality,
we will only report results for A = {a},B = {b} with a < b.
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Additive Variation: Unequal Singleton Sets

Sprague-Grundy Values with A = {1},B = {b}, b > 1:

b Initial Segment Cycle

2 [1, 2, 1, 2, 3, 3, 2, 3, 2] [3]
3 [1, 2, 2, 0, 2] [3, 3, 0, 3]
4 [1, 23, 1, 2, 34, 2, 33, 2] [3]
5 [1, 2, 2, 2, 2, 0, 2] [3, 3, 3, 3, 0, 3]
6 [1, 25, 1, 2, 36, 2, 35, 2] [3]
7 [1, 2, 2, 2, 2, 2, 2, 0, 2] [3, 3, 3, 3, 3, 3, 0, 3]

These results suggest two conjectures. For k even, the sequence of
Sprague-Grundy values is eventually constant with value 3. For k
odd, the sequence of Sprague-Grundy values is periodic, with the
cycle consisting of k 3’s and a 0.
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Additive Variation: Unequal Singleton Sets

Sprague-Grundy Values with A = {2},B = {b}, b > 2:

b Initial Segment Cycle

3 [1, 1, 22, 1, 22, 34, 2, 32, 2] [3]
4 [1, 1, 23, 1, 22, 35, 2, 33, 2] [3]
5 [1, 1, 24, 1, 22, 36, 2, 34, 2] [3]
6 [1, 1, 25, 0, 22] [3, 3, 3, 3, 3, 0, 3, 3]
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Additive Variation: Sets of the Form {1,k}

If we set A = B = {1, k} for k > 1, we see some initial segment of
Sprague-Grundy values followed by eventual periodic behavior.

A=B Initial Segment Cycle

{1, 2} [ 1 ] [0, 1]
{1, 3} [ 1 ] [0, 2]
{1, 4} [1, 0, 2] [0, 1]
{1, 5} [ 1 ] [0, 2]
{1, 6} [1, 0, 2, 0, 2] [0, 1]
{1, 7} [ 1 ] [0, 2]
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Additive Variation: Sets of the Form {2,k}

If we set A = B = {2, k} for k > 2, we see some initial segment of
Sprague-Grundy values followed by eventual periodic behavior as
we do in the previous case.

A=B Initial Segment Cycle

{2, 3} [1, 1, 2, 0, 1, 0, 3] [0, 1]
{2, 4} [1, 1, 2, 0, 2] [1, 3, 0, 3]
{2, 5} [1, 1, 2, 0, 2, 0, 1, 0, 3] [0, 1]
{2, 6} [1, 1] [2, 0, 2, 2]
{2, 7} [1, 1, 2, 0, 2, 2, 3, 0, 1, 0, 3, 0, 1, 0, 3] [0, 1]
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Future Work

The first project that presents itself for consideration is extending
the additive variation. We would like to verify our conjectures for
larger values of n and for a wider variety of sets A and B.

It would also be desirable to find a more efficient way to compute
Sprague-Grundy values for the original game in which all factors
and multiples are legal moves. It is clear that recursive searching of
position graphs will not extend even to n = 118 where any search
for periodic behavior can begin.

For both of these projects, an auxiliary goal is to generate enough
terms of sequences to make them viable candidates for submission
to the Online Encyclopedia of Integer Sequences.
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Thank you!

Thanks to my advisor, Doron Zeilberger, for all of your advice and
encouragement over the past several years.

Thanks to my committee members for your service as such and for
the other contributions you have made along the way.

Thanks to my family and friends for all of your support.

Thanks to the entire Rutgers Mathematics Department for being a
great environment in which to study, teach, and learn.
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