
Analyzing the game of Pan via a
game-theoretic and computational

approach

by Aron Samkoff

April 20, 2015

An essay in partial fulfillment of the requirements

for the degree of Master of Science

Written under the direction of

Doron Zeilberger (chair),

János Komlós, Michael Saks, and Robert Wilson.

1

1 Introduction

Pan (lit. “Sir”) is a Polish card game typically played with a deck of 24
cards. From a standard 52-card deck, the ranks 2 through 8 are discarded.
The ranks of the remaining cards are considered to be ordered from 9 to ace.
These remaining cards are shuffled and dealt between the players (usually
2-4). The player with the 9 of hearts typically starts first by placing this
card face up in the center to form the pile, and play then proceeds in a
clockwise direction. On a given player’s turn, he or she may make a legal
move, consisting of one of the following:

1. A card may be placed on the pile (“discarded”) if and only if that card
has rank at least that of the topmost card on the pile.

2. The three topmost cards of the pile may be taken, or as many as can
be taken without taking the 9 of hearts.

3. If the player has all three remaining nines (remember that the 9 of
hearts always stays on the bottom of the pile) or all four cards of any
other rank, the cards of this rank may be placed on the top of the pile,
as long as this move agrees with rule 1.

The game is won by the player who first discards all of their cards. For
the purposes of this paper, the analysis will be limited to a game of Pan
with two players, Player A and Player B. Also note that in the rules 1-3, the
only mention of the suit of any cards is distinguishing the 9 of hearts. This
card is only in play for the first move. The suits of all the other cards are
immaterial and therefore do not need to be recorded for a given position1

In this essay, I will analyze the game of Pan using basic combinatorics and
game theory. I will also use ideas from artificial intelligence and implement
these ideas with Maple. The accompanying Maple code pan.txt includes
procedures that will be referenced throughout this essay.

1.1 An example

Before we proceed with the analysis, let us examine a game of Pan.

1In this paper, the term “position” will refer to a configuration of the cards. This
should not be confused with “hand” which will refer to the cards that a player has.

2

Suppose Player A is initially dealt the hand {9h, 10, 10, 10, J, J, J, J, K,
K, K, A} and Player B has {9, 9, 9, 10, Q, Q, Q, Q, K, A, A, A}. Since A
has the 9 of hearts, he must place this card on the pile, so that the pile is
just {9h}. By rule 3, since Player B has the remaining Nines, he may place
all of these on the pile. Suppose Player A now places a 10 on top of the 9,
which he can do by rule 1. B can now discard his last 10. After these moves,
the players have arrived at the following position:

A :{10, 10, J, J, J, J,K,K,K,A}
B :{Q,Q,Q,Q,K,A,A,A}

Pile :{9, 9, 9, 9, 10, 10}

Player A now discards one of his Tens on the pile, after which Player B
happily puts down his four Queens on the pile (rule 3). The position now
looks like this:

A :{10, J, J, J, J,K,K,K,A}
B :{K,A,A,A}

Pile :{9, 9, 9, 9, 10, 10, 10, Q,Q,Q,Q}

A realizes things do not look good. He still has a 10 and four Jacks in
his hand, but is unable to play these due to rule 1. If he places a King to
the pile, B will place his last King on the pile and will have a hand full of
three aces, at which point nothing can stop B from playing an ace on each
subsequent turn, winning the game. A could take the top three Queens, but
B would reply by placing a King and again, winning in six moves 2. So A
tries the only other move he has, and places an A on the pile. Alas, B is
unfazed, and places another Ace on the pile:

A :{10, J, J, J, J,K,K,K}
B :{K,A,A}

Pile :{9, 9, 9, 9, 10, 10, 10, Q,Q,Q,Q,A,A}

2Unless stated otherwise, assume a “move” means a “half-turn”.

3

A is now forced to take the top three cards (two Aces and a Queen) into
his hand, since he may not discard by rules 1 and 3. B places his King on
the pile:

A :{10, J, J, J, J,Q,K,K,K,A,A}
B :{A,A}

Pile :{9, 9, 9, 9, 10, 10, 10, Q,Q,Q,K}

A is now doomed, for no matter what cards he plays in the next two
turns, B will follow with an Ace.

1.2 Overview of essay and guiding questions

There are three basic questions I will address in this paper.

1. Given that a player moves first and both players play optimally, what
are the probabilities that the player wins, loses, and draws?

2. For each k, what is the approximate average branching factor3, and the
approximate number of positions for k-Pan?

3. What proportion of the time should a player draw cards from the pile,
and when should the player instead place a card on the pile?

In Section 2, I will develop some basic tools that will help analyze these
questions and address the second question. In Section 3, I will apply tech-
niques from combinatorial game theory to help answer the first question. In
Section 4, I will develop a heuristic function for use in the minimax algo-
rithm, and show that it leads to reasonably good play using a modest depth.
In section 5, I present a more efficient version of the minimax algorithm, and
develop a procedure that can be used to play against an AI opponent. I
also use the modified minimax algorithm to find patterns in positions where
taking the top three cards from the pile is the most favored move. Finally,
I discuss how the rules of Pan can be relaxed or modified to create other
interesting games.

3The average branching factor will be defined in Section 2.1.2.

4

1.3 Notation and Terminology

In the two player game of Pan, we will assume that after the cards are dealt,
both players have complete information: Each player knows which cards are
in Player A’s hand, Player B’s hand, and on the pile. We will usually consider
the first move, that of placing the 9 of hearts, to already be made. Hence,
after the cards are shuffled and dealt and the player with the 9 of hearts
begins, there is no chance aspect to the game: both players have complete
information, and there are no other random processes in the game.

We will see that the standard game of Pan can be computationally in-
tensive to analyze. For this reason, I define the class of games k-Pan, for
k ≥ 1 which uses k ranks in play, and can be solved completely for small k.
k = 4 will be used often in this paper, being the largest k for which k-Pan
could be solved using the hardware available to me. The game of 6-Pan is
the standard game of Pan, and for k ≤ 6, we consider the ranks in play to
be 9, 10, J, and so on. These ranks will also sometimes be referred to by
natural numbers, with rank 1 being a ‘9’, rank 2 being a ‘10’, rank 3 being a
Jack, and so on. I denote a player’s hand as a vector in square brackets with
k components, and with each component representing the number of cards
of a given rank in the hand. For instance, Player B’s starting hand in the
previous example would be denoted [0, 0, 0, 4, 1, 3], representing a hand in 6-
Pan (standard Pan) and consisting of 4 Queens, 1 King, and 3 Aces. A given
position will be denoted by the pair (A,B) of the hands for Players A and B.
Since no cards ever go out of play, the pile, P (also a k-component vector),
can be determined by subtracting A + B from the vector F = [4, 4, ..., 4]:
P = F − (A + B). Recall that P1 ≥ 1 always, since the pile is assumed
to have at least one 9 (the 9 of hearts). We may also explicitly provide the
vector P in parentheses. The pile is said to be trivial when it consists only
of the 9 of hearts, i.e., P = [1, 0, 0..., 0].

Unless stated otherwise, assume that for the position (A,B), A represents
Player A’s hand and B represents Player B’s hand, and it is Player A’s turn
to move first. In this paper, I generally draw no distinction between the
names of the players. In other words, the position (X, Y) with Player A to
move is considered as the same position as (Y,X) with Player B to move.

As a final note of caution, in this paper I may wish to refer to the position
(Y,X) with Player B to move first, as above. By contrast, the Maple code
accompanying this paper, the player whose hand is given in the first coordi-
nate is always assumed to move first. For instance, the position in the Maple

5

code [[1,1],[0,1]]specifies that the player who has the hand [1, 1] is next
to move. This position could be referred to in the paper as ([1, 1], [0, 1]) with
A to move, or as ([0, 1], [1, 1]) with Player B to move.

Each player’s objective is to obtain the zero vector through a sequence of
moves, after which the game ends.

2 Some basic results

For games such as Pan, it can be very useful to have a way to generate a
random position. This is usually done by choosing locations for each of the
pieces or cards in play. The rules of the game generally cause this method to
generate some positions that are impossible to achieve, but the hope is that
there are relatively few of these positions. To this end, in this section, we will
investigate a way to generate all of the positions in Pan by over-counting.
We will also give an argument that can be used to compute a lower bound for
the number of legal positions, and I will show that the lower bound and the
upper bound are very good approximations to the number of Pan positions.

Let Mk represent the number of k-Pan positions that are actually at-
tainable from a starting position. Mk can be computed directly for small k.
The Maple procedure generatemoves(k) generates all the possible positions
starting from the set of starting positions for k-Pan. By finding the number
of operands (nops in Maple) of generatemoves(k) for k = 1, 2, 3, 4, we may
compute Mk, as shown in Table 1. However, for larger k, computing Mk in
this way becomes prohibitively time-consuming.

k nops(generatemoves(k))

1 5
2 115
3 2134
4 33232

Table 1: The number of attainable positions in k-Pan for small values of k.

6

2.1 An upper bound for Mk

We can obtain an upper bound for the number of attainable positions in
k-Pan by “over-counting”. In chess, this could be done by placing the pieces
arbitrarily on the board and counting these positions4. This would include
positions which are not attainable from the initial starting position; for in-
stance, positions with pawns on the first or last row, or with both kings in
check are not attainable via legal moves.

For the game of Pan, every triple (A,B, P) representing an attainable
position must have P1 = 4− (A1 + B1) ≥ 1, and Pi = 4− (Ai + Bi) ≥ 0 for
i = 2, 3, ..., k. Therefore,

A1 + B1 ≤ 3, and

Ai + Bi ≤ 4 for i = 2, 3, ..., k.
(1)

To obtain an upper bound to the number of attainable Pan positions, we
seek nonnegative integer solutions to the set of linear inequalities (1). To
count the number of solutions to x1 + ... + xm ≤ n, we define xm+1 to be
n− (x1 + ... + xm), so that xm+1 is also nonnegative. Now for each solution
to the original inequality, there is a corresponding solution to the equation
x1 + ... + xm + xm+1 = n. The number of nonnegative integer solutions to
the equality x1 + ... + xm+1 = n is

(
n+m
m

)
(I give a combinatorial argument

for this fact in Section 2.1.1.) Hence there are
(
3+2
2

)
= 10 solutions to the

first inequality, and
(
4+2
2

)
= 15 solutions to the second inequality.

Since we choose nonnegative solutions for each linear inequality indepen-
dently, we have that there are at most 10 · 15k−1 hands in k-Pan.

A Maple procedure was created to construct lists of potential positions
corresponding to each solution to equation (1). This is done in the procedure
allpos(k), which recursively generates a vector of all potential positions for
a game of k-Pan. When k = 1, we seek the set of nonnegative solutions
to A1 + B1 = n for 0 ≤ n ≤ 3, which can be done directly by choosing
0 ≤ A1 ≤ 3, and for each such choice, choosing B1 from 0 to n − A1. For
k ≥ 2, start with the set of solutions to

A1 + B1 ≤ 3, and

Ai + Bi ≤ 4 for i = 2, 3, ..., k − 1.
(2)

4Let us exclude positions including more than the standard number of major pieces, as
would be obtained after promoting pawns.

7

For each solution in this set, we may choose a solution to Ak + Bk = m for
0 ≤ m ≤ 4. Similarly to above, this can be done by letting Ak vary from 0
to m and Bk vary from 0 to m − Ak. All solutions to (1) are generated in
this way.

Note that in Pan, there are positions which are generated by allpos

but which are not attainable. For instance, the position [3, 4, 4, 4], [0, 0, 0, 0],
where Player A is to move, satisfies the conditions (1) but is not attainable.
This is because Player B has just won on the previous move, but the pile is
trivial, implying that Player B just placed a 9 of hearts on the pile. This is
impossible since the hand {9h} is not a starting hand. Other examples in-
clude all positions in which Player A has no cards, since the game is assumed
to end immediately after a player runs out of cards.

2.1.1 Integer solutions to x1+...+xm = n and the randpos procedure

Above, I asserted that the number of nonnegative integer solutions to

x1 + ... + xm = n (3)

where m > 0, is
(
n+m−1
m−1

)
. This can be seen by a straightforward combina-

torial argument. Start by lining up n + m − 1 dots in a row. Choose any
m − 1 of these dots, and imagine that they represent the symbol ‘+’. We
end up having n + m − 1 − (m − 1) = n dots and (m − 1) ‘+’ signs, with
some two ‘+’ signs possibly adjacent. From this, we can read off a solution
to the original equation: Each xi is interpreted to be the number of the i-th
(possibly empty) consecutive run of dots in between ‘+’ signs. Furthermore,
every solution of nonnegative integers to the equation corresponds to a row
of dots and plus signs, and this correspondence is 1-1.

We could have used this argument instead of the one described above
for the allpos procedure. In fact, this argument is used in the procedure
randpos(k). This procedure returns a random component of allpos(k), i.e.,
a random potential Pan position. A direct way of creating such a procedure
would be to simply randomly select a component from allpos(k). However,
allpos(k) is very slow for large k, so this is not a good approach. We wish
to pick a random solution of nonnegative integers to

A1 + B1 + P1 = 4,

Ai + Bi + Pi = 4, i = 2, 3, ..., k

P1 ≥ 1

8

Notice the condition P1 ≥ 1 holds because the pile is always assumed to
have the 9 of hearts. We can account for this condition by defining P ′1 = P1+1
and looking for nonnegative integer solutions to

A1 + B1 + P ′1 = 3, (4)

Ai + Bi + Pi = 4, i = 2, 3, ..., k (5)

Using the combinatorial argument above, we can solve equation (4) by
considering a set of 3 + 2 − 1 = 5 objects, (randpos uses the numbers 1
through 5) and randomly choosing two distinct ones, say s and t, to represent
the ‘+’ signs. Let A1 be the number of objects before the first ‘+’ sign
(A1 = min(s, t) − 1 in randpos) and B1 be the number of objects between
the first two ‘+’ signs (B1 = max(s, t) − A1 − 2 in randpos). P1 is then
determined as P1 = 4 − (A1 + B1). Equation (5) is simlar, except we use
4 + 2− 1 = 6 objects, again choosing two of them to represent ‘+’ signs. In
this way, randpos can generate random potential Pan positions much faster
than selecting a random component of allpos.

2.1.2 Approximating the average branching factor

The game of Pan may be represented as a game tree. The game tree is a
directed graph where nodes represent all the different positions of the game,
and a directed edge is drawn from A to B if and only if there is a legal
move to obtain B from A. When there is such a directed edge from A to B,
B is referred to as a child of A. The procedures allpos and randpos can
be used to estimate the average branching factor for the game of Pan. For
any game tree, the branching factor of a node is the number of that node’s
children. By average branching factor, I mean the average taken over all
potential positions, i.e., over all entries of allpos. In Maple, this can be
done with the use of the procedure legalmoves(A,B). This procedure re-
turns a list of the children of the position (A,B) with Player A to move. The
number of distinct children for a given position can therefore be found by
nops(legalmoves(A,B)). The exact values of the average branching factor
are given in Table 2 for k ≤ 4. For larger values of k, a random sample
of 10,000 is taken from allpos, without replacement, to estimate the av-
erage branching factor. The average branching factor appears to approach
approximately 2.1 as k increases.

9

k
average

branching factor

1 .4
2 1.4
3 1.858
4 2.019
5 2.057
6 2.082
7 2.107
8 2.105
10 2.085
100 2.109

Table 2: The estimated average branching factor for k-Pan (a random sample
of 10,000 positions used for k > 4.

It is worth noting that the average branching factor is different from the
average number moves a player may be able to legally make in the course of
a game. In fact, the average taken over all positions assumes all positions are
equally likely, and therefore that there is no difference between the players
hands and the the cards on the pile. In actual play, it is likely that the ranks
on the pile will be distributed very differently from those in the hands. For
instance, it is rare that the pile will contain cards of many different ranks.
Instead, one player typically will try to persuade the other to take low cards
by placing a high card on the pile.

A second item to notice is that the average branching factor for Pan is
quite small. The average branching factor of chess, for instance, is estimated
to be about 35. However, the small average branching factor for Pan does
not mean the game is simple to play. In fact, games can be very long. I
observed expert games (where both players were rated 1750 and above) on
the online game site kurnik.pl. Of the 11 games observed, two lasted beyond
100 plies (50 complete turns), with one game taking 195 plies (97 complete
turns). Even with a modest average branching factor, play can be quite
nuanced and complex. Also, the assumption that the cards in the players’
hands are distributed the same as the cards on the pile would actually cause
the average branching factor to be underestimated: when there are cards of

10

many different ranks on the pile, there are very few available moves, since
the top card will have a high rank.

In the remainder of Section 2, I will show that the number of potential
positions is close to the number of actual Pan positions for small k. This
suggests that the numbers in Table 2 are good approximations to the average
number of children per position, where the average is taken over all actual
Pan positions.

2.2 Towards a lower bound for the number of attain-
able positions

In this section, I describe how to compute a lower bound for Mk, the number
of actual k-Pan positions. The main tool is a claim in this section which
shows that certain positions are always attainable from a starting position.
We will need the following easy but useful observation– that under mild
conditions, the two players can agree to switch turns via a sequence of legal
moves:

The Turn-Switching Sequence. If it’s Player A’s turn, he has at least 3
cards (labeled X,Y, and Z) and the pile is trivial, the following sequence of
moves switches the turns but otherwise does not change the position. Assume,
without loss of generality, that X has rank at least as high as Y.

1. A discards X.

2. B takes X.

3. A discards Y

4. B discards X.

5. A takes X and Y.

A and B now have the same hands as when they started but it is now
Player B’s turn. Note that the third card Z was useful in step 3, to guarantee
that Player A did not prematurely end the game. The power of the turn-
switching sequence is that it may always be performed as long as Player A
has any three cards. Before we prove the main claim in this section, we will
need the following Lemma:

11

Lemma. Let B be a k-component vector with nonnegative integer entries,

and
k∑

i=1

Bi > a ≥ 0. Define F by Fi = min(Bi, a) for i = 1, 2, ..., k and

suppose
k∑

i=1

Fi ≤ a. Then there exists t such that

• Bt > a,

• Ft = a, and

• Bi = Fi = 0 for i 6= t.

Proof. Suppose for contradiction that for all i, Bi ≤ a, so Fi = min(Bi, a) =
Bi. We have a <

∑
i

Bi =
∑
i

Fi ≤ a, a contradiction. Therefore, there exists

t such that Bt > a, so that Ft = a. If k = 1, we are done. Otherwise, suppose
that Bs > 0 for some s 6= t. Then

∑
i

Fi ≥ Ft + Fs = a + min(Bs, a) > a,

a contradiction. Hence s = t. We have shown that only Bt is nonzero.
Furthermore, for i 6= t, we have Fi = min(Bi, a) = 0.

Claim. Assume k ≥ 2 and let (A,B) be any position with a trivial pile and
Player A to move, such that Player A has at least one card. Then there is a
sequence of legal moves from a starting position to (A,B) if in the position
(A,B), Player B has at least three cards.

The basic idea behind the proof is that from a starting position, one
player ‘gives’ the other one all the cards of which there are too many in his
hand compared to the target position. Then the turn-switching sequence
is performed, and the other player does the same to arrive at the target
position. The only item to watch out for is that Player B has three cards, so
that he may perform the turn-switching sequence. The case where this does
not happen is handled by the Lemma in Case 2 of the proof.

Proof. Let (C,D) be the position with C = [1, 2, ..., 2], D = [2, 2, ..., 2] and
Player B to move. Find the smallest i1 such that Bi1 < Di1 , if one exists.
Player B places a card of rank i1 on the pile, and Player A subsequently takes
this card, arriving at a new position (C ′, D′) with Player B to move. Again,
find the smallest i2 such that Bi2 < Di2 , if one exists. Player B places a
card of rank i2 on the pile, and Player A takes the card, arriving at (C ′′, D′′)

12

with Player B to move. This process is repeated until we arrive at a position
(E,F), where Bj ≥ Fj for all j and with Player B to move. Note that for
any j, if Bj ≤ 2 then Fj = Bj, and if Bj > 2, then Fj = 2. In other words,
Fj = min(Bj, 2) for all j.

We now proceed by cases according to the number of cards remaining in
Player B’s hand.

Case 1: Player B has at least 3 cards in his hand.

In this case, since Player A has at least one card, Player B may perform
the turn-switching sequence. Thus, we have arrived at the position
(E,F) with Player A to move. Now, since Bj ≥ Fj for all j, find a
u1 such that Bui

> Fu1 (if none exists, for all j, Bj = Fj, so Aj = Ej

and so we are done). Now, similar to before, place a card with rank
u1 on the pile, and Player B takes, arriving at a position (E ′, F ′) with
Player A to move. This process is repeated, but must terminate when
we arrive at a position (G,H) with Player A to move, where there does
not exist u such that Bu > Hu. Hence, B = H, A = G, as desired.

Case 2: Player B has 2 or fewer cards remaining in his hand.

In this case,
k∑

j=1

Fj ≤ 2, so applying the Lemma with a = 2 implies that

there is a t such that Ft = 2, Bt ≥ 3 and Bj = Fj = 0 for j 6= t. Since
the pile is trivial, Et = 1 if t = 1 and Et = 2 if t ≥ 2. Since Ft ≥ 1,
Player B may place a card of rank t on the pile. Since Et ≥ 1, Player A
may now place a card of rank t on the pile, and Player B takes both of
these cards. It is now Player A’s turn and Player B has exactly 3 cards
of rank t and no other cards, so if Bt = 3, we are done. If Bt = 4, then
Et = 2 so Player A has one more card of rank t to place on the pile,
which Player B takes. Again, we arrive at the desired position (A,B).

Now, we can easily extend this claim to work for positions with nontrivial
piles, as long as there are “enough cards” in the players’ hands.

Corollary. Let (A,B) be any position with Player A to move and k ≥ 2.
Let a be the number of cards in Player A’s hand, b be the number of cards in
Player B’s hand, and n be the number of cards on the pile (other than the 9
of hearts). Then (A,B) can be attained from a starting position if n

2
+ b ≥ 3

and a ≥ 1 if n is even, and n−1
2

+ a ≥ 3 if n is odd.

13

Proof. Let n be the number of cards on the pile of (A,B) (other than the
9 of hearts). Enumerate the pile of (A,B) as x1, x2, ..., xn with x1 being the
top card, and xn as the bottom card (other than the 9 of hearts). Let D be
the hand consisting of B together with the cards x1, x3, x5, ..., xr , and C be
the hand consisting of A together with x2, x4, x6, ..., xs, with r = n−1, s = n
if n is even, and r = n, s = n− 1 if n is odd. Let (C,D) be the position with
Player B to move next if n is odd, and Player A to move if n is even. Then we
may apply the claim to (C,D): If n is even, D has n

2
+b ≥ 3 cards, and C has

at least a ≥ 1 cards. If n is odd, C has exactly n−1
2

+a ≥ 3 cards, and D has
at least n+1

2
≥ 1 cards. Therefore, (C,D) is attainable from some starting

position. It is readily checked that (A,B) can be obtained from (C,D) by
having players alternately discard the cards xn, xn−1, ...x1 in order.

The process described in the proofs above is constructive and can be
adapted into an algorithm for constructing a sequence from a starting po-
sition to a position satisfying the conditions of the corollary. In the Maple
code, the procedure printpath(A,B) takes hands for Player A and Player
B satisfying the hypotheses of the corollary, and prints the sequence from
the starting hand [1, 2, ..., 2], [2, 2, ..., 2] with Player B to move to (A,B) with
Player A to move, as described in the proofs above. The procedure returns
‘ERROR’ if the hypotheses for the corollary or the claim were not satisfied by
the target position (A,B). The reader may check that every move follows
from the previous by a legal move, and that no illegal move is reached in
the sequence (i.e., if an entry in some vector is negative or that the player to
move next has no cards).

Recall that Mk represents the number of k-Pan hands that are attainable
from a starting position. The corollary allows us to calculate lower bounds for
Mk for k ≥ 2. This is implemented in the Maple procedure attainable(V).
This procedure accepts a vector of positions V as an argument, and returns
the vector whose components consist of only those positions attainable from
some start position as outlined in the above proofs. This is done by merely
checking that the conditions of the corollary hold for each position. The
upper and lower bounds for Mk are summarized in Table 3.

Notice that in Table 3 the ratio of the lower bound to the upper bound
appears to approach 1 monotonically as k increases, and therefore, Mk ap-
pears to be better approximated by these bounds as k increases. The lower
bound in particular appears to approximate Mk especially well for small k.

14

k
upper

bound for
Mk

Mk

lower
bound for

Mk

lower bound as a
fraction of upper

bound

1 10 5 - -
2 150 115 95 0.633
3 2250 2134 2067 0.919
4 33750 33232 33193 0.983

Table 3: Values of Mk and bound estimates for k ≤ 4.

For k = 2, 3, 4, the full sets of potential positions were used; that is,
nops(attainable(allpos(k))) was computed. For larger k, allpos(k)

becomes too large to work with in Maple. The procedure randsamp(k,n)

generates a random sample of n positions from allpos(k), and was used
to estimate the ratio of the lower bound to the upper bound of Mk for
k = 5 and k = 6, where samples consisted of 20,000 positions from allpos.
This approach led to the ratios of 19928/20000 ≈ .9964 for k = 5 and
19976/20000 ≈ .9988 for k = 6. Since the exact values for the upper bound
are given by the formula 10 · 15k−1, derived earlier in this section, we can
approximate the lower bounds for Mk, and therefore, Mk itself. Using this
approach, the number of 5-Pan positions is no more than 10 · 154 = 506, 250
and equals approximately .9964 · 506250 ≈ 504, 400. Similarly, for k = 6, the
random sample approach gives an approximation of 19976/20000 ≈ .9986
for the ratio of the lower bound to the upper bound of Mk. The number of
6-Pan positions is no more than 10 ·155 = 7593750 and equals approximately
.9986 · 7593750 ≈ 7, 584, 000.

A consequence of these calculations is that potential positions from the
allpos procedure approximate the behavior of the attainable positions fairly
well, especially when k ≥ 3. This allows us to use these full sets of potential
positions instead of the extremely slow generatemoves procedure to perform
analyses.

15

3 Finding Winning Positions

3.1 Combinatorial game theory

Pan is a turn-based game with perfect information, and therefore, we may
apply the techniques of combinatorial game theory. In this section, we will
apply these techniques to arrive at each player’s probability of winning the
game. It should be noted that the rules of Pan imply that there are no “tied”
or “stalemate” positions– that is, when a player cannot make a move, that
player has won the game5. To see this, suppose it is Player A’s turn. Player
A must have at least one card, or else the game will have already ended. If
the pile is trivial, he may, by Rule 1, place a card on the pile. Otherwise,
if the pile is nontrivial, by Rule 2, he may take the topmost cards from the
pile. Thus there is at least one legal move at all times.

To summarize, for fixed k, k-Pan is a game with a finite state space and
no stalemate positions. We may apply backward induction to find winning
and losing positions. Let S be the set of all positions, |S| = n, and G0 be the
graph with a node for each position in S and a directed edge between two
positions X and Y if there is a legal move from X to Y. We may examine
each position and determine if, in that position, either player has won. Label
the position W if Player A has won, and L if Player B has won. Call the
resulting labeled graph G1. (Note that most nodes likely remain unlabeled
in G1). Now, repeat the process, except for each node, label the position L
if all of its children are labeled W , and label the position W if at least one of
its children is labeled L. Call the resulting labeled graph G2. This process
can be iterated until it yields no more new labelings.

The idea behind the labeling technique is that if each player is playing
“optimally,” he will choose a winning position every time there is such a
move available. Thus, the only way a player can lose is if every move he can
choose is a losing position.6

A natural question to ask is when the iterative process described above
terminates. If there are n positions in the state space, there can be no labeled
position from which there is a sequence of optimal moves longer than n moves.
Hence the process needs at most n steps to terminate. Furthermore, suppose

5This does not mean the game cannot end in a draw–in fact, I will show in Section 3.2
that there can be an endless cycle of moves in optimal play when k ≥ 3.

6Note the assumption of optimal play assumes that each player is able to search through
to the end of the game tree.

16

there exists some k for which no new nodes were labeled on the (k + 1)-th
iteration. Then no new nodes will ever be labeled on iterations k + 1, k + 2,
... , n. To see this, suppose for contradiction there is some position X which
is labeled on the m-th iteration, m > k + 1, where m is as small as possible.
There exists a child Y of X which was labeled on the (m − 1)-th iteration,
and m − 1 > k. But no nodes were labeled on the (k + 1)-th iteration, so
m− 1 6= k + 1. Hence, m > m− 1 > k + 1 and there is a position Y which
is labeled on the (m− 1)-th iteration, a contradiction.

The iterative process described above is applied to Pan in the Maple
procedure winorlose(k,m). This procedure returns a table of those k-Pan
positions which are labeled after m iterations of the above process. The
integers 1 and -1 represent W and L, respectively.

By experimenting with different values of m, we can quickly discover values
for which winorlose(k,m) = winorlose(k,m+1) using Maple. The number
of iterations until no new labels are discovered is reported in column 2 of
Table 4 for k ≤ 4.

k
longest sequence

with optimal
play

Mk

no. of positions
winning for
either player

ratio of no.
drawing

positions to Mk

1 3 5 5 0
2 15 115 115 0
3 38 2134 2038 .045
4 84 33232 28667 .137

Table 4: The number of winning positions in k-Pan.

These values can be used to determine the number of winning posi-
tions in a game of k-Pan as follows. For instance, running the command
[seq(winorlose(4,84)[generatemoves(4)[i]], i = 1..33232)] would re-
turn a vector of 1s, -1s and unassigned variables corresponding to those po-
sitions which are winning, losing, and drawing, respectively.7 The number of
occurrences of 1’s and -1’s may be counted, for instance, with

7Note that this code is for illustrative purposes only, and would be very slow unless
one had previously computed and assigned a variable to generatemoves(4). Also note
the values of 84 and 33232 coming from row 4 of Table 4.

17

ListTools[Occurrences], and these numbers are reported in the fourth
column of Table 4.

Notice that in Table 4, the maximum number of labeled positions is equal
to Mk, the number of k-Pan positions, for k = 1, 2, but that there are
unlabeled positions for k = 3, 4. This implies that there are positions that
are not winning for either player, as we discuss in the next section.

3.2 Drawing positions

Even when a game does not have “stalemate” positions (unlike chess or tic-
tac-toe, for instance) there may still exist positions where neither player can
win if they both play optimally. When the state space is finite, the only way
this can happen is if in optimal play, the same sequence occurs twice, i.e. a
cycle in the state space is traversed in the course of optimal play. This can be
seen by considering an arbitrary unlabeled position X1 of the fully labeled
state space. If, by playing optimally, the players arrive at the position Y
which is labeled either L or W , then one player will lose. Therefore, the
players must avoid labeled positions in order to draw. Let S be the (finite)
subset of unlabeled positions, and assume it has n elements. Since there
are no stalemate positions, there is a sequence X1,X2...Xn+1 of legal moves
obtained by optimal play. By the pigeonhole principle, at least two of those
positions are identical, and we have traversed a cycle of positions in the state
space.

Table 4 above shows that there are drawing positions for k = 3, 4. In fact,
the proportion of positions which are drawn appears to grow as k increases.
As shown in the next section, there even exist starting positions which are
drawing for k = 4.

3.3 Characterizing starting positions

One of the guiding questions in this essay was whether we can determine
the probability that a player can win a randomly dealt starting position
if both players play optimally. Recall that a starting position in Pan is
created by shuffling the 4k cards in play, and dealing 2k cards to each player.
Immediately after this, the player with the 9 of hearts must discard this card
to form the pile. Therefore, the position (A,B) with Player A to move is

a starting position if and only if the pile is trivial and
k∑

i=1

Ai = 2k, where

18

0 ≤ A1 ≤ 3 and 0 ≤ Ai ≤ 4 for i > 1.
The Maple procedure startpos(k) returns the vector whose components

consist of all starting positions for a game of k-Pan by checking each com-
ponent of allpos for the above condition. The number of components in
startpos is given in the second column of Table 5.

The number of winning, losing, and drawing starting positions are found
using winorlose, as done in the previous subsection. The difference is
that startpos is used whereever generatemoves was used in the previ-
ous subsection. For example, when k = 2, there are 4 possible starting
positions: S1 = ([0, 4], [3, 0]), S2 = ([1, 3], [2, 1]), S3 = ([2, 2], [1, 2]), and
S4 = ([3, 1], [0, 3]). S1 is clearly winning for Player A, as on the first move,
he can place all four tens on the pile, and wins. One would suspect S2 to
also be winning, and indeed, winorlose(2,15)[[[1,3],[2,1]]] returns 1.
It can similarly be checked that S3 is losing and S4 is winning. Thus exactly
three of the four starting positions are winning.

k
total # of starting

positions
winning
positions

losing
positions

drawing
positions

1 1 0 0 1
2 4 3 0 1
3 16 11 0 5
4 70 34 13 23

Table 5: The number of winning, losing, and drawing starting positions.

Let us now calculate the probability that Player A can win in optimal
play given that he was dealt the 9 of hearts. Note we cannot merely perform
arithmetic on the columns of 5, since the starting hands are not equally likely
to occur. For instance, in the previous example, there is only one way the
cards can be dealt to result in a starting hand of S1, since Player A holds all
four Tens, and Player B holds every 9 but the 9 of hearts. By contrast, there
are

(
3
1

)
·
(
4
3

)
= 12 ways to choose the hand S2: there are

(
3
1

)
ways to choose

a 9 that is not a 9 of hearts for Player A, and
(
4
3

)
ways to choose 3 tens

for Player A. Player B’s hand is then determined by these choices. Table 6
summarizes the number of ways to deal each of the 2-Pan starting hands.

The total number of ways to deal the starting hands for k = 2 could be

19

Position
Result for
Player A

ways to deal

[0,4],[3,0] win
(
3
0

)(
4
4

)
= 1

[1,3],[3,1] win
(
3
1

)(
4
3

)
= 12

[2,2],[1,2] lose
(
3
2

)(
4
2

)
= 18

[3,1],[0,3] win
(
3
3

)(
4
1

)
= 4

Table 6: Determining the number of winning and losing deals with k = 2.

found by computing

3∑
i=0

(
3

i

)(
4

4− i

)

=
3∑

i=0

(
3

i

)(
4

i

)
.

However, this must also be the number of ways to select 4 cards from 7 (all
cards in play except the 9 of hearts), so this equals

(
7
4

)
= 35. Therefore, the

probability of being dealt a winning hand given one was dealt the 9 of hearts
is 18

35
≈ .486. The probability a player was dealt a losing starting hand given

he moved first is approximately 1− .486 = .514.
In general, given that Player A has a starting hand [A1, A2, ..., Ak], the

number of ways this hand could be dealt is(
3

A1

)(
4

4− A2

)
· · ·
(

4

4− Ak

)
=

(
3

A1

)(
4

A2

)
· · ·
(

4

Ak

)
.

The total number of ways to deal a starting hand is
(
4k−1
2k

)
. Therefore, we may

calculate the probability that a random starting position is winning. This
is implemented in the maple procedure probofwinning(k,Ahas9h). This
procedure takes k as an argument, and returns the probability that Player
A wins. If Ahas9h = 1, the procedure assumes that Player A was dealt

20

the 9 of hearts, and therefore was the first player to move. Otherwise, the
procedure assumes Player B was dealt the 9 of hearts and that Player A was
the second player to move. From these results, the probability of drawing
can be calculated as 1−P(A wins)−P(A loses). The results are summarized
for k ≤ 4 in Table 7.

k
Prob. of winning
given that player

had 9h

Prob. of losing
given that

player had 9h

Prob. of
drawing given
player had 9h

1 1 0 0
2 .514 .486 0
3 .405 .595 0
4 .216 .432 .352

Table 7: The probabilities of being dealt winning, losing, and drawing hands
given a random k-Pan starting position.

It is interesting that the player without the 9 of hearts appears to have a
greater probability of winning for k = 3, 4. In other words, player with the
advantage in k-Pan is with the player who moves second, at least for these
k.

For k = 4, the odds are stacked against the player who starts with the 9 of
hearts: the probability that the player with the 9 of hearts wins is less than
half of the probability the other player wins. Computing power prevented
this analysis from checking whether this advantage holds for larger values
of k. At first, the advantage uncovered here is surprising, especially given
that the goal of the game is to discard all of one’s cards. It would seem
that if anything, the player that is first to move would have a ‘head start’ in
discarding cards.

However, on closer examination, there are reasons why the player to move
first might actually be at a disadvantage for certain k ≥ 2. For any starting
position in k-Pan, consider only the 9s. Also, let’s assume that Player A has
the 9 of hearts and has not yet placed it, so that there are four 9s among
the two players. There are only four possibilities: Player A has four Nines
and Player B none, Player A has three Nines and Player B one, etc. Note
we cannot have Player A having no Nines and Player B four, since Player A
was assumed to have at least the 9 of hearts. When Player A has four 9s,

21

he is in a tough position indeed: after placing the 9 of hearts, Player B will
place a 10 (or higher) and Player A is already in trouble since he is unable
to place his three remaining 9s.

Moreover, the positions in which one player has exactly three 9s play very
differently. If Player B has three 9s, he may place them all on the pile at
once immediately. If Player A has three 9s, however, once again, he will not
have the chance to play them all immediately: Player B can place his 9 on
the pile, Player A can place another, and Player B will now place a 10 or
higher on the pile, leaving Player A with a 9.

By these considerations, the distribution of the Nines between the two
players appears to favor the player without the 9 of hearts, since the 9 of
hearts has special significance. Note also that this argument does not take
into account the likelihood of being dealt the different hands. In fact, this
factor is the why the odds of receiving a winning hand for k = 2 are almost
even, despite the fact that three of the four distinct starting hands are win-
ning for the player without the 9 of hearts. For all other k, it appears that
this advantage is real.

4 Minimax and heuristic functions

The backwards induction method described in Section 3 can be conceptual-
ized in a different way. Let a position that is winning for Player A always be
labeled with +1 and a position winning for Player B labeled with -1. Start
by labeling those states which are known to be winning for Player A or B,
as before. On each of the proceeding iterations, given an unlabeled position
whose children are all labeled, assign that position a +1 if it is Player As turn
and there exists a child labeled as +1. If it is Player As turn and all children
are labeled -1, label it -1. If it is Player Bs turn, label it a -1 if there exists
a child labeled -1, and otherwise label it +1. There are two points to make.
First, this method is equivalent to the approach taken in the combinatorial
game theory approach described in Section 3. Second, at each step, Player
A is taking the maximum value of the winning positions, and Player B is
taking the minimum value of the winning positions.

This second perspective makes some intuitive sense- each player is choos-
ing the ‘best’ possible position from a selection of choices, and can be ex-
tended as follows. Assign +∞ and −∞ to winning positions for Players A
and B, and for all other positions, evaluate them using a formula or algorithm

22

that tries to approximate how much that position favors Player A. Such a
function is called the heuristic function. A well-known example of a simple
heuristic function occurs in chess, whereby pieces on the board are assigned
values, (e.g., a queen is worth 8, a rook is worth 5, a bishop is worth 3, etc.).
Every piece that Player A has adds points to the heuristic score, and every
piece that Player B has deducts points from the heuristic score.

An advantage of using this ‘minimax’ algorithm with heuristic functions
is that it need not be carried out until the very end of the game tree, i.e.,
until a value of ±∞ is reached. Rather, we can specify through how many
levels, or ‘plies’ we would like to carry out the algorithm and work forwards.
The greater depth we choose, the greater analytical power we obtain for a
given position.

Another way to increase analytical power is to increase the accuracy of the
heuristic function, with the drawback that more computing time is devoted
to evaluating the heuristic function. In practice, fast heuristic functions are
favored over extremely accurate ones, as this allows the algorithm to search
deeply in the game tree. For the game of Pan, I will introduce a heuristic
function, and show that it is quite fast and accurate.

The heuristic function for Pan used in this essay is implemented in the
procedure evalscore(A,B). This procedure evaluates the position (A,B),
with Player A to move first, and returns a heuristic value. The formula used
to compute this value is based on the following two principles, given a Pan
position:

1. All else being equal, the player with more high-ranking cards and fewer
low-ranking cards generally has an advantage.

2. All else being equal, the player with fewer groups of cards generally has
an advantage. Each card in the hand counts as its own group if there
are 2 or fewer of that card in the hand, or if there are 3 of fewer of that
card and it is not a 9. Each set of three Nines (not the 9 of hearts) and
four of any other rank also counts as a single group.

To illustrate Principle 1, consider a game of 6-Pan. Aces are the highest
ranking cards in this game, and the player with many or all of the aces
generally has an advantage. Supposing that Player A has all the Aces, he
may ‘bully’ B into taking cards on the pile. For instance, if the pile is
[4, 0, 0, 0, 0, 0], Player A may discard an Ace, and B is forced to take the Ace

23

along with two Nines. On the next move, A can discard a card greater than a
9, thus forcing B to ‘dig out’ in order to place his two Nines. We can also see
from this example that having too many Nines makes things difficult, and
requires high-ranking cards to help the player’s position. For instance, in
order for B to ‘dig out’ to place a 9, he must cause A to take some cards and
expose a 9 as the top card on the pile. He may try to do this by discarding
an Ace. Now A has a choice of whether to take the Ace and a 9 (and the card
he just discarded) or discard another Ace. If he decides to discard another
Ace, B will likely take so as to have two Aces, and so on.

The second principle ensures that the algorithm also places value on the
number of turns it would take to discard all the cards in the hand. This
includes the idea that the 3-Pan hand [1, 4, 1] is better than [1, 3, 1]. This
takes advantage of the third rule of Pan, allowing complete sets of a given
rank to be discarded in one move. This principle also helps “smooth” the
behavior of heuristic function for positions just outside of the given depth.
Without this principle, the algorithm would favor hands that “hoard” high-
ranking cards. For instance, we would want the algorithm to prefer the hand
[0, 0, 1] over [0, 0, 3].

In evalscore, I implement each of these principles by computing a sepa-
rate score for each of them. The final score is the sum of these two numbers.
For Principle 1, I compute a rank-weighted average of all the cards in the
player’s hand minus the cards in the opponent’s hand. That is, given the
position (A,B) with A to move, define

Score1(A,B) =
k∑

i=1

(Ai −Bi)(i−
k + 1

2
).

Note the multipliers (i− k+1
2

) which are just the numbers 1, 2, 3, ...k translated
to be centered around zero.

For the component of the score addressing Principle 2, let NA represent
the total number of groups of cards Player A has, and NB be the total number
of groups of cards Player B has. Define

Score2(A,B) =
1

2
(NB −NA).

Finally, define the heuristic function

f(A,B) = Score1(A,B) + Score2(A,B).

24

The Maple procedure evalscore(A,B) returns f(A,B). Note the scalar
1
2

in Score2, indicating that of the two scores, Score1 has more influence over
the final heuristic value.

Note that both Score1 and Score2 are anti-symmetric in the sense that

Scorei(B,A) = −Scorei(A,B)

and therefore

f(B,A) = Score1(B,A) + Score2(B,A)

= −Score1(A,B)− Score2(A,B)

= −(Score1(A,B) + Score2(A,B))

= −f(A,B)

so f is also anti-symmetric.
This property of f makes intuitive sense: if Players A and B switch hands,

the magnitude of the advantage one player has over the other should stay
the same, while the sign should change. Furthermore, if Players A and B
both have the same hand with a large number of cards, we would expect that
the relative advantage one player has over the other would be negligible. In
other words, we would expect f(A,A) to be close to zero. In fact, as with
any anti-symmetric function,

0 = f(A,A)− f(A,A)

= f(A,A) + f(A,A)

= 2f(A,A)

so that f(A,A) = 0.
Note there are certainly positions where both players have the same hand

but the position is winning for Player A, for instance, the 7-Pan position
[0, 0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 0, 0, 2]. However, the idea is that the heuristic
function approximate a player’s advantage for a great number of different
positions to avoid searching deeply in the game tree. There will always be
cases in which the heuristic function is ‘wrong’, but we wish to obtain a fast
heuristic function that is reasonably accurate for most positions.

As a check for the reasonableness of the heuristic function, I performed
an analysis using a random sample of 2000 4-Pan hands. For each position,
when the product of the value of the heuristic function and the label from

25

winorlose was negative, this was coded as a miss. For instance, when the
heuristic function returned a negative value and winorlose labeled the po-
sition as ‘1’, this was coded as a miss. When the product of the result of
the heuristic function and the label from winorlose was positive, this was
coded as a hit. The result of the analysis is reported in Table 8.

hits # misses % accuracy

1362 361 79.0%

Table 8: The accuracy of the heuristic function f on a random sample of
2000 4-Pan hands.

The result is that the heuristic function made the ‘correct’ determination
79.0% of the time. This provides confidence that the heuristic function is ac-
curate enough to be used in the minimax algorithm. Furthermore, the heuris-
tic function is very fast, since it uses only a few basic arithmetic operations.
For instance, a random 5000-Pan position, consisting of two 5000-component
vectors, takes 0.016 seconds to evaluate, according to Maple.

The recursive procedure minmaxfinal(A,B,depth, maximizingPlayer)

implements the minimax algorithm for Pan in Maple, using the heuristic
function f discussed above. When maximizingPlayer is set to true, Player
A is assumed to be the maximizing player, and Player B the minimizing
player. The result is a vector with two components. The first component is
minimax score for the position, and the second component is the child of a
position which achieves that score.

5 Refining and applying minimax to Pan

5.1 Alpha-beta pruning

Although the minmaxfinal procedure does work for small k, it is quite slow.
For instance, the following is a typical computation in Maple, evaluating a
5-Pan position to a depth of 10:

settime := time():

minmaxfinal(x, 10, true);

time()-settime;

26

[3/2, [[1, 2, 2, 3, 1], [1, 2, 2, 1, 3]]]

128.982

The fact that this computation took over two minutes makes the proce-
dure impractical for use with higher values of k; there is almost no benefit
over the combinatorial game theory approach. Fortunately, there are various
ways of making the minimax algorithm more efficient. One such way used
in this paper is alpha-beta pruning. In this method, branches of the game
tree which are logically impossible to influence the result of the minimax
algorithm are discarded, thereby increasing the efficiency of the algorithm.

The recursive Maple procedure
alphabeta(A,B,alpha,beta,maximizingPlayer) implements the alpha-beta
pruning algorithm for the Pan position (A,B). Initial values for alpha and
beta should be -infinity and infinity, respectively, and maximizingPlayer
should be set to true.

The speed improvements gained by alpha-beta are dramatic. For in-
stance, with the above 5-Pan position, the following computation takes just
over 9 seconds:

settime := time():

alphabeta(x, 10, -infinity, infinity, true);

time()-settime;

[3/2, [[1, 2, 2, 3, 1], [1, 2, 2, 1, 3]]]

9.173

In fact, the speed savings are highly dependent on the order in which the
moves are examined. If promising moves are examined before worse moves,
the alpha-beta cutoffs can be triggered early. In Pan, this can be done by
first considering the move which discards the card(s) with the smallest possible
rank. This includes placing a full group of 3 or 4 cards on the pile. Then,
discarding progressively higher rank cards are considered. Lastly, taking at
most 3 cards from the pile is considered. The procedure legalmoves(A,B)

lists legal moves in this way. When this adjustment is made to the ordering,
the above computation was done in 1.794 seconds!

27

The latest version of the procedure alphabeta already includes these
modifications to the order of moves, and hence enjoys significant speed im-
provement to a random move ordering. The reader can check the running
time of minmaxfinal versus alphabetapan for a random position using
randpos.

I will now show that the procedure alphabeta using the evalscore pro-
cedure for the heuristic function produces reasonable results. In a similar way
that the heuristic function was checked for reasonableness above, the result
of alphabeta can be compared with the label of the position in winorlose.
Whenever the sign of the two values agreed, this was coded as a hit, and
when the sign disagreed, this was coded as a miss. This was done for a ran-
dom sample of 2000 4-Pan positions, the results of which are summarized in
Table 9.

depth # hits # misses % accuracy

2 1513 210 87.8%
6 1555 168 90.2%
10 1599 124 92.8%
14 1623 100 94.2%

Table 9: The accuracy of the alpha-beta pruned minimax algorithm on a
random sample of 2000 4-Pan hands.

Note that all of the percentages in Table 9 are above 79.0%. This makes
sense since the minimax algorithm is expected to improve upon the heuristic
function alone. In general, the accuracy of the algorithm improves steadily
as the depth increases.

A final check for the alpha-beta pruned minimax procedure is presented
in Table 10. In this check, 2000 random 4-Pan hands were used to analyze the
suggested moves provided by the second component of the vector returned by
alphabeta. Recall that this entry represented a position for which the min-
imax algorithm achieved the value returned by the minimax algorithm, and
therefore represents a move that should in some sense be ‘best’. The move
suggested by the procedure was coded as a ‘good’ move whenever winorlose
labeled the position (A,B) as winning for Player A and the winorlose also
labeled the suggested move as winning for Player A. Similarly, a suggested
move was coded as ‘bad’ whenever winorlose labeled the position (A,B) as

28

winning for A but the labeled the suggested move as winning for B.

depth
good move
suggestions

bad move
suggestions

proportion of
good moves

2 1016 10 .990
8 1037 3 .997
12 1042 0 1

Table 10: The proportion of ‘good’ move suggestions for the alpha-beta
pruned minimax algorithm on a random sample of 2000 4-Pan hands.

The alpha-beta pruned minimax algorithm allows a human player to play
k-Pan with an AI player for reasonably small k. This is implemented in the
Maple procedure alphabetapan(A,B,depth,[advisor]). In this procedure,
the user provides a position (A,B) representing the starting position for the
game, with the user to move first. depth represents the depth used in the
alpha-beta pruned minimax algorithm, and the optional advisor value may
be set to 1 to get move suggestions from the game engine. Below is an
example output once the procedure is run:

> alphabetapan([1, 3, 2], [2, 1, 2], 14);

"Pile:", [1, 0, 0]

"Choose a legal move:", [0, 3, 2], [1, 2, 2], [1, 3, 1], "undo"

The user can enter any hand from the legal moves provided in the output.
Note that only a single hand may be entered in the dialog box. For instance,
entering [1, 2, 2] represents choosing the position [1, 2, 2], [2, 1, 2] with Player
B to move. Note also that at any time, the user may undo the last move
chosen by entering “undo” (with the quotation marks). In practice, a depth
of 14 typically results in perfect play for k ≤ 3 and near-perfect play for
k = 4 while keeping the run-time for the procedure at acceptable speeds for
k ≤ 4.

5.2 Deciding when to take from the pile

The procedures developed in this paper can be used to address the third
guiding question presented in the Introduction. That is, whether computa-
tional techniques can be of any guidance in deciding when a player should

29

take the top three cards from the pile. To examine this, a random sample
of 4000 4-Pan positions was selected, and of these, only the positions with
the pile having more than three cards were selected. alphabeta was run on
these positions with a depth of 8. Recall from section 5 that with a depth
of 8, alphabeta suggested a ‘good’ move 99.7% of the time in 4-Pan. The
suggested moves were then analyzed to see which ones the procedure had
recommended taking three cards from the pile. The results of this analysis
can be found in Tables 11 and 12 and indicate that of the 3291 positions
with 4 cards or more on the pile, the alphabeta algorithm recommended the
player take for 2344 of these positions, or about 71% of the time.

top 3 cards
of pile

positions
occurring

positions
where take

is best
ratio rank sum

[0, 0, 0, 3] 759 724 .954 12
[0, 0, 1, 2] 475 419 .882 11
[0, 1, 0, 2] 169 145 .858 10
[0, 0, 2, 1] 438 353 .806 10
[1, 0, 0, 2] 55 44 .8 9
[0, 1, 1, 1] 192 148 .771 9
[1, 1, 0, 1] 54 39 .722 7
[0, 2, 0, 1] 152 100 .658 8
[0, 0, 3, 0] 239 153 .640 9
[1, 0, 1, 1] 52 33 .635 8

Table 11: The relative strengths of the top three pile cards in 4-Pan.

This figure is further broken down according to the top three cards of the
pile. For instance, row 3 of Table 11 indicates that out of the 438 positions
examined having two Jacks and a Queen on the top of the pile, taking these
cards was the best move about 81% of the time, as judged by the algorithm.
Thus, the top three cards can be ranked by relative strength. This can serve
as a rough guide for when to take from the pile. In the fifth column, the
sum of the ranks of the top the cards is reported. In the previous example,
the rank sum is 3 + 3 + 4 = 10 (two Jacks and a Queen). Note the general
decreasing trend in the rank sum of the top three cards as the ratio decreases.
There are several exceptions, including [0, 0, 3, 0] which was recommended to

30

be taken a good deal less often than other piles with the same rank sum.
The remaining possibilities for the top three cards of the pile are reported in
Table 12. Note the large jump in the proportion for those positions where a
take is not the best move the majority of the time to those where a take is
the best move the majority of the time.

Tables 11 and 12 suggest that the decision about whether or not to take
can often be made on the basis of the values of the top three cards of the
pile alone. This is intuitive because taking two Nines and a Jack is going
to seldom seem like a good idea no matter what the cards the player may
have in the hand. The deflated values of some of top three cards can also be
explained. For instance, taking three Jacks will result in the player having
exactly three Jacks on the hand about half the time. By the second principle
in Section 4, this is undesirable since it will take that player 3 extra turns to
discard all of his cards, unless he manages to obtain the fourth Jack, which
he is unlikely to receive ‘for free’.

These results also suggest that the heuristic technique of evaluating the
rank sums of the top three cards of the pile could be used for any k-Pan game.
For a game of k-Pan, the rank sums vary from 3 to 3k. The midpoint of the
rank sums occurs at 3(k+1)

2
. Note that the break in the rank sums between

Table 11 to Table 12 occurs at roughly around 7 or 8 and 3(4+1)
2

= 7.5.

top 3 cards
of pile

positions
occurring

positions
where take

is best
ratio rank sum

[0, 1, 2, 0] 171 78 .456 8
[2, 0, 0, 1] 31 13 .419 6
[0, 2, 1, 0] 143 54 .378 5
[1, 0, 2, 0] 42 13 .310 7
[1, 1, 1, 0] 66 17 .258 6
[0, 3, 0, 0] 85 7 .082 6
[1, 2, 0, 0] 68 2 .029 5
[2, 1, 0, 0] 40 1 .025 4
[2, 0, 1, 0] 46 1 .022 5
[3, 0, 0, 0] 14 0 0 3

Table 12: The relative strengths of the top three pile cards in 4-Pan. (cont.)

31

Note that the relatively small depth used in the procedure alphabeta

causes some limitations to the analysis. When one player has a large advan-
tage, the procedure may falsely identify a move as ‘best’ even when it is not.
For instance, for the position [0, 3, 0, 4], [2, 1, 2, 0](P = [2, 0, 2, 0]), the correct
move is to place a Queen. But with depth = 8, the computer evaluates taking
to have the higher minimax score. The fact is that both moves stay winning
for Player A, and so in this sense are both ‘good’, although one unnecessar-
ily lengthens the game. In general, a higher depth would be desirable, as it
may take many moves to evaluate 4-Pan positions. The trade-off, of course,
is that the computing time can quickly become prohibitive in this type of
analysis.

6 Other Pan-like games

It is difficult to ignore the seemingly arbitrary nature of some of the rules
of Pan. For instance, why take at most three cards in rule 2? One might
consider defining the more general (k, j)-Pan, played with k ranks, allowing
to take j cards or the number of cards on the pile other than the 9 of hearts.
However, there is some sense in which j = 3 is the most natural choice. When
j = 1, the game is uninteresting since there is never any way to ‘dig out’ in
order to place lower cards in the hand. Once a player is unable to place a low
card, he will never be allowed the opportunity again. When j = 2, drawing
is easy. Supposing a game with 6 ranks (i.e., a game of (6,2)-Pan) and Player
A wishes to force B to take a 9 on the pile, he may play an Ace. Regardless
of whether B has an Ace, he may simply take the Ace and the 9 and, after
A places the card he wishes, discard the Ace on the pile. A and B may be
forced to go back and forth like this, neither one wanting to give up another
Ace, and the game ends in a draw. Thus, j = 3 is the smallest j for which
the game is interesting.

Other rules, however, do seem to be more arbitrary. It might be inter-
esting to disallow placing more than one card at a time (i.e., removing rule
3). Note that even if this is done, the claim and corollary in Section 2 would
still apply since they do not rely on rule 3. Also, the game need not be
played with 4 suits, but instead (with some imagination) n suits. Rule 3
could be modified to allow any full set of cards of any particular rank could
be discarded at any time, if not removed entirely.

Finally, the 9 of hearts need not have a special status at all. There is no

32

real reason why the 9 of hearts should not be taken in the hand. Though in
practice, this card serves to decide who goes first, that could be decided by
other means, for instance, who dealt the cards, a flip of a coin, etc. Alterna-
tively, all luck could be removed from the game by using the same starting
position every time, such as [2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2]. These variations
are outside the scope of this essay, but could serve as a basis for further
study.

7 Acknowledgments

I would like to thank my wife, Aneta, for introducing me to the game of Pan
and for supporting me emotionally throughout my studies. I would also like
to thank my father-in-law, Krzysztof Biesiadecki, for playing Pan with me
for hours and beating me repeatedly. Finally, I thank my advisor, Dr. Doron
Zeilberger, as well as all the professors on my committee: Dr. János Komlós,
Dr. Michael Saks, and Dr. Robert Wilson. I would also like to thank all of
my math professors, who patiently taught me and encouraged me to learn
more mathematics. Finally, a special thanks to my friends, Kellen Myers and
Michael Solway, for their helpful feedback on this essay.

33

