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ABSTRACT OF THE DISSERTATION

An Experimental Mathematics Approach to Some

Combinatorial Problems

By ANTHONY ZALESKI

Dissertation Director: Doron Zeilberger

While computers have long been used for numeric computations, their growing power
to handle symbolic manipulations is becoming increasingly useful in mathematics. Our
“experimental mathematics” approach uses symbolic computing as an essential tool
to both conjecture and prove new results, often with little or no human intervention.
Here, we will illustrate how we used experimental mathematics to explore several com-
binatorial problems. Namely, we will start out with a brief analysis of the generating
functions of some statistics associated with random walks in the plane. Then, we will
do the same for certain families of simultaneous core integer partitions; this consti-
tutes the bulk of the thesis and contains our main results. We will briefly cover our
attempts to apply computer implementations of inclusion-exclusion to Ramsey theory
and Boolean satisfiability. Finally, we will introduce a Boolean analog of Erdés’ integer

covering systems and go over some related results and conjectures.
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Chapter 1

Introduction

The use of computers in mathematics is becoming increasingly prevalent. However,
computers are often used merely as calculators, crunching floating-point numbers and
computing numerical results. Symbolic computing packages (Maple, for example) make
it possible to employ computers for more meaningful work. Often, computers can be
programmed to conjecture and provide rigorous proof of new results with little or no
human input. Further, the work done by the computer may be so involved that it would
be virtually impossible to do by hand. The computer is no longer a secondary tool; it
becomes an indispensable co-author. This is the gist of ezperimental mathematics [4].
Here, we will use experimental mathematics to approach several areas of combinatorics:
random walks, simultaneous core partitions, Ramsey numbers, and Boolean functions.
An overall goal is to illustrate how our experimental mathematics methods proved
fruitful in each of these diverse areas.

Note that some of the following material is adapted from our papers published in
journals and/or the arXiv. Where this is the case, it is noted at the beginning of the
chapter or section.

Also, the supporting Maple packages and computer output referenced throughout

this thesis are listed in Appendix [A] Finally, see Appendix [B] for an index of notation.

1.1 Random Walks

In Chapter 2| we will discuss Feller’s coin tossing experiment [13]. A fair coin is repeat-
edly tossed, and a dollar is won or lost depending on each outcome. The accumulated
winnings can be seen as a random walk in the plane, where steps one unit up or right

are allowed. At the nth time step, we can define various statistics for the walk: the



number of previous time steps at which we were losing (had negative money) or the
number of times we were breaking even, for example. We will use the computer to de-
rive explicit formulas for the moments of these random variables in terms of n. We will
also explain how to use dynamic programming techniques to analyze the asymptotics

of the moments when arbitrary steps are allowed, or higher dimensions are involved.

1.2 Simultaneous Core Partitions

Next, in Chapter [3| we will cover the topic of simultaneous core partitions. A partition
is a way to break up a positive integer as a nonincreasing sum of positive integers, called
the parts. For example, 9 =4 4+ 3 + 1+ 1 is way to partition 9, which we call the size
of this partition. Partitions are prevalent in number theory, representation theory, and
statistical mechanics [1].

A partition can be graphically represented by a Young diagram, a left-justified ar-
rangement of boxes where the number of boxes in the kth row from the top is the kth
part of the partition (see Figure . Each box has an associated hook, which consists
of the box itself together with those to its right and below it, and hook length, which is
the number of boxes comprising the hook. A partition is an s-core if its Young diagram
has no hooks of size s; it is an (s, t)-core if neither s nor ¢ appear as hook lengths in its
young diagram [for example, the partition in Figure is a 6-core and an 8-core but
not a (6, 7)-core]. It is the latter simultaneous core partitions that we will study here.

It turns out that the number of (s, t)-core partitions is finite iff ged(s,t) = 1. For
example, for each s, there are finitely many (s, s+ 1)-core partitions. Straub [22] proved
that the number of such partitions is enumerated by the Fibonacci sequence. We will
expand on his results by considering the random variable that is the size of such a
partition chosen uniformly at random. We will use the computer to compute explicit
formulas for the moments of this random variable in terms of s and analyze the limiting
distribution as s — co. Then, we will conduct similar analyses of other families of core

partitions and investigate what happens if only odd parts are allowed.
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Figure 1.1: Young diagram of the partition 9 = 443+ 1+ 1, showing the hook lengths
of each box.

1.3 Inclusion-Exclusion

In Chapter [ we will switch gears to introduce an idea we had for solving some combina-
torial problems. The rationale is to implement the inclusion-exclusion formula—which
is often truncated and used to bound certain probabilities—with a computer, enabling
us to tighten the bounds by computing more terms in the sum. This chapter represents
some “long-shot” attempts at big problems, so we include it with the disclaimer that
our results are not as promising as in other chapters.

Our inspiration for a computer implementation of inclusion-exclusion came from
the problem of bounding diagonal Ramsey numbers. The famous Erdds-Szekeres lower
bound uses a simple inclusion-exclusion based bound to prove existence of a coloring
of K, with no monochromatic r-clique [21]. Our idea was to improve this bound by
adding more terms of the inclusion-exclusion sum.

We will use a similar technique to approach Boolean satisfiability (SAT). Basically,
the problem of SAT is as follows: given a certain Boolean expression f in n variables
T1,...,Tyn, determine whether there is an assignment to the variables that makes f
evaluate to True (or 1). For example, (z1 V x2) A T3 is satisfiable: we can set x; =

1,29 = 0. On the other hand, 1 A Z1 is clearly not satisfiable.



SAT was the first problem proved to be NP-complete [8]; there are no known poly-
nomial time algorithms to find whether an arbitrary Boolean function is satisfiable. We
will illustrate how inclusion-exclusion can be used to bound the probability of satisfac-

tion, and we will give some concrete statistics derived from random input.

1.4 A Boolean Analog of Erdés Covering Systems

The dual of SAT—finding whether a Boolean function is a tautology—is equivalent to
checking whether a set of sub-cubes of the Boolean cube form a covering. Formulated
this way, a tautology is analogous to a covering system of the integers by congruence
classes. Such coverings were introduced by Erdés [11]. In the final chapter of this thesis,
we will adapt certain notions from integer covering systems (for example, distinct and
exact coverings) to the case of Boolean functions, and we will introduce some new

results and conjectures.



Chapter 2

Random Walks

This chapter is adapted from the article [29).

2.1 Introduction: Feller’s Coin Tossing Statistics

2.1.1 Coin Tossing and Walks in the Plane

In [13], Feller considers the following experiment. Suppose a gambler tosses a coin
finitely many times, winning a dollar whenever heads comes up and losing a dollar when
tails appears. The evolution of the game can be described by a string w = wyws - - - wy,
where w; € {—1,1} describes the outcome of the ith coin toss.

By making the association —1 = r (a right step) and 1 = u (an up step), we can
also interpret a string w as a walk in N? starting from (0,0). For example, the string
ur represents a game in which a dollar is won and then lost. Equivalently, ur is a walk
from (0,0) — (0,1) — (1,1). We shall use the terms “game,” “string,” and “walk”

interchangeably.

Definition 2.1. Let W be the set of all such walks. We have the following walk statistics

(functions from W — N):
e The length (number of steps), l(w);

e The number of losing times (points where the walk is below y = x):

i i i1
ar(w) == i:ij<00r ijzo and ij<0 ;
j=1 j=1 j=1

e The number of break-even times (points ony = x):

i
az(w) := i:ZwizO ;
j=1



o The last break-even time:
i i
az(w) := max i:ij =0 and ij >0 forr>ip;
j=1 j=1

e The number of sign-changes (points where the walk crosses y = x):
i—1 i1
ag(w) := i:ij-ij<O
j=1 j=1
Further, we define W,, to be the set of n-step walks in W, and Wy, ,, to be the walks

to (n,n).

2.1.2 Old Results

Theorem II1.4.1 in [13] states that there are (2:) (QZ:zk) walks w € W, satisfying
a1 (w) = 2k. For n large and fixed, the distribution of a; resembles (modulo scaling)
1/ \/m , 80 it is sometimes called the discrete arcsine distribution. It is u-shaped,
meaning that, surprisingly (or not surprisingly, if you believe in luck), most walks are
either winning for most of their duration or losing on the majority of flips.

Theorem II1.9 in [13], the Chung-Feller theorem, says that the number of walks to
(n,m) with 2k losing times is given by a Catalan number and is independent of k. In
terms of generating functions:

Z 9 (w) = ni : <2:’> kizot%.

'weWn,n

Finally, in [37], Zeilberger uses Maple to evaluate the “grand generating function”

Z ZI(W)tflll(w)tg2(w)t§3(w)ti4(w)
weWw

as a (very messy) algebraic function of z,t1,ts, t3, 4.

These results are illuminating for this problem, but they are gotten through ad hoc
methods. So, for example, it is not obvious how to derive analogous results for walks
in higher dimensions, or walks where non-standard steps are allowed.

Here, we shall give an alternative method to analyze the statistics of a very general
class of walks and approximate the long-run behavior of their moments. But first, let

us see if we can discover a few more exact results using the analytical approach.



2.2 Exact Results

2.2.1 Moments of Up-Right Walks to (n,n)

Suppose we uniformly randomly pick a walk w € W,,,. Then we can think of a;(w)
as a random variable. For each n, a1|W, , (] = “with sample space”) has a certain
distribution, so it is natural to wonder about the limiting distribution as n — oco. For
example, is it asymptotically normal?

Recall that the kth straight moment of a random variable X is given by
E[X*].

For example, when & = 1, we get the mean or expected value, p. Further, the kth

central moment, or moment about the mean, is

E[(X — p)¥].

For example, the second central moment is the variance, o2. Finally, the kth standard-
ized (central) moment is the ratio of the central moment with the kth power of the

standard deviation:
E[(X — 4]

ok

The sequence of standardized moments of a random variable is a “fingerprint” of its

distribution; for example, the standard normal distribution has moments 0, 1,0, 3,0, 15,0, 105, . ...

In the case of a1|W,, 5, we can find the moments in terms of n, which is not surprising
since a; is essentially uniform by the Chung-Feller rule.

Using the procedure ChungFeller in [37], we find

T ) - 2 .
wEWp n, n€EN V—dz+ T+ vV—dzt2 +1

Now we use convert (%,FPS,z) to convert this function to a formal power series in

z. By looking at the coefficient of 2", we obtain the generating function

Fu(ty= Y ),

weEWn n



as a function of n! To see it for yourself, use ChungFellerGF(t,n) in the Maple
package (keyword Feller in Appendix [A).

From this generating function, it is easy to compute the moments as functions of
n: repeatedly apply the operator td;, then substitute ¢t = 1, and normalize by the size
of the sample space. This gives the straight moments, from which one can obtain the
central and standard moments. This is done in ChungFellerMoment. You can easily

verify the following;:

Proposition 2.2. The number of losing times of a walk chosen uniformly randomly
from Wi, , has mean n and variance n?/3+2n/3, and its third through tenth standardized

moments about the mean approach 0,9/5,0,27/7,0, 9,0,243/11 as n — oo.

Analogously, for as, the number of visits to the diagonal y = z, we have

1
F(z,t) := Z Znee(w) — .
weWn o neN tv—4z+1—-1t+1

Unfortunately, Maple cannot convert this to a formal power series in z. How-
ever, Fi(z,1) is convertible to a formal power series, so we can compute E[ag|W,, ] =
[z"]Fy(z,1)/ (27?), as a function of n. In a similar way, we can find higher moments: the
idea is to repeatedly apply the operator t0;, substitute t = 1, and then expand as a

formal power series in z.

The moments of ay are surprisingly complicated in comparison with those of aq:

Proposition 2.3. The number of visits to y = = of a walk chosen uniformly randomly

from W, has mean and variance

—(2n)!+4" (n)* 16" (n))" +47 (n))? (2n)! — 4n (2n))* = 2 ((2n)1)?
(2n)! ’ ((2n))? ’

and its third through fifth standardized moments about the mean approach

5 V(T —3) 3% —32 V7 (r? 4+ 57 — 25)
(771_4»4)3/2’ 7T2—87T+16, (*7’[’4’4)5/2

as n — 00.



2.2.2 Forward King Walks

Now we examine another special set of walks:

Definition 2.4. Let K,, ,, be the set of walks from (0,0) — (n,n) with steps in {r,u,d} =
{(1,0),(0,1),(1,1)}. Let K := U, ey Knn- For w € K, let n(w) be the n such that

w e Kyp.

Think of K as the set of journeys possible for a forward-marching King that end on
the line y = z. At each move, we take a step from {r,u,d} (right, up, or diagonal).

For a set £ C K, define the generating function

Fg(z,t) = Z 2w gar(w)

wek
We we shall find an algebraic expression for Fi(z,t). The idea is to convert facts

describing walks in K to equations involving generating functions.
Definition 2.5.
e Let ¢ denote the empty walk.

e Juxtaposition of two sets A, B of walks denotes concatenation:
AB = {wjwy : w1 € A,wy € B}.
If A or B is a singleton, we drop the braces: e.g., aB := {a}B for a walk a.
o The Kleene star of a set of walks is its closure under concatenation:

E* ::{a}UEUEEU---2{8182---8k2k€N,8iEE}.

e We define the star of a generating function F to be

F*=14+F+F>4+...= ——.

Now, let N be the negative walks in K, i.e., walks satisfying y < x, save for the first

and last points. Let ® be the nonpositive walks, i.e., walks with y < x. Any negative
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walk is a right step followed by a nonpositive walk followed by an up step: N = rdu.
Note that every point of w € ® is counted as a losing time in rwu, so defining

R )

wed
we have
FN = thpq;.. (21)

Next, any nonpositive walk consists of diagonal steps and negative walks. So & =
d*(Nd*)*, and

Fy = (2t)*(Fn(2t)")". (2.2)

It is child’s play for Maple to solve and for Fy(z,t). Now let P be the
set of positive walks, i.e., walks in y > x, except for the endpoints. Positive walks are
simply negative walks reflected about y = x, so Fp = Fn(z,1) (all positive walks have
zero losing times).

Finally, any forward King walk consists of diagonal steps, negative walks, and pos-

itive walks: K = d*(Nd* U Pd*)*. In terms of generating functions,
Frg = Z*(FNZ* + sz*)*,

and we are finished! We have Fi(z,t) as an algebraic expression. Of course, it is rather
messy, so we do not record it here. To see it for yourself, use ForwardKingGF(z,t) in
the Maple package. Unfortunately, Fx is too complex to be amenable to either of the

moment-finding methods discussed previously. However, we should not lose hope. ..

2.3 Numerically Analyzing Moment Asymptotics

2.3.1 Recursive Enumeration of Walks

We started with steps in {(1,0), (0,1)}. Then we added the diagonal step (1,1). Now

let us take the affair even further.

Definition 2.6. Given S C N2, let W9 be the set of finite walks from (0,0) with steps

in S. For (a,b) € N2, let ng contain walks of W9 ending at (a,b).
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In the S = {(1,0),(0,1)} case, we were able to calculate formulas for the moments
of allW;g » in terms of n. We cannot expect to do this in general. Indeed, even in the
(still very symmetric) case S = {(1,0),(0,1),(1,1)}, we could not find nice expressions
for the moments.

However, we can fiz (a,b) € N? and focus on the finite set of walks W(f:b. Then the

generating function

is a finite polynomial in ¢, with easily computable moments. Further, given fixed S and
(a,b), we can make use of the fact that
S
Wa,b = U W(a,b)—s{s}
seS
to compute Fyp(t) with a recursive procedure; this is done in F2G. So for each (a,b),

the moments of aﬂWfb are can be found with a computer.

2.3.2 Asymptotic Storybooks

The procedure ChungFellerBook2D(S,M,K1,K2) uses F2G to compute the expectation,
variance, and standardized moments three through M of a1|W,;L5:;L for " € S, n =
K1,...,K2. It uses this data to guess the asymptotic behavior of the moments as
functions of n. We use the ansatzes Cn for expectation, Cn? for variance, and C for
the third and higher standardized moments.

So, for each S’ C S, a theorem about the asymptotic behavior of walks with steps
in S’ is generated (step sets producing trivial theorems are automatically excluded).

Of course, we must add the disclaimer that these “theorems” are merely numerical
approximations to the asymptotic behavior of the moments. To be extra safe, the
procedure ChungFellerBook2DSafe runs ChungFellerBook2D twice, with different n-
ranges. For each theorem it computes the constants twice; then it only keeps the
agreeing digits.

In the case S = {(1,0),(0,1)}, where we do know the moments as functions of n,

we can confirm that ChungFellerBook2DSafe gives good results.
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Table summarizes the output of ChungFellerBook2DSafe({[1,0], [0,1],
[(1,11,[2,0],[0,2]1},6,100,110, 190,200) ;. The zeroth column is the set of allowed
steps, where for brevity ij := (7, 7). Columns 1-6 are the asymptotic expectation, vari-
ance, third through sixth standardized central moments. Note that by Proposition
the exact values of the first row are n,nQ/S,O, 1.8,0,27/7 ~ .38571.

Steps 1 2 3 4 5 6
{01, 10} 1.0000n  0.3n>  0.0000 1.800 0.0000 3.86
{01, 20} 0.38n 0.1n? 0.0 0.900 —0.1 1.93
{02, 20} 0.2500n  0.043n> 0.0000 0.900 0.0000 1.93

{01, 02,10} 0.9n 0.27n? 0.0 1.8023 —0.03 3.87
{01,02,20} 0.33n 0.07n®> —0.02  0.90 —0.1 2.
{01,10,11} 0.8n 0.2n> 0.0 1.8 0. 3.9
{01,11,20} 0.666n  0.15n%  0.001 1.80 0.01 3.9
{02, 11,20} 0.5n 0.08n? 0.0 1.80 0. 3.9
{01,02,10,11} 0.81n  0.22n2 0. 1.80 0.0 3.9
{01,02,10,20} 0.80n  0.21n? —0.01 1.804 0. 4.
{01,02, 11,20} 0.6n 0.1n2  —0.01  1.80 -0.1 39
{01,10, 11, 20} 0.81n  0.22n° 0. 1.80 0.03  3.89

{01,02,10,11,20}  0.75n 0.19n2  —0.004 1.8 —-0.011 4.

Table 2.1: Asymptotic moments for walks from (0,0) to (n,n) for various step sets.

2.3.3 Walks in Higher Dimensions

This method easily generalizes to three or more dimensions. If we consider walks in
N3, then we have seven statistics to keep track of the number of times the walk visits
theregions s <y < z,r<z<y,y<ec<z,y<z<z,z<ar<y z<y<za,
and “none of the above.” The corresponding generating function (over walks to a fixed
point in N3) is computed in F3G. Not surprisingly, this procedure is significantly slower

than F2G.

2.4 Conclusion

Many areas still need to be explored. For example, we have focused mainly on the

number of losing times, a;. But the method of Section could also be applied to
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the other statistics in Definition Also, there is much to be done with walks in
higher dimensions. We encourage you to experiment with the Maple package and make

discoveries of your own!
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Chapter 3

Simultaneous Core Partitions

In the previous chapter, we examined an indexed collection of combinatorial objects
(walks), and we used generatingfunctionology and dynamic programming to analyze
the distribution of these objects, including the asymptotics. This general methodology
can be applied to other objects; here, we will use it to study certain classes of integer

partitions.

3.1 Introduction to Core Partitions

A partition of a positive integer n is a nonincreasing list of positive integers (A1, ..., Ag)
summing to n. We say that n is the size of the partition, and Aq,..., A; are the parts.
The Young diagram is a way to graphically represent a partition as an arrangement of
left-justified boxes, where there are A\, boxes in the kth row from the top; see Figure
L1

The hook length of a box in the Young diagram of a partition is the number of boxes
to the right (the arm) plus the number of boxes below it (the leg) plus one (the head).
In Figure the boxes are labeled with their hook lengths. A partition is an s-core
if its Young diagram avoids hook length s and an (s, t)-core if it avoids hook lengths s
and ¢ [3]. Here, we will focus on these latter simultaneous core partitions. (Note: some
literature equivalently defines a t-core to be a partition with no hook lengths divisible
by t.)

The number of (s,t)-core partitions is finite iff s and ¢ are coprime, which we will
assume from now on [3]. Let X, be the random variable “size of an (s,t)-core parti-

tion,” where the sample space is the set of all (s, t)-core partitions, equipped with the
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uniform distribution. In [10], with the help of Maple, Zeilberger derived explicit expres-
sions for the expectation, variance, and numerous higher moments of X ;. The original
paper noted that “From the ‘religious-fanatical’ viewpoint of the current ‘mainstream’
mathematician, they are ‘just’ conjectures, but nevertheless, they are absolutely cer-
tain (well, at least as absolutely certain as most proved theorems),” and a donation to
the OEIS was offered for the theory to make the results rigorous. Later, it was found
that such theory did exist and the results are entirely rigorous; see the updates at the
paper’s site.

Zeilberger also computed some standardized central moments of X, and the limit
of these expressions as s,t — oo with s — ¢ fixed. From this he conjectured the limiting
distribution. Perhaps surprisingly, it is abnormal.

Here, we will investigate what happens if we impose various additional restrictions
on the simultaneous core partitions. We will start out by requiring that the parts
be distinct. The analysis becomes harder in this case, and we will need to examine
various sub-classes of partitions separately. Finally, we will give some results about

simultaneous core partitions with odd parts.

3.2 Partitions with Distinct Parts that are (s,s + 1)-Cores

This section is adapted from our paper [31].

For the case of (s,t)-cores with distinct parts, we do not know closed-formed ex-
pressions for the moments of the size in terms of s and ¢. Instead, we further restrict
to certain indexed families with only one variable index. First, we will consider the
simplest case: (s,s+ 1)-core partitions with distinct parts.

Amdeberhan [1] initiated the study of simultaneous core partitions with distinct
parts and conjectured that the number of (s, s + 1)-core partitions with distinct parts
is given by the Fibonacci number Fsi ;. This was proved by Armin Straub [22] and
Huan Xion [26]. Xion also proved a conjectured expression of Amdeberhan for the
expected size, in terms of a double sum involving Fibonacci numbers. He, we will

go even further, finding the higher moments in terms of s and analyzing the limiting
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distribution as s — oo.

3.2.1 Computing the Generating Function

Given a positive integer s, let Ps be the set of all (s, s+ 1)-core partitions with distinct
parts. Observe that |Ps| is always finite, since ged(s, s+ 1) = 1. Let X, be the random
variable “size of a uniformly randomly chosen partition in Ps;.” Our goal is to have an
efficient way to compute the generating function
Gula) = 3 o
pEP;s
for fixed s. (Here |p| denotes the size of a partition p.) This will then allow us to
compute moments of Xj.
Recall that the perimeter of a partition is the size of the largest hook length.

Straub [22] gives a useful characterization of Ps in terms of perimeters:

Lemma 3.1 (Lemma 2.2 of [22]). A partition into distinct parts is an (s,s + 1)-core

iff it has perimeter < s.

From this, Straub also proved Amdeberhan’s [1] conjecture that the number of

(s, s+ 1)-core partitions with distinct parts is given by the Fibonacci number:
|Ps| = Gs(1) = Fgyr. (3.1)

Lemma gives us a fast way to compute G4(q). Define Py; to be the set of
partitions with [ distinct parts and largest part k. By the Lemma, a partition p is an
(s,s 4 1)-core iff p € Py for some k +1 < s. Define

Grilg) == > "
PEP
This generating function is computed recursively by Gk1(q,k,1) in the Maple package
(keyword Feller in Appendix. Finally, summing Gy, ;(q) for k+1 < s gives us G4(q),

implemented in the procedure Gs(q,s) in the Maple package.
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3.2.2 Conjecturing the Moments

Using Gs(q,s), we can now compute moments of X, for a given s. If we define the

operator L : f(q) — qf’(q), then the kth moment of X is

EX,] = —& p =2 (3.2)

G| _ LG
) Fs+1

g=1
where we have used (3.1]).

Suppose we fix k. Then the numerator, call it P(s), in depends only on s.
Experimental evidence indicates that P(s) is of the form A(s)Fs + B(s)Fs41 for some
polynomials A, B. Further, we can use the procedure GuessFibPol(L,n) to guess A, B
from computed values of P(s).

To summarize, we conjecture that for k fixed, there exist polynomials A(s), B(s)

such that
F

ELXY] = A(s) -

+ B(s), (3.3)

and (for fixed k), these polynomials can be guessed from data supplied by Gs(q,s).

3.2.3 Proving the Conjectures

Now we go over the theory needed to validate the above conjectures. Recall that the

g-binomial coefficient (m;;”)q gives the generating function for partitions whose Young

diagrams fit inside an m x n rectangle. In other words, (mn—:n)

. is the sum of ¢?!, where
p ranges over partitions with < m parts and largest part < n. Let us denote these by

“m X n partitions.”

Lemma 3.2. The generating function (according to size) of partitions A = (A1, ..., Am)
with m distinct parts, each satisfying \; < n, is
m—+1 mn
m
k<n q

Thus,

W= Y Gun@= 3ol ( jn”’L)q.

m=0k<s—m m=0
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Proof. Note that (Z)q is the generating function of m x (n —m) partitions. Given such
a partition p, we can add 1,2,3,...,m to its parts (counting missing parts as having
size 0), producing a partition with exactly m distinct parts of size < n. This increases

Ip| by (m; 1). Further, it is easy to see that this operation defines a bijection. ]

Now, since G(q) is expressed as a g-binomial sum, the theory developed by Wilf and
Zeilberger in [24] guarantees that G4(q) satisfies a recurrence. We use the procedure
gGuessRec in our Maple package to guess the recursion from the first, say, 30 terms of

the sequence {Gs(q)}s, obtaining the following:

Gi(q) =1
Ga(q) =1+¢
Gs(q) = +q+1 (3.4)

Gi(9) =2¢ +¢* +q+1
Gs(q) = Gs-1(q) + ¢*'Gs_3(q) + ¢° ' Gs_a(q).

Later, in hindsight, we were able to derive this recurrence straight from the formula
for G4(q) in Lemma We used Zeilberger’s Maple package qEKHAD (see the book
[19]), which is capable of both finding and rigorously proving recurrences satisfied by
g-binomial sums such as the one in our lemma.

From (3.4)), it follows that the moments of the sequence {G5(q)}s obey the C-finite
ansatz. That is, they satisfy linear recurrences with constant coefficients; see [40].
Thus, we need only check our conjectures for finitely many values of s to prove them.
(In practice, we checked for 70 values of s to compute expressions for up to the 16th
moment. )

With these observations and the help of Maple, we are now ready to find explicit
expressions for the moments of X;. Fix k. We use the recursion to efficiently
compute the kth moment of X for many values of s. Following Section [3.2.2] we then
conjecture an expression for the k™ moment of X, which fits the template from .
By the above argument, our conjectured expression is proven for all s if it holds for

sufficiently many values of s.



19

For moments two and higher, it is more meaningful to compute the central moment.
Recall that the kth central moment of X is E[(X — u)¥], where u is the expectation.
For example, the second central moment is the variance.

Expressions for up to moment 16 may be found in the Maple output file theorems. txt

listed in Appendix [A] Here is a small sample of the results:

Theorem 3.3. Let X be the random variable “size of a uniformly random (s,s + 1)-

core partition with distinct parts,” and Fs denote the sth Fibonacct number. Then,

(i)

E[X]_i532F5+1—65F5+75F3+1—6F3
50 Fyi1 '

(it)
Var(Xs) =
(20 F,Fy 1 + 1053 Fy 12 — 2752 F,? + 33 s FyFoyq
+ 57 5% Fyy 12 — 54 5F% — 32 5F,Fy 1 + 65 sF, 1>

—2TF® — 45 F Fy1)/(1875F2, ).

(iii) The third central moment of X is asymptotic to

— (3/31250)(6551¢3 — 40s1¢? + 22253¢% — 405 — 21853 $>
— 65520 — 10653p — 338s%¢% — 39050 + 365> — 252 + 1105¢>
+ 1085 4 1545¢ + 2704 + 1085 + 90¢ + 36)¢p 2,

where ¢ is the Golden Ratio.

Note that in (iii), we print the asymptotic result simply because the exact expression
would take up too much space. Also, (i) is an explicit version of Conjecture 11.9(d)

made by Amdeberhan [1] and later proven by Xiong [26].

3.2.4 Limiting Distribution

Recall that the kth standardized (central) moment of X is E[(X — u)*]/o*, where

w is the expectation and o is the standard deviation, and the normal distribution
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has a sequence of standardized central moments which alternates between 0 and odd
factorials: 0,1,0,3,0,15,0,105,0,945,....

In theorems.txt, the limit as s — oo of the first 16 standardized central moments
of X, are shown to coincide with that of the normal distribution, giving strong evidence

for the following:

Conjecture 3.4. X, is asymptotically normal. That is, the distribution of (Xs —
E[Xs])//Var(Xs) converges to the standard normal distribution as s — oo.

Note that in [10], the limiting distribution of “size of an (s, t)-core partition” (with
the distinct parts condition dropped) was proven to follow an abnormal distribution.

An approach inspired by [38] might be useful in proving Conjecture The main
idea is to keep track of the leading terms in the expressions of the moments, and perhaps

use (3.4]) to derive a recurrence for the limiting moments.

3.3 Partitions with Distinct Parts that are (2s + 1,2s + 3)-cores

This section is adapted from our paper [32].

At the end of his beautiful paper, [22] (where, among many things, the author
describes a beautiful new elegant partition identity between odd and distinct integer
partitions which preserves the perimeter), Armin Straub conjectured two intriguing

enumeration results:

Theorem 3.5 (conjectured in [22], first proved in [28]). The number of (2s+1,2s+3)-

core partitions with distinct parts equals 4°.

Theorem 3.6 (conjectured in [22], first proved in [28]). The largest size of a (2s +

1,25 + 3)-core partition with distinct parts is 57 (5s+11) s (s +2) (s +1).

The proofs in [28] use ingenious, but rather complicated, combinatorial arguments.
Here, we will give new, much simpler, “experimental-mathematical” proofs, that can be
easily made rigorous. But our main purpose is to establish explicit expressions for the
expectation, variance, and all the moments up to the seventh. With more computing

power, it should be possible to go beyond. We then go on and use these explicit
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(polynomial) expressions in order to find the limits of the scaled moments, giving exact
values for the first seven moments of the limiting (scaled) probability distribution of
the random variable “size” over (2s + 1,2s + 3)-core partitions with distinct parts (as
s — 00). Professor Zeilberger has promised to donate $100 to the OEIS foundation for

identifying that limiting (continuous) probability distribution.

3.3.1 Explicit Expressions for the First Seven Moments
First, we will summarize the key results.

Theorem 3.7. The average size of a (2s + 1,2s + 3)-core partition with distinct parts
18

1
5(1033 +275%+19s).

Note that the corresponding average taken over all partitions, according to Arm-
strong’s ex-conjecture, is ¢s(s+1)(2s+5) = £s% 4+ O(s?), while, according to Theorem

our average (i.e. for the distinct case) is 1%53 + O(s?), so it is a bit less.

Theorem 3.8. The variance of the random variable “size” defined on the set of (2s +

1,2s + 3)-core partitions with distinct parts is

1
Tragg (934 8 4+ 4687 55 + 9700 s* 4 10505 s> + 6256 5% + 1518 5).

Note that according to [10], the corresponding variance, taken over all partitions is

7710 (2s+1)(25+3) (25 +2)s(4s+5) (45 +4)

which is 5—536 + O(s%) = 0.1777777778s% + O(s°), while for our case, according to
Theorem 2, it is Aot s + O(s%) = 0.06080729167s% + O(s°).

Theorem 3.9. The third moment (about the mean) of the random wvariable “size”

defined on (2s + 1,2s + 3)-core partitions with distinct parts is

1

37595120 (793586 57 + 4945025 55 + 12775144 57 + 17215282 5% + 11839450 s°

41535905 5 — 4756804 5% — 4342612 5% — 1297776 5).
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Theorem 3.10. The fourth moment (about the mean) of the random variable “size”

defined on (2s + 1,2s + 3)-core partitions with distinct parts is

1

—oo75g0g - (1743712560 8% + 13490284234 s'! 4 45408125279 5'°

487568584895 57 + 109173019890 s + 97494786972 57 4 68082466947 s°

134594762895 s° + 8734303600 s* + 3269131844 s> 4 7648567524 5% + 4135638960 5).

Theorem 3.11. The fifth moment (about the mean) of the random wvariable “size”

defined on (2s + 1,2s + 3)-core partitions with distinct parts is

1
108825076039680

(5 + 1) (4115597238066 s'3 + 30331407775461 512

+93240357590320 s + 153901186416765 s'° + 154511084293844 5°
+126787455814599 8 + 115227024155664 s7 + 42586120680111 s°
—95604599727502 s° — 105409116317640 s* + 43165327777096 s°

+91113907956144 5% — 30975685518528 5 — 65049004454400).

Theorem 3.12. The sizth moment (about the mean) of the random variable ‘size’

defined on (2s + 1,2s + 3)-core partitions with distinct parts is

1
8288117791182028800

(459077029253573970 s + 3986958940758529155 517 + 14588638597341766281 s1°
+29315654117562943844 s'° + 38855616058049391120 s'* + 52048632801161949890 s'3
+87053992212835094382 512 + 102228197171521441748 s'! + 24538654588404043230 s°
—81063397918244586845 57 — 37681424022539337807 s° + 128753068232342353072 57
+136357236921377110920 s — 109095423240535042640 s° — 264555566724556223856 5*

—62480060539123323264 5> 4 164786511770490504960 52 4+ 100625844884387235840 s) .
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Theorem 3.13. The seventh moment (about the mean) of the random variable ‘size’

defined on (2s + 1,2s + 3)-core partitions with distinct parts is

s(s+1)
240.35.52.7.11-13-17-19

(203253344355858784830 s'? 4- 1525941518277673062635 5'°
+4376090780890032310694 s'7 + 5920532244827036954724 56
+7108181147332994381598 515 + 22516614862619041657440 s'*
+AT737754432542468750710 s + 21431538183386052191306 5'2
—77127349790945221221652 s — 98788608530944679782107 s'°
191468628175188699900748 57 + 276198594921821905993026 s°

+164310592679893652073504 s + 1420837514400804031281984 5°
+53152679358583919475360 5* — 516374679437475960870016 5°
—696941224296942655687312 s° + 1109985197630308975715328 52

—745951061503715454673920 s — 1026387551269849288826880).

Here are some corollaries of the theorems above:

1. The limit of the “coefficient of variation” (the quotient of the standard deviation to
the mean), as s — oo, is ﬁ v/ 14010 = 0.7890923055426827989 . . .. In particular,
since that limit is not zero, unlike the case of (k, k+1)-core partitions with distinct

parts, there is no concentration about the mean.

2. The limit of the skewness, as s — oo, is 3930986175?% V4677680
= 1.922787480888358667 . . . .

. . . 145309380 _
3. The limit of the kurtosis, as s — 00, is Jggsers = 8.6530490084085. . ..

4. The limit of the standardized fifth moment (as), as s — oo, is

3429664365055 —
2429664365055 /467+/7680 = 41.4777067204457 . ...
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5. The limit of the standardized sixth moment (ag), as s — 0o, is

382564191044644975 __
Te29893191695616. — 246.35572905. . ..

6. The limit of the standardized seventh moment (a7), as s — oo, is

56459262321071884675 _
56450262321071884675 /467 /7630 = 697.5015509357 . ...
3.3.2 Proving the Theorems

We now explain the methods used to obtain the results in the previous subsection.
The way Jaclyn Anderson |2| proved her celebrated theorem that if ged(s,t) = 1,
then the number of (s,t)-core partitions equals (s +t — 1)!/(s!t!) was by defining a

bijection with the set of order ideals of the poset
P, := N\(sN + tN),

where N = {0,1,2,3,...,} is the set of non-negative integers, and the partial-order
relation ¢ <p d holds whenever d — ¢ can be expressed as as + [t for some «, 5 € N.

The set of order ideals of P, in turn, is in bijection with the set of lattice paths in
the two-dimensional square lattice, from (0, 0) to (s,t) lying above the line sy —tz = 0.
However, for our present purposes it is more efficient to use order ideals.

Recall that an order ideal I of a poset P is a subset of P such that if ¢ € I then all
elements d such that d <p c also belong to I. Equivalently, if d does not belong to I,
then all vertices ¢ “above” d (i.e., such that ¢ >p d) also do not belong to I.

Let n(s) be the number of order ideals of the lattice Pagy1 2443 with no consecutive
labels. Then, thanks to Jaclyn Anderson, this is the number of (2s + 1,2s + 3)-core
partitions with distinct parts, our object of desire.

Let’s try and find an algorithm to compute the sequence (n(s)) for as many terms
as possible.

We review first how to prove that the number of order ideals of Pjyj 42, let’s
call it p(k), is the Catalan number Ciy;. A plot of Pyyq 4o for & = 8 is shown in
Figure Note that the point (k — 1,0) is labeled 1, and when we read the labels

along diagonals, from the bottom-right to the top-left, the labels increase by 1, but as
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we move from the end of one diagonal to the next one there are “discontinuities” of
sizes 3,4, ...,k + 1 respectively. Let ¢ be the smallest empty label on the hypotenuse,
implying that 1,...,7—1 are occupied. We have to “kick out” all vertices that are >p of
the vertex labeled i, leaving us with two connected components, triangles of hypotenuse
i — 2 and k — ¢, with independent decisions regarding their order ideals. The “initial
conditions” are p(—1) =1, p(0) = 1, and for £ > 1, we have

k+1

p(k) = pli —2)p(k —i). (3.5)
=1

3
17 7
26 16 6

35 25 15 5

53 43 33 23 13 3
62 52 42 32 22 12 2

71 61 51 41 3 21 11 1

Figure 3.1: The lattice Py 9.

Now let us move on to finding n(s), i.e. the number of order ideals of Pysi1 2543
without consecutive labels.

A diagram of the lattice Pysi1 2543 (for s = 6) can be found in Figure (see also
Figure 3 in [2§], where the lattice is drawn such that the rank-zero vertices are at the

bottom rather than on the diagonal).
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Figure 3.2: The lattice P13 15.

Inspired by the reasoning in [28], let 2i — 1 (1 < i < k), be the smallest odd vertex
(of rank 0) that is unoccupied. This means that the vertices labeled 1,3,...,2i — 3 are
occupied. This means that the vertices with even labels, 2,...,2i — 2 are unoccupied,
and since we are talking about order ideals, everything > the odd vertex 2¢ — 1 and
above the even vertices 2,...,2¢i — 2 gets kicked out, and for this scenario, we are
left with counting order ideals of a smaller lattice with two connected components:
an even-labeled triangle-lattice whose rank zero level has size s, and whose labels are
26,20+ 2,...,2i + 2s — 2; and an odd-labeled triangle whose rank zero level has s — ¢
vertices, and whose labels are 2i + 1,2¢ + 3,...,2s — 1. In addition, we have the
definitely occupied vertices 1,...,2i — 3, but since they are definitely occupied, they
don’t contribute anything to the count of order ideals.

Figure depicts the case when labels 1 and 3 of P53 15 are occupied and 5 is empty.
All vertices > 5, 2,4 cannot be part of the order ideal.

Let FO(a,b) be a two-triangle lattice consisting of a triangle with a rank-zero ver-
tices whose labels are 2, ..., 2a, and a triangle of hypotenuse b (b > a) whose labels are

1,3,...,2b—1. [See Figure for a picture of FO(7,9).] Going back to the paragraph



27

oll
024 o9
037 o022 o7

e3

ol6 o1

029 ol4

042 027 ol2

055 ©40 o025 o010
068 ©53 o038 023 o©8

o8l o066 o051 o036 021 06

Figure 3.3: An order ideal of P35 with smallest unoccupied odd label 5 and no
consecutive labels must be a subset of the lattice pictured.

above, subtracting 2i — 1 from all labels gives us a lattice isomorphic to EO(s — 1, s).
Let e(a,b) be the number of order ideals of the lattice EO(a,b) without consecutive

labels. Then we have
s+1

n(s) = Z e(s —1,s). (3.6)

i=1

So if we could have an efficient scheme to compute e(a,b), then we would be able
to compute our sequence of desire, n(s).

For a < b, let OE(a,b) be EO(b,a), and let o(a,b) be the number of order ideals
without consecutive labels of OFE(a, b).

By looking at the smallest unoccupied odd-labeled vertex, say 2i — 1 (see Figure

we get, for a > 1:
b+1

e(a,b) = o(a+1—i,b—i)p(i—2), (3.7)
i=1
and for a < 0, we have e(a,b) = p(b). Similarly, for a > 1,

a+1

o(a,b) =Y e(a—i,b+1—1i)p(i—2), (3.8)
=1
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Figure 3.4: The lattice FO(7,9).

and for a < 0, we have o(a, b) = p(b).

The scheme consisting of equations — enables a very fast computation of
the sequence n(i), for, say i < 400, confirming, empirically for now, that n(i) = 4%
However, this can be easily turned into a fully rigorous proof. A holonomic description
(see [35], beautifully implemented by Christoph Koutschan in [17]) of both e(a,b) and
o(a,b) can be readily guessed, and then, along with p(k) = Ck1, the resulting identities
— are routinely verifiable identities in the holonomic ansatz that can be plugged
into Koutschan’s “holonomic calculator.” But since we know a priori that n(k) satisfies
some such recurrence, and it is extremely unlikely that its order is very high, confirming
it for the first 400 values gives a convincing semi-rigorous proof that is easily rigorizable,
if desired.

Note: In an e-mail correspondence, Armin Straub gave a far slicker, less computer-
heavy way to conclude this experimental mathematics proof. See [23].

So much for enumeration of these partitions. Next, our goal is to obtain (2s +
1,2s + 3)-analogs of our results in Section Namely, we want to get data for the
expectation, variance, and higher moments of the size of the partitions in question.

Thus, we need an efficient way to generate as many terms of the sequence of Straub
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Figure 3.5: A sub-lattice of FO(7,9) which contains all order ideals of EO(7,9) with
smallest unoccupied odd label 9 and no consecutive labels.

polynomials, Ss(q), defined by

where p ranges over all (2s+ 1, 2s + 3)-core partitions with distinct parts, and [p| is the
size of p.

The following method, which easily produced the first 21 Straub polynomials, is a
weighted analog of the above order ideal-based enumeration scheme.

Given an order ideal I of Py, let its weight be

w(I) — qSum of LabelstNumber of Vertlces.

Let Q(s) be the set of order ideals of Pagy1 2443 without consecutive labels (i.e., if

a € I then both a — 1 and a + 1 are not in I). We define the two-variable polynomials

As(g,t) == D w(l).

IeQ(s)

Define the umbra (linear functional on polynomials of ¢) by

U(tk) — qfk(kfl)/Z’
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and extended linearly. As shown by Anderson, once A4(q,t) are known, we get Ss(q)
by the transformation
Ss(q) = U(As(g,1)).

In other words, replace any power t* that appears in A4(g,t) by g kk=1)/2,

It remains to find an efficient scheme for cranking out as many terms of A, (q,t) as
our computer is willing to compute.

We first derive a weighted analog of Equation , i.e., the weight-enumerator of
Pyt 1 42, but we need the extra generality where (still with the smallest label being 1),
for any positive integers ¢ and h, in the vertical direction labels decrement by ¢, and
in the horizontal direction labels decrement by ¢ + h [drawing the lattice so that the
highest label, 1 4+ (¢ + h)(k — 1) is at the origin, and the vertex labeled 1 is situated at
the point (k—1,0), and the vertex labeled 14 (k—1)h is situated at the point (0, k—1)].
Note that the original Pj41 42 corresponds to ¢ =k + 1 and h = 1.

Let’s call this generalized weight-enumerator Plgc’h) (g,t). It is readily seen that the
weighted analog of is

k41
ch) Z pi-1 (z D4+(i—1)(—2)h/2 P'(Cgl)(q’q(:-i-ht) . P]gif})(q’qiht)’ (3.9)

11—

with the initial conditions P_1 =1, Py = 1.
Let Eg(f;(q, t) be the weight-enumerator of the lattice FO(x,y) with horizontal spac-
ing ¢ and vertical spacing ¢ + 2. Then the weighted analog of (3.6]) is

s+1
Adg,t) = Y 67107 B D (g, ). (3.10)

i=1
Let Og(cfz,(q,t) be the weight-enumerator of the lattice OF(x,y), with horizontal
spacing ¢ and vertical spacing ¢ + 2. Then the weighted analog of (3.7) can be seen to
be

y+1
Ec) th 1, (z 1)2 O(C)

i— c,2 c
A O ryi(@ M) - P (g, ¢, (3.11)

with the initial condition Ea(;cl)/(q, t) = Py(c’z) (¢,t) when z < 0.
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Finally, the weighted analog of (3.8) is

z+1
c i— i—1)2 c i— c,2 c
0 (g, t) = Y 671 B (0, ® ) - P (a,45), (3.12)
=1

with the initial condition Og(f,%(q, t) = Péc’m (¢, qt) when x <0.

3.3.3 The first 21 Straub Polynomials

Using the above scheme, we computed the following:
Si(g) = ¢+ +q+1,

So(q) = ¢* + ¢ +2¢2 + P+ P+ + P2t 2 P g+
S3(q) = ¢+ B+ g 0+ ¥ 120 12 17042 ¢ 4B+ P 13 ¢H ¢
24P 042419 +2 B 43¢ T+ P42 ¢ 424842243 ¢ 410430+ 3

+3¢" +4 +38 +2¢* + 23 + P +q+ 1,
Su(q) = q'55 g4l 41284 1254 q116 4 g112 1 9 41054 (1034 (1004 0 (05, (03, (01, 0 (89, /85
P 42 B2 T BT T P 242 T 2 7O+ 58 g8 ¢ 4%
35 0420 43¢+ 43¢ +4 P +2 72 +2 7 420+ +2 8 43447
1240 43¢ 44 2B 2 1500 13¢P + 4¢P 458 +2¢0 43¢5+ + 445
632 4+5 P 433044020 43¢ 457 +4¢0 + 7P 45 46 4B +3¢2 +4 2 +5 ¢
1500 448 456 T +6¢0 +5¢0 +4¢4 4703 1602 +7¢" +7¢0+ 6 +65+5¢
+4¢°+3¢° +2¢* +2¢* + ¢ +q+ 1.

For the Straub polynomials S,(q) for 5 < s < 21, see the output file or use procedure
ASpc(s,q) in the Maple package Armin.txt listed in Appendix [A]

Unlike the case of (s, s + 1)-core partitions, which are enumerated by Fs;1, and in
which the expectation, variance, and higher moments involve expressions in Fg, Fy41
and s, the present case of (2s+1, 2s+ 3)-core partitions into distinct parts gives “nicer”

results. This is because, as conjectured in [22] and first proved in [28] (and reproved
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above), the enumerating sequence is quite simple, namely 4°. Hence it is not surprising
that the expectation, variance, and higher moments are polynomials in s.

To get expressions for the moments we used the empirical-yet-rigorizable approach
of [38] and [39], as follows.

Using the first 21 Straub polynomials, we get the sequence of numerical averages
S(1)/4%, 1 < s < 21 (in fact four terms suffice!), and fit it to a polynomial of degree
3, giving the expression for the expectation, let’s call it u(s), stated in Theorem
above.

Using the sequence .
(q@)QSS(Q) |q:1

45 - H(S)27

for 1 < s <7, and fitting it with a polynomial of degree 6, we get an explicit expression
for the variance, thereby getting Theorem The conjectured polynomial expression
agrees all the way to s = 21.

The third through seventh moments are derived similarly, where the ith moment
(about the mean, but also the straight moment) turns out to be a polynomial of degree
3iin s.

Let us comment that we strongly believe that all the results here can be, a posteriort,
justified rigorously. The complicated functional recurrences for the Straub polynomials
(before the “umbral application”) entail, after Taylor expansions about ¢ = 1, extremely
complicated recurrence relations for the (pre-) moments, whose details do not concern
us, since we know that their truth follows by induction. The reason that we are not
completely sure about this is that we don not have a formal proof that “polynomiality” is
preserved under the umbral transform. Granting this, each such identity is a polynomial
identity, and hence its truth follows from plugging in sufficiently many special cases.

But that is how we got them in the first place. QFED!
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3.3.4 A Short Proof of Straub’s Ex-Conjecture About the Maximal

Size

In [28], the authors used quite a bit of human ingenuity to prove Armin Straub’s
conjecture (posed in [22]) that the maximal size of a (2s+ 1, 2s + 3)-core partition into
distinct parts is given by the degree 4 polynomial 25 (554 11)n (s +2) (s + 1).

We strongly believe that one can deduce from general, a priori, hand-waving (yet
fully rigorous) considerations that this quantity is some polynomial of degree < 5.
Hence it is enough to check it for 1 < s < 6. But this quantity is exactly the degree of
the Straub polynomial Ss(q). We verified it, in fact, all the way to s = 21, so Theorem
is re-proved (modulo our belief).

3.4 Partitions with Distinct Parts that are (s,ds — 1)-Cores

This section is adapted from our paper [30].

In [22], Straub generalizes the problem in Section by considering (s,ds — 1)-
core partitions with distinct parts, where s and d are natural numbers. He proves in
Theorem 4.1 that the number of such partitions, call it Ny(s), satisfies a generalized

Fibonacci recurrence:

Nd(l) =1, Nd(2) =d,
(3.13)
Nd(s) = Nd(s — 1) + de(s - 2).

Of course, this reduces to the usual Fibonacci numbers when d = 1. Note that we can
view Ny(s) as a sequence of polynomials in d.

Here, we will use the poset characterization in Section to easily recover Straub’s

result and discover new conjectures about the distribution of the sizes of the partitions.

3.4.1 Understanding the Posets

By Section we know that (s, ds—1)-core partitions with distinct parts are bijective
with order ideals of P; 451 containing no consecutive labels. We can use the procedure

PW in the Maple package Armin (see Appendix [A]) to plot P 4, for various s and d.
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Figure 3.6: The pOSGt P4’19 = P474.5_1.

For example, Figure depicts the poset Py 19, i.e., the s = 4,d = 5 case. (When
plotting F;:, we use the convention to by increment s in the | direction and by ¢
in the < direction. Thus, the largest label, st — s — ¢, is in the lower left corner.)
It is easy to show that this general trapezoidal shape persists for arbitrary values of
s and d. We can also see Ps 4,1 as a colonnade of s — 1 vertical pillars with heights

d(s—1)—1,d(s—2)—1,...,d—1. Further, the tops of the pillars have labels 1,2, ..., s—1.

3.4.2 Characterizing the Order Ideals

Next, we recover the recursion (3.13) by enumerating the order ideals of Ps gs—1 with
no consecutive labels.
Referring to the s = 4,d = 5 example, let I be an order ideal of P, 19. Let I} be the

part of I contained in the kth column.

e If I; = (), then I is isomorphic to an order ideal of Py a(s—1)-1 = P35.3-1.
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e Otherwise, let x be the largest member of I;. Then z € {1,1+s,...,1+(d—1)s} =
{1,5,9,13,17}. For if 21 € I, then 1,2 € I, contradicting the assumption that
I contains no consecutive labels. So there are d = 5 choices for Iy. Further, Iy
must be empty; otherwise, again, we have 1,2 € I. Thus the remainder of [ is

isomorphic to an order ideal of Ps_5 j(5—2)—1 = P25.2-1.

To summarize, if I is an order ideal of P 451 with no consecutive labels, then either
I is isomorphic to an order ideal of P_; g(s_1)—1, or I1 has d options and the rest of [

is isomorphic to an order ideal of Ps_ j(s_2)—1. This proves (3.13)).

From the above observation, we have the following characterization:

e Any order ideal of Ps 4,1 with no consecutive labels is of the form I = I U---U

Is_1, where

— Each I, is either empty or of the form {k,k+s, -, k+igs}, where iy < d—1

ifk<s—1,andiz_1 <d—1.

— If I} is nonempty, then Iy, is empty.

In short: To make an order ideal, we hang strings of beads from the tops of the
pillars in such a way the strings are not too long and adjacent pillars are not both

decorated.

3.4.3 Computing the Generating Function

Our ultimate goal is to investigate the distribution of the size of (s, ds—1)-core partitions

with distinct parts. To this end, we define the generating function
Gas(g) = 4", (3.14)
P

where p ranges over (n,ds — 1)-core partitions with distinct parts, and |p| denotes the
size of the partition p, i.e., the sum of its parts. We shall give an efficient scheme for

computing Ggs(q) for fixed d and s.
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Proceeding as in the previous section, we first compute the auxiliary generating

function

Fas(q,t) == w(l). (3.15)

I
Then, as explained in the previous section, we can obtain Gg4(q) by replacing occur-
rences of t* in Fys(q,t) with g kk=1)/2,

To compute Fy (g, t), we use the reasoning of the previous subsection, but this time
we keep track of the weight of the order ideal.

First, we introduce yet another auxiliary generating function. For 1 < k < s—1, let
Pf,dsfl be the sub-poset of Ps 4,1 obtained by chopping off everything to the left of
the kth column (note Ps{ds_l = Ps gs—1). Define F(ﬁs(q,t) as in , except I ranges
over order ideals of Ps’f 4s—1 With no consecutive labels [note Fi s(@,t) = Fy(q,t)].

By the reasoning of the previous section, the first column of an order ideal of Pf’ ds—1

is either empty or of the form {k,k + s,--- ,k + is}, where 0 < i < d — 1. Since the

latter set has weight

qz;’.:o(k+js)ti+1 — HDGs/2+k)i+1
we have the recursion
dil . . .
Fiy(g.t) = Fit'(q,t) + (Z q(”l)(“/“’“)t”l) Fif(qt)for 1<k <s—2;
i=0
= 1) » (3.16)
Fj;l(q, t) _ Z q(l+1)(zs/2+k)tz+1; .
i=0
Fds,s(q,t) = 1.

Note that this is a recursion in the auxiliary index k, not in s and d.
Given s and d, we can use (3.16)) to find F (¢,t) = Fys(q,t). Finally, we make the
substitution t* — ¢7*k=1)/2 to find G44(g). All of this is done in the procedure Gdn in

the Maple package core2. (See Appendix )

3.4.4 Distribution of the Size

Given fixed s and d, we can pick a uniform random (s,ds — 1)-core partition with

distinct parts, and consider its size, call it Xg,. Then X, is a random variable, so
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it makes sense to inquire about its distribution. Since G, is the generating function
for X s, we can easily compute as many moments of the distribution as we please, for
fixed s and d.

Using this information, we can investigate how the moments behave as functions of
s and d. We will consider two cases: s is variable and d is fixed, and vice versa. In each
case, we will consider the behavior of X ; as the variable tends to infinity; in particular,
we address the question of asymptotic normality. Finally, we will derive formulas for
the first few moments as functions of both s and d.

First, we introduce some notation. Given a natural number k, let us denote

<q;q> k Gd,s(q)]

to be the kth “pre-moment” of X;,. Define

my(d, s) ==

g=1

mp mp k
M, = = =E X
k‘(d7 5) Gd,s(l) Sd(S) [ d,s]a

the kth (straight) moment of Xy . For example, the mean is pg s = M;.

Denote the kth central moment by
Mg (d, s) = E[(Xqs — w)*].

For example, the variance is 03 s = M.

Finally, denote the kth standardized moment by

M,
M(d,s) = U:.

Note that the central, straight, and standardized moments can easily be computed from
the pre-moments.

Now, for numeric values of d and s, we can use our recursive scheme to easily
compute all the quantities above. Analyzing the data for many values of d and s leads

to the following:

Conjecture 3.14. For each s, the kth pre-moment my(d, s) of X4 is a polynomial in

d. Further, the degree of this polynomial is 2k + |s/2].
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Our experimental evidence indicates that

15 100 6625 750
77 Vo Tor s V>

.641,2.14,2.91,6.62, 11.7, . . .

{lim Mp(d,3)1e = 2/7V5,

Q

Q

{ lim M(d, 4)}72, ~.162,2.08,1.19,6.20,7.05, ..

.237,2.22,1.76,7.43,10.8, ... (3.17)

Q

{Jim Mi(d,5)}72

{Jim Mi(d,6)}72

Q

.052,2.36,.671,7.80,5.15, . ..

{ lim M (d.10)}32, ~ —0.001,2.62,.130,10.1,2.17, .....
—00

Recall that the standard normal distribution has standardized moments
0,1,0,3,0,15,.... The sequences above seem to approach this as s — oo, leading us to

the following:

Conjecture 3.15. For each fized s, the distribution of Xg s is not asymptotically nor-
mal as d — oo; that is, (Xqs — Hd,s)/0d,s tends to some abnormal distribution X,
as d — oo. However, X, is asymptotically normal; that is, (Xs — p)/o tends to the

standard normal distribution as s — oo.

Next, we fix d, and look at Xy, as a sequence of random variables indexed by s.
The d = 1 case was already addressed previously, where we found that the pre-moments
are given by polynomials in s and the Fibonacci numbers. In light of , we might
expect the same to be true for arbitrary d, except we use the generalized Fibonacci

numbers, Ngy(s):

Conjecture 3.16. For each d, the kth pre-moment my(d,s) of Xqs is of the form

a(s)Na(s) + b(s)Na(s + 1), where a and b are polynomials in s.

Again, experimental evidence verifies this claim. The one anomalous case seems to
be d = 2, for which Ny(s) = 2°~!. In this case, our methods do not yield nice formulas

for the moments.
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Upon computing the limits of the standardized moments, we do get the familiar

sequence 0,1,0,3,0,15,... in this case, leading to the following:

Conjecture 3.17. For each fized d, the distribution of Xq s is asymptotically normal.

That is, (X4,s — td,s)/0d,s approaches the standard normal distribution as s — oo.

Finally, it is possible (but computationally taxing) to obtain a single formula for
the kth moment as a function of both k and s. The ideas is to fix only k and look
at {my(d,s)}2, as a sequence of polynomials in d. Further, due to Maple’s ability
to handle linear systems with symbolic coefficients, we can fit the data to the ansatz
in Conjecture , only now a(s) and b(s) will have coefficients which are rational

functions of d:

Conjecture 3.18. The kth pre-moment my(d, s) of Xg s is of the form A(s,d)Nq(s) +
B(s,d)Ny(s+ 1), where A and B are degree 2k polynomials in s whose coefficients are

rational functions in d.

Due to the amount of data needed to fit the k&th moment to the ansatz, it takes a
few minutes even to generate the formula for the 3rd moment. Here, we present a small
taste of the conjectures yielded by our Maple package. In the first two conjectures
to follow, we could easily have presented formulas for many more moments, but we
omit them to save space. See the Maple package core2.txt in Appendix [A] for more
information.

In general, we conjectured that Mjy(d,s) is a rational function in d for s fixed.

However, for s = 3 the straight moments seem to be polynomials:

Conjecture 3.19. The expectation of Xa3 is d>/3 + d/4 — 1/12, and the variance is
4d* /45 + d3 /12 — d? /144 + d /24 + 31/720.

Here is an example in which we fix d.

Conjecture 3.20. The expectation of X3 s is

25 , 479 406 N3(8+1)< 1, 29 158)

30° 507 s T v 39" Ti60° 07
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Finally, here is the expectation once and for all, in terms of both n and d:

Conjecture 3.21. The expectation of Xg is

(bd+7d>+d—1)s*> (Bd+21d*+7d>—d*+3d—2)s

24(4d +1)  24(16d3 —24d%2 —15d — 2)
17d*4+13d> —9d?> —7d—2  Ny(s+1)

12(16d3 — 24d% — 15d — 2) Ny(s)

(> =1)s*  (2d"=9d*—16d> —3d+2)s d*+20d*+9d*>—20d — 10
'<_24(4d+1)_ 8(16d3 —24d2 —15d—2)  12(d—2)(4d+1)? >

Note that this formula is singular at d = 2, explaining the anomaly mentioned
earlier. However, we can still make sense of the d = 2 case by first plugging in a
numeric value of s, (so that the N;’s become polynomials in d), then taking the limit
as d — 2. So this formula effectively works for all s and d.

Once again, many more results like these can easily be obtained using the Maple

package core2 in Appendix [A] We invite you to try it for yourself.

3.5 0Odd Parts and Other Restrictions

This section is adapted from our article [34].

It is both fascinating and frustrating that in enumeration problems, tweaking a
problem ever so slightly turns it from almost trivial (and often, utterly trivial) to very
difficult (and often, intractable). For example, it is utterly trivial that the number
of n-step walks in the 2D rectangular lattice is 4", but just add the adjective “self-
avoiding”—in other words, the number of such walks that never visit the same vertex
twice—and the enumeration problem becomes (most probably) intractable and, at any
rate, wide open.

Another example is counting permutations that avoid a pattern. The number of
permutations, 7, of length n that avoid the pattern 12 (i.e. you can’t have 1 < i3 <
io < m such m;, < m;,) is trivially 1. A bit less trivially, but still very doable, is the
fact that the number of permutations, 7, of length n that avoid the pattern 123 (i.e.
you can’t have 1 < i; < ig < i3 < m such m;, < m, < ;) is the good old Catalan

number (2n)!/(n!(n 4+ 1)!). But for most patterns, such an enumeration is (probably)
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intractable. The simplest wide open case, that we believe is intractable (but we would
be happy to be proven wrong) is to count permutations that avoid the pattern 1324
(OEIS sequence A061552 [https://oeis.org/A061552]), for which the current record
is knowing the 36 first terms.

Returning to the main topic, consider enumerating (2s — 1,2s + 1)-core partitions
into distinct parts. Armin Straub conjectured the deceptively simple formula 4°. Alas,
its (known) proofs are far from simple! Straub’s conjecture was first proved, by Sherry
H.F. Yan, Guizhi Qin, Zemin Jin, Robin D.P. Zhou [28], via an ingenious but rather
complicated combinatorial proof. We provided a still non-trivial proof in Section
using “guess-and-check,” and this was further simplified by Straub (see [32]). As far
as we know, enumerating (s, t)-core partitions into distinct parts for other cases, say
(3s — 1,3s + 1)-core partitions, is wide open.

Leonhard Euler famously proved that the number of partitions of an integer n into
distinct parts equals the number of partitions of the same n into odd parts. (This
classical theorem was recently refined in a new, very surprising way, by Armin Straub
22].)

Moving on to counting (s + 1,s + 2)-core partitions into odd parts, it seems that
the number of such partitions has nothing to do with the number of (s + 1, s + 2)-core
partitions into distinct parts (i.e. Fsi2). This new problem seems (at least to us) much
harder.

We will now describe our approach, its success (it enabled us to crank out 23 terms,
thereby extending Straub’s 11 terms, and with better computers, and more optimiza-
tion, one may be able to crank out a few more terms), and its major shortcoming. At

the end of the day, it is an exponential time (and memory!) algorithm.

3.5.1 Counting (s + 1, s + 2)-Core Partitions into Odd Parts

Again, we use the bijection between core partitions and posets of order ideals. Let
Ag = Pgi1 542. A plot of this poset for s =9 is shown in Figure
Suppose S is an order ideal of Ay (i.e., S corresponds to an unrestricted (s+1, s+2)-

core). Let i (0 < i < n) be the smallest positive integer with the property that
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(s —1—14,i) is not a member of S: in other words, the smallest integer i such that
(s—1,0),(s—2,1),...,(n—1,i—1) are members of S while (s —1—1,%) is not a member

of S. By our discussion preceding (3.5), we have a canonical decomposition
S — (i,Sl,SQ), 0<e<n, Sy € Ai,Q, So € As_; (3.18)

that is obviously one-to-one.

Next, it is readily seen, by the mapping from order ideals to partitions,
(al,...,ak) — (a1+k—1,a2+k—2,...,ak+0),

that an order ideal of Ps;q 442 corresponds to an (s + 1, s + 2)-core partition into odd
parts if and only if, when reading the occupied labels along diagonals, from bottom-
right to top-left, starting from the rightmost diagonal and “walking” to the left, (i) the
first label read is odd and (ii) the labels alternate in parity. For example, in Figure
the labels with red crosses comprise an order ideal corresponding to a partition with
odd parts. Since only the parity matters, we can color the vertices of As by the colors

“even” and “odd.”

5
&
15 8
a +
Z8 13 7

38 28 17 6

45 38 27 18 )

] 43 37 z8 15 4

GE] k] 47 28 25 14 3

78 a3 57 45 35 24 13 2

38 78 67 -8 45 34 23 12 1

Figure 3.7: The lattice Ag := Pig,11, with red crosses indicating an order ideal corre-
sponding to a partition into odd parts.
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Alas, one has to distinguish two cases. For both s even and odd, the label of (s—1,0)
is odd (since it is always 1), and as you proceed, in A, along diagonals, the parities
alternate. But for s odd, all the parities along the same row are the same, while if s is
even, they alternate. Hence we are forced to consider the more general problem where
there is a “coloring” parameter, let’s call it ¢, (¢ = 0 or ¢ = 1) such that the “color” of
label (i, j) is

C(i,j)=1+ci+(1—¢)j (mod 2).

So let’s forget, for now, about (s + 1,s + 2)-core partitions into odd parts, and
instead define the following:

o Let e(9(s) be the number of order ideals of Pg 11 542 such that when read along
diagonals, the occupied vertices alternate in color using coloring parameter ¢ = 0, and
the first label is odd.

o Let 6(1)(8) be the number of order ideals of Psy1 442 such that when read along
diagonals, the occupied vertices alternate in color using coloring parameter ¢ = 1, and
the first label is odd.

Once we find a way to compute both sequences ego) and egl), then our object of

desire, the Straub sequence, enumerating (s + 1, s + 2)-core partitions into odd parts,

let’s call it ng, is given by

(0)

es  ,if s is even;
ng =

egl) , if s is odd.

3.5.2 Dynamical Programming

To characterize the sequences ego) and egl), we can try and extend the argument pre-

ceding the canonical decomposition for counting all order ideals of Psi1 ¢42.
Suppose S is an order ideal of A; whose labels satisfy the parity conditions. Let
(s —1—1,1) be the first unoccupied vertex of the order ideal S of As. Let (4,51, 52) be
its image under . The smaller order ideals S (of A;_2) and Sy (of As_;) also have
the property, that within each diagonal, the colors of the occupied vertices alternate,

but, alas, as you move from one diagonal to the next one, the alternation may (and
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often does) break down. Also, the two components in the canonical decomposition are
not “independent” but must satisfy some compatibility conditions.

This forces us to consider much more general creatures, order ideals whose “colors”
(parity) alternate within each individual diagonal, and having, additionally, a given
“coloring profile,” the list of pairs of colors of the first and last vertices in each diagonal,
reading from left to right. For example, the profile of the order ideal comprised of the
red crosses in Figure [3.7]is [[1, 1], [0, 0], [1,0]]. There are three pairs in the profile since
the order ideal is supported in the three outermost diagonals. The occupied vertices on
the rightmost diagonal start with 3 and end with 9 (both odd); hence, the first pair is
[1,1]. The lowest occupied vertex on the second diagonal has label 14 and the last one
has label 18; hence for the second diagonal, we have [0,0]. Finally, the lowest label on
the third diagonal is 25 and the highest is 26, hence [1,0]. Note that for any profile of

an order ideal corresponding to an (s + 1, s 4 2)-core partition

[[al, bl], [ag, bg], ceey [ak, bk]],

b; and a;41 must have opposite parities. Also, a; = 1. We call such profiles “good
profiles.” Hence there are 25~1 good profiles. Unfortunately, in order to use dynamical

programming, we need to consider all 22%

profiles for k£ diagonals (and it is easy to see
that for us, k < s/2). Hence our algorithm is ezponential in time (and memory).

We essentially use canonical decomposition but refined to order ideals with a
given profile, and at the end we sum over all good profiles.

The details are straightforward but rather tedious, and may be gotten from looking
at the source code of the Maple package OddArmin.txt listed in Appendix [A]l See
procedure NuOIG(s,c) giving egc) for ¢ = 0 and ¢ = 1. It is obtained by adding
up the outputs of procedure NuOIP(s,c,P) where P ranges over all “good profiles.”
This procedure works recursively using canonical decomposition , except now
we have to keep track of profiles. For each “good” order ideal with given profile P,
and for which (s — 1 — 4,4) is the “first” unoccupied vertex, the corresponding two

smaller order ideals of A; o and A,_; have implied profiles. Thus, NuOIP(s,c,P) sums

NuOIP(i-2,c,P1)*NuOIP(s-i,c,P2) over all such “compatible” profile decompositions
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(P1,P2) of the parent profile P.
The output was is as follows.

(0)

e The first 23 terms of the sequence es” (staring with s = 0) are
9.4,7,17, 30, 80, 143, 404, 728, 2140, 3876, 11729, 21318, 65952, 120175, 378321

690690, 2205168, 4032015, 13023324, 23841480, 77761008, 142498692.  (A299294)

(1)

e The first 23 terms of the sequence ey’ (staring with s = 0) are
2,3,7,12,31,55,152,273,790, 1428, 4271, 7752, 23767, 43263, 135221, 46675,

782968, 1430715, 4598804, 8414640, 27332956, 50067108, 164081764. (A299295)

(Both sequences were brand new to the OEIS.)

But, we really don’t care about ego) when n is odd, or egl) when s is even. We want

the Straub sequence egs mod2) 1y other words, we extract the even-indexed terms of
the former sequence and the odd-indexed terms of the latter sequence, and then we

interleave them. This yields the first 23 terms of the Straub sequence:
1,2,4,7,17,31,80,152,404, 790, 2140, 4271, 11729, 23767, 65952, 135221,

378321, 782968, 2205168, 4598804, 13023324, 27332956, 77761008.  (A299293)

This sequence was also not yet in the OEIS when we first discovered it.
But what about the “rejected” terms, the ones that we do not care about? Maybe
we should care about them!

The first 23 terms of the sequence e&f“ mod 2) ore

1,2,3,7,12,30, 55, 143, 273, 728, 1428, 3876, 7752, 21318, 43263, 120175,

246675, 690690, 1430715, 4032015, 8414640, 23841480, 50067108.  (A047749)

To our utter surprise (and delight), this sequence was already in the OEIS (but

for entirely different reasons!). It is sequence A047749 and has a very nice closed-form

expression: If s = 2m, then 2m1+1 . (37::), while if s = 2m + 1, then leH : (3$:11). As
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mentioned in the OEIS entry, it is easily verified that its generating function, Y = Y (),

satisfies the simple cubic equation
zY? —2Y?+3Y —1=0.

We are almost sure that the generating function of the Straub sequence ng =
egs mod 2) also satisfies an algebraic equation, but the above 23 terms did not allow
us to guess one.

Addendum: Paul Johnson’s Discovery

In the first version of the paper from which this section was adapted, we said that
we would gladly donate one hundred dollars to the OEIS, in honor of the first person
to generate enough terms of the Straub sequence (A299293) that would enable the
discovery of such an algebraic equation (with a few terms to spare, yielding a non-
rigorous proof), and an additional one hundred dollars (either in honor of the same or
different person(s) and/or machines), for a rigorous proof.

Soon after our paper appeared on the arXiv, Paul Johnson informed us that he
had a proof that the “sister sequence” (A047749) counts (s + 1, s + 2)-core partitions
with even parts. Even more impressively, he related the two sequences, implying a fast
way to compute the original sequence we sought. In particular, one can derive a (rather
complicated) algebraic expression for the generating function enumerating (s+1, s+2)-
core partitions into odd parts. We would have needed 53 (as opposed to our 23) terms
of the sequence to guess the generating function. At of the time of our writing this
thesis, Johnson has a preliminary paper detailing his approach (which uses the abacus
characterization of core partitions) on the arXiv [16]. We have compensated the OEIS

as promised.

3.5.3 Enumerating Restricted Families of Core Partitions

Finally, we shall discuss some bonus families of partitions related to Straub’s paper.
In these cases, we were able to use symbolic computation to rigorously derive rational
generating functions.

As noted, the sequence of numbers enumerating (s + 1, s + 2)-core partitions with
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distinct parts is {Fs42}52,, whose generating function is the very simple rational func-

142
l—z—x

tion 7. We shall now show that it is not hard to derive such rational generating
functions to enumerate (s + 1, s + 2)-core partitions where each part gets repeated at
most k times, for any, given, specific (i.e. numeric, not symbolic) k, where the former
case corresponds to k = 1.

Again, consider the poset Ag := Psy1 s42, whose order ideals correspond to (s +
1, s + 2)-core partitions. Suppose S is an order ideal of A corresponding to a partition
in which each part appears at most k times. This is equivalent to saying S contains at
most k& consecutive labels. (Note that, because S is an order ideal, a necessary condition
for this is that the elements of S reside in the k outermost diagonals of As.)

As before, let (s —1—14,4) be the smallest-labeled unoccupied point in the outermost
diagonal of S, so that S contains the labels 1,...,4 but not ¢ + 1. Due to our new
restriction, i < k. Again, let S contain the elements of S below (s —1—4,i) and not on
the outer diagonal; let Sy contain elements above (s — 1 — ¢,7). Then S; is isomorphic
to an arbitrary order ideal of A;_o, and S5 is isomorphic to an order ideal of A;_; with
no k consecutive labels.

So, with £ fixed, we can see S as the “concatenation” of two types of order ideals—
one with a filled-in base of size < k, and another of the same type as S. The generating
function enumerating the first type of order ideals is a finite polynomial: its coefficients
are Catalan numbers. So we obtain an algebraic equation satisfied by the desired
generating function that can easily be solved in Maple. See the procedure Fk in the
Maple package listed core.txt in Appendix [A]

Here are the generating functions for 2 < k < 4.

For k = 2:
2224+ +1
23 + 22421’

whose first few coeflicients are
1,2,5,9,18,37,73,146,293,585,1170, 2341, 4681, 9362, 18725,37449, .... (A077947)

For k = 3:
58 +222 4+ +1
S5t +2a3 4224+ -1
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whose first few coeflicients are
1,2,5,14,28,62,143,331, 738, 1665, 3780, 8576, 19376, 43837,99265, . ... (A212340)

For k = 4:

4zt +523+222+x+1
M4ad+5x4 4223422+ -1’

whose first few coefficients are
1,2,5,14,42,90, 213,527, 1326, 3317, 8022, 19608, 48272,119073,.... (A298367)

For the generating functions, and first few terms, for the cases 5 < k < 20, see the
output file 00ddArmin3.txt listed in Appendix [A]

Inspired by the necessary condition mentioned above, let us enumerate (s+1, s+2)-
core partitions into odd parts whose order ideals are restricted to the outer k diagonals.

As before, we classify S according to its profile P, a list of pairs, each pair giving
the parities of the largest and smallest labels of S in a certain diagonal. Also, define
i(S) to be the smallest j such that (j,0) is occupied.

Call (P(95),i(S)) the “type” of S; for fixed k, there are finitely many types. Further,
any S of a certain type is the concatenation of its elements on the z-axis with some
smaller order ideal of A;_; having a compatible type. Thus, the generating function
of order ideals having a certain type satisfies some algebraic equation involving the
generating functions of its “child” types. Once we solve this system and sum the
generating functions over P, we get what we are after. See Gk in the Maple package
core.txt listed in Appendix [A]

For k = 2 the generating function is

- -2+ 41
20—t —223432242—-1’

whose first few coefficients are

1,2,4,7,15,27, 56,104, 210, 398, 791, 1517, 2988, 5769, 11306, .... (A299099)
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For k = 3 the generating function is

29+ 2% — 427 —62°5+825 + 92t —52% — 522+ +1
(@ +228 =327 —9a0 + 325+ 1ot — a3 —Ta?2 +1) (z — 1)’

whose first few coeflicients are
1,2,4,7,17,31,76,144, 344,670, 1560, 3103, 7079, 14315, 32152, . ... (A299102)

For generating functions, and first few terms, for the cases 4 < k < 5, see the output

file 00ddArmin2.txt listed in Appendix [A]
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Chapter 4

Inclusion-Exclusion and the Bonferroni Inequalities

In this chapter, we outline some “long shot” ideas from our research. The idea is to use
computer implementations of inclusion-exclusion to improve existing results related to
Ramsey numbers and Boolean satisfiability.

When applying the probabilistic method, one often needs to bound the probability

of a union of events. A key tool for this is the principle of inclusion-exclusion:

Proposition 4.1 (Principle of Inclusion-Exclusion). Let Ai,...,An be events in a

finite probability space. For I C [N], define

A= 4.

J€eI
Then,
N .
Priuidi]l = > (-1 Y Prl4].
i=1 ICIN]|I|=i

Truncating the above sum at ¢ = m provides an upper or lower bound for the union,

depending on the parity of m; thus we have the Bonferroni inequalities:

Proposition 4.2 (Bonferroni inequalities). With the notation of the previous Proposi-

tion, let 1 < m < N. Then,

PrUiA;] 0 Y (=) 3" Pr[4],
i=1 ICN]|I|=i

where <A means < if m is odd and > if m is even.

Many proofs in the probabilistic method simply use the above inequality with m = 1;
then, it simply says that the size of the union of sets is bounded from above by the
sum of the cardinalities. For example, the famous Erd&s-Szekeres bound on Ramsey
numbers uses this fact [21]. But why stop at m = 1?7 Our goal here is to use computer

methods to tighten the bounds and perhaps improve on existing results.
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4.1 Bounding Ramsey Numbers

Recall that the kth diagonal Ramsey number, R(k, k), is the smallest value of n such that
any two-coloring of the edges of K, (the complete graph on n vertices) is guaranteed to
have monochromatic k-clique. Ramsey’s theorem states that R(k, k) is finite for each
k and implies the upper bound R(k, k) < C4*.

In 1947, Erdés proved an exponential lower bound on R(k, k). His elegant proof
marked the beginnings of the probabilistic method [21]. The idea is that R(k,k) > n
iff there exists a two-coloring of K,, with no monochromatic k-clique. Now, for n fixed,
consider a random coloring of K, in which each edge joining vertices in [n] := {1,...,n}
is independently colored red or blue with equal probability. Let Ai,..., Ay, where
N = (z), be the subsets of [n] of size k. Define “bad events” By, ..., By, where B; is

the event that the A; supports a monochromatic clique. Then
Pr[B;] =227 () = 21-(2)

since B; happens iff all (’;) edges supported on A; are red, or all the edges are blue.
Now, let P(n, k) be the probability that K, randomly colored as previously stated,
has no monochromatic k-clique. Then, using Proposition with m =1 (i.e., Boole’s

inequality)

P(n,k) =1-Pr| | B;

>1- ZPr[Bi] : 1- (Z) 21-(3).

When k and n are such that P(n,k) > 0, there exists a coloring of K, with no
monochromatic k-clique, and hence, R(k,k) > n. After some manipulations of the
bound above, this gives rise to the lower bound R(k, k) > C2F/2.

In theory, getting a tighter lower bound on P(n,k) will improve the lower bound
on R(k, k). This inspired us to try to apply Proposition with a higher (necessarily
odd) value of m.

Our idea is implemented in the Maple package ramsey listed in Appendix [A] The
procedure IncExc(n,k,m) gives the bound on P(n, k) using m steps of inclusion exclu-

sion. However, due to the complicated nature of the intersections of the events { B;}, we
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could only go up to m = 3. The procedure RLB(k,m) uses the previous one to compute
a corresponding lower bound on R(k, k); for example, if m = 1, it returns the Erdds
bound.

Due to the complexity of the computations, we could only go up to k = 23. Table
shows a comparison of our m = 3 bounds with the Erdés m = 1 bounds. Initially,
our bound actually is worse, but for k > 21, it seems to be an improvement. Also,
as the plot in Figure shows, the improvement seems to increase as k increases.

Unfortunately, we do not have enough data to see how substantial our improvement is

for large k.
k  Erdés lower bound on R(k,k) Our bound
2 1 1
3 3 4
4 6 6
) 11 9
6 17 14
7 27 21
8 42 32
9 65 o1
10 100 80
11 152 126
12 231 197
13 349 348
14 527 477
15 792 734
16 1186 1121
17 1771 1701
18 2639 2566
19 3923 3853
20 o817 5759
21 8609 8577
22 12715 12731
23 18747 18841
24 27595 27812
25 40557 40959
26 59522 60199

Table 4.1: Comparing our three-step inclusion-exclusion-based lower bound on diagonal
Ramsey numbers with the one-step Erdds bound.
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Difference between lower bounds of Rk k)

600 -

500 1

400

300 1
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Figure 4.1: The difference between our our three-step inclusion-exclusion-based lower
bound on diagonal Ramsey numbers and the one-step Erdés bound. The improvement
seems to increase with k.

4.2 An Inclusion-Exclusion Based SAT Solver

Next, we use these ideas to approach the problem of Boolean satisfiability.

4.2.1 Introduction to SAT

First, some terminology. A Boolean variable is a variable which can take on values in
{true, false}, or, equivalently, {0,1} (e.g. z). A literal is a Boolean variable or its
negation (e.g. —x). Disjunction means “or” (V) and conjunction means “and” (A). A
disjunctive clause is a disjunction of literals (e.g. xV—yV z); similarly, we can define the
conjunctive clause. A conjunctive normal form (CNF) is a conjunction of disjunctive
clauses (e.g. =z A (y V 2) A (z V —y)); similarly, we can define the disjunctive normal
form (DNF).

We say that a CNF S in the variables x1,...,x, is satisfiable iff there exists an

assignment of truth values to x1,...,x, that makes S true. For example, the CNF in
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the previous paragraph is satisfiable: The first clause forces z = false; then the second
forces y = true; and the third forces x = true, giving us a valid assignment. On the
other hand, the CNF (z V y) A -z A —y is, of course, not satisfiable.

Given a CNF in n variables, one obvious way to determine its satisfiability is to
check all 2™ assignments to the variables. There is an ongoing effort to develop more
efficient algorithms to determine satisfiability. We call these algorithms “SAT solvers.”
Currently, even the most efficient SAT solvers are exponential time; one can always
construct worst-case scenarios that take long for the algorithm to analyze. In fact, SAT
was the first problem shown to be NP-complete, so a polynomial (in the size of the
input) time SAT solver would indeed be breaking news [8].

Here, we shall certainly not present a polynomial-time algorithm, or even one that
is practically more competent than current solvers. Rather, we wish to outline a simple,
novel approach to solving SAT, analyze its strengths and weaknesses, and discuss how

it might be used as the basis for a more powerful solver.

4.2.2 SAT and Inclusion-Exclusion

Suppose S = C; A--- A Cpy is a CNF with N clauses and n variables x1,...,x,. Then,
S is satisfiable iff ~.S = -C; V.- -V -Cy is not a tautology. So SAT can be rephrased as
“given an arbitrary DNF, determine if it is a tautology.” We shall use this formulation
in our approach.

Thus, let S = C7V---V Cy be a DNF with N clauses and n variables z1, ..., z,.
We wish to determine if all 2™ possible assignments to the variables result in S being
true. We can interpret this probabilistically: If we pick a uniform random assignment,
is Pr[S = true] = 17 Equivalently, letting Ay be the event that Cj is satisfied, is
PriUiAg] =17

Using the notation of Proposition (inclusion-exclusion), our problem amounts
to finding Pr[A;] for arbitrary I C [N], which is easy: Let V be the set of literals
appearing in the clauses {C} : j € I}; then, Pr[A;] =0 if V contains a variable and its
negation, and Pr[A;] = 2=V otherwise.

This idea is easily implemented to produce a simple inclusion-exclusion based SAT
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solver which always terminates with a correct answer. Such a solver, along with some
test results, is briefly outlined in [18].

However, notice that the size of the inclusion-exclusion sum will grow with the
number of clauses. Our idea is to use the Bonferroni inequalities (Proposition 4.2)) to
obtain a sequence of bounds on the “probability of satisfaction,” formed by sequentially
adding terms of the sum. The hope is that, in many cases, one does not actually need

to compute the full sum before reaching a decision.

4.2.3 Details of the Algorithm

The method outlined above is implemented in the Maple package sat, listed in Ap-
pendix [A]

We encode a DNF as a set of sets of integers: For example, {{1,-2},{3}} cor-
responds to (x1 A —x3) V x3. The Merge procedure is the equivalent of conjunction:
Merge ({-1,2},{2,3}) returns {-1,2,3}, while Merge ({1,2},{-2,3}) returns false
since these two clauses are “incompatible,” i.e., not simultaneously satisfiable.

The main procedure is Taut. It inputs a DNF S and threshold K. We initialize P=0
and N=nops (8), the number of clauses. For k from 1 to K, we compute the kth term in
the inclusion-exclusion sum and add it to P. For the sake of efficiency, a table is used
to keep track of all compatible conjunctions of k clauses in 8, so that at the kth stage,
the table has at most N choose k entries. If we obtain a conclusive bound at some point
in the loop, we return [ans,k], where the first entry is true or false, depending on
whether we found S to be a tautology. If we complete the whole loop without coming

to a conclusion, we return [P,k].

4.2.4 Testing the Solver

To test our solver, we use the procedure RandNF (n,N,M), which generates a random
DNF with N clauses in n variables, each containing M uniform random literals. By
default, M=3, which we shall assume from now on.

The procedure MetaTaut (n,N,K,M) runs Taut on M random DNFs with n variables



56

SAT times, 100 variables, 10 clauses, 1000 runs
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Figure 4.2: Histogram of runtimes of our SAT solver with low clause to variable ratio.

and N clauses and threshold K, and it records the run time and output of each trial.
The procedure MetaTaut (n,N,K,M) does the same, but instead of our solver, it uses

Maple’s built-in tautology procedure.

4.2.5 Runtimes

As one would expect, our solver seems to perform most competently when there are
lots of variables but not too many clauses.

For example, Figure shows a histogram of runtimes resulting from using Taut
on 1000 random DNFs generated by RandNF(100,10). In all of these cases, our solver
arrived at the correct answer by the third step of the loop, and the longest runtime was
.006s. As Figure [£.3] shows, the Maple solver performed slower in this case.

Further, we tested Taut on 10 random DNF's generated by RandNF (1000,20), and
it decided each of them was not a tautology by the seventh inclusion-exclusion step.
The runtimes ranged from 2-58 minutes, with an average of 19. In this case, using
MapleTaut resulted in an overflow error.

On the other hand, Figures and shows the results when 100 random DNF's
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generated by RandTaut (100,20) are used. Already, the number of clauses is enough to
make our solver slower than Maple. In fact, in this case, only fifteen of the 100 random
DNFs are solvable by Taut with threshold k& = 6.

Also, we should point out that, in the situations where our method does seem
promising, it seems that it almost always returns false. So, as it is, it probably has little
practical use. Further, we are only testing it against a naive built-in Maple tautology

function, rather than a sophisticated SAT solver.

4.2.6 Thresholds

Recall that, in Taut(S,k), the argument k is the threshold, that is, the number of
inclusion-exclusion summands computed before the procedure quits. Now, we inves-
tigate how the required threshold for a decisive answer is related to the number of
variables n and number of clauses N.

The procedure HowManyFinished(n,N,k,M) runs Taut with threshold k on M ran-
dom DNF's generated by RandNF (n,N), and it outputs the proportion of conclusive runs.
In other words, it estimates success probability that a DNF generated by RandNF (n,N)
is solvable by our algorithm with threshold k.

Empirical evidence shows a phase shift behavior in the success probability if we fix
n and k and vary N. Namely, there appears to be a critical number of clauses N.(n, k)
at which the graph of the success probability has an inflection point. Of course, we
have N, > k, with N, increasing in k.

Some plots exhibiting this phase shift are shown in Figure Note that this
behavior is reminiscent of the satisfiability phase shift studied in [27], where the behavior
of the probability of a random CNF being satisfiable as a function of the ratio of the

number of variables and clauses is studied.

4.3 SAT and the Lovasz Local Lemma

Another powerful tool in the probabilistic method is the Lovdsz local lemma, used to

determine if there is a positive probability that none of certain “bad events” occurs.
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Figure 4.3: Histogram of runtimes of Maple’s solver with low clause to variable ratio.
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Figure 4.4: Histogram of runtimes of our SAT solver with higher clause to variable
ratio.
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MapleSAT times, 100 variables, 20 clauses, 100 runs
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Figure 4.5: Histogram of runtimes of Maple’s solver with higher clause to variable ratio.

Success probability
1.0 —~
0.9 1 \
0.8 \"_
07 \
0.6 \
P 0.5 \
A
| :_\\
0.2 -
0.1 -“_\\
T T T =~ T j
5 10 15 20 25

[=— = n=20,k=4 * = = * n=100, k=4 n=20, k=5 |

Figure 4.6: Here, n and N correlate with the number of variables and clauses, respec-

tively; k is the threshold used in our solver; and P is the proportion of times our solver
was successful, based on 200 runs with random DNFs.
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Here, we will explain its application to SAT and, again, try to implement it with a

computer.

4.3.1 Computerizing the Local Lemma

Given some “bad events” A = {Ai1,...,An}, the Lovéasz local lemma can be used to
verify that there is a positive probability that none of them occurs. Suppose G is a
dependency graph on the vertex set A: That is, events in A are mutually independent
of their non-neighbors in G. Let I'(A) denote the neighborhood of A in G. Then the

following holds:

Proposition 4.3 (Asymmetric Lovéasz local lemma). Suppose there exists a weight
function x : A — [0,1) such that

VAe A, Pr(A)<az(4) [] a-=(B)).
BeTr'(A)

Then Pr((); AS) > 0.
In applications, the weight function z(A) is usually found ad hoc. If we assume each
vertex of the dependency graph has degree < d and set * = 1/(d + 1), we obtain the

following;:

Proposition 4.4 (Symmetric Lovész local lemma). Suppose each event A; satisfies

Pr(A;) < p and is independent of all but at most d of the other events. If
ep(d+1) <1,
then Pr(,; AS) > 0.

The procedure LLLs (P,G) in the Maple package checks if the events A; satisfy the
symmetric local lemma, where the lists P and G satisfy Pi] = Pr(4;) and G[i] = {j :
A eT(A)}

Computerizing the asymmetric local lemma is harder, since, as far as we know, there
is no systematic and efficient way to look for a valid weight function x. Somewhat
arbitrarily, the procedure LLL(P,G) uses the weight function z(A) = 1/(|I'(4)| + 1).
The motivation for this choice is that, when the dependency graph is uniform, it reduces

to the symmetric local lemma.
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4.3.2 Applying the Local Lemma to SAT

The article [14] addresses a theoretical application of the local lemma to SAT, focusing
on using it to derive combinatorial conditions for the satisfiability of CNFs. Here, we
present a computer application of the local lemma to SAT.

Let us return to the setup used previously. We have a DNF S = C; VvV ---V Cy
with variables z1,...,z,, which are assigned true/false values uniformly at random.
We let Aj be the event that Cj is true. Then S is not a tautology iff there is a positive
probability that none of the events Ay occurs. So we can apply the local lemma.

We form a dependency graph G by joining A; and A; iff the clauses C; and C; have
common variables. Also, Pr(A4;) = 27" where n; is the number of literals in Cj; for
example, for 3-SAT, Pr(A4;) = 1/8.

The procedure DNFtoPG(S) converts the DNF S to a pair P, G, which can be passed
to one of the LLL procedures. If the procedure returns true, then we can conclude that
S was not a tautology; otherwise, this method is inconclusive.

Unfortunately, LLLs rarely succeeds at detecting a non-tautology, and LLL is only
slightly better. For example, out of 100 non-tautologies generated by RandNF (100, 10),
only 26 were detected by LLLs and 37 by LLL. Out of 100 non-tautologies generated
by RandNF (100,15), only 2 were detected by LLLs and 3 by LLL. We expect that this
is due to the behavior of the dependency graph. It would be interesting to develop a
“clever” asymmetric local lemma algorithm that tailors the weight function to work for

the given dependency graph.
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Chapter 5

A Boolean Analogue of Integer Covering Systems

This chapter is adapted from our paper [33].

Our experimentation with Boolean functions led us to next consider their relation
with integer covering systems. We will now explain how we were able to define analogs
of exact and distinct integer covering systems for Boolean tautologies, and come up

with some new results and conjectures.

5.1 Integer Covering Systems

5.1.1 Prime Numbers are Sometimes Red Herrings

The great French mathematical columnist Jean-Paul Delahaye [9] recently posed the
following brain-teaser, adapting a beautiful puzzle, of unknown origin, popularized by
Peter Winkler in his wonderful book [25] (pp. 35-43).

Here is a free translation from the French.

One places nine beetles on a circular track, where the nine arc distances, mea-
sured in meters, between two consecutive beetles are the first nine prime numbers,
2,3,5,7,11,13,17,19 and 23. The order is arbitrary, and each number appears exactly
once as a distance.

At starting time, each beetle decides randomly whether she will go, traveling at a
speed of 1 meter per minute, clockwise or counter-clockwise. When two beetles bump
into each other, they immediately do a “U-turn,” i.e. reverse direction. We assume that
the size of the beetles is negligible. At the end of 50 minutes, after many collisions, one
notices the distances between the new positions of the beetles. The nine distances are

exactly as before, the first nine prime numbers! How to explain this miracle?
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Before going on, we invite you to solve this lovely puzzle all by yourself.

Here is the solution. Note that the length of the circular track is 2 +3 4+ 5+ 7+
114+134+ 17419+ 23 = 100 meters.

Let each beetle carry a flag, and whenever they bump into each other, let them
exchange flags. Since the flags always move in the same direction, and also move at a
speed of 1 meter per minute, after 50 minutes, each flag is exactly at the “antipode”
of its original location; hence, the distances are the same! Of course, this works if the
original distances were any sequence of numbers: All that they have to obey is that
their sum equals 100, or more generally, that half the sum of the distances divides the
product of the speed (1 meter per minute in this puzzle) and the elapsed time (50
minutes in this puzzle).

This variation, due to Delahaye, is much harder than the original version posed
in [25], where also the initial distances were arbitrary. In Delahaye’s rendition, the
solver is bluffed into trying to use the fact that the distances are primes. Something
analogous happened to the great Paul Erdds, the patron saint of combinatorics and

number theory, who introduced covering systems.

5.1.2 Erdos’ Covering Systems

In 1950, Paul Erdés [11] introduced the notion of covering systems. A covering system

is a finite set of arithmetical progressions
{a; (mod m;):1<i< N},
whose union is the set of all non-negative integers. For example
{0 (mod 1)},
is such a (not very interesting) covering system, while
{0 (mod 2),1 (mod 2)},

and

{0 (mod 5),1 (mod 5),2 (mod5),3 (mod5),4 (mod 5)}
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are other, almost as boring examples. A slightly more interesting example is
{0 (mod 2),1 (mod 4),3 (mod 4)}.

A covering system is ezact if all the congruences are disjoint (like in the above boring
examples). It is distinct if all the moduli are different.
Erdds gave the smallest possible example of a distinct covering system [From now

on, let a (b) mean a (mod b)]:
{0(2),0(3),1(4),5(6),7(12)}.

Of course, the above covering system is not exact since, for example, 0 (2) and 0 (3)
both contain any multiple of 6. A theorem proved by Mirsky and (Donald) Newman,
and independently by Davenport and Rado (described in [12]) implies that a covering
system cannot be both exact and distinct. Even a stronger statement holds. Assuming
that our system {a; (m;)}¥, is written in non-decreasing order of the moduli m; <
mg < -+ < mpy, the Mirsky-Newman-Davenport-Rado theorem asserts that my_; =
my; in other words, the two top moduli are equal (and hence an exact covering system
can never be distinct). See [36] for an exposition of their snappy proof. While their
proof was nice, it was not as nice as the combinatorial-geometrical proof that was found
by Berger, Felzenbaum, and Fraenkel [6], |5], and exposited in [36]. In fact, they proved
the more general Znam theorem that asserts that the highest moduli shows up at least
p times, where p is the smallest prime dividing lem (mq, ..., my). Jamie Simpson [20]
independently found a similar proof, but unfortunately chose not to express it in the

evocative geometrical language.
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5.1.3 The Berger-Felzenbaum Revolution: From Number Theory to

Discrete Geometry via the Chinese Remainder Theorem

While it is a sad truth that the set of positive integers is an infinite set, a covering
system is a finite object. In order to verify that a covering system, {a; (m;) ﬁ\;l, is
indeed one, it suffices to check that it covers all the integers n between 0 and M — 1,

where

M =lem (my,ma,...,my).

By the fundamental theorem of arithmetic
M = pi'py* - pit,

where p1,...,pr are primes and rq,...,7; are positive integers.

For the sake of simplicity, let’s assume that M is square-free; i.e., all the exponents
r1,...,7; equal 1. The same reasoning, only slightly more complicated, applies in the
general case.

Now we have

M =pip2 - pg.

The ancient, but still useful, Chinese Remainder theorem tells you that there is a
bijection between the set of integers between 0 and M — 1, let’s call it [0, M — 1], and
the Cartesian product of [0,p; — 1], i =1...k:

k

f= [o,M—l]aH[o,pi—l],

defined by

f(z):=(z (modp1),...,x (mod pg)).
So each integer in [0, M — 1] is represented by a point in the p; X py X -+ X pi k-
dimensional discrete box Hle[(), pi —1].

Suppose a (m) is a member of our covering system. Since m is a divisor of M, it

can be written as a product of some of the primes in {p1,...,pr}, say

M = Pi;Pis * * * Pis-
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Let

m;, =a (mod p;,),...,m;, =a (mod p;,).

s

It follows that the members of the congruence a(m) correspond to the points in the

k — s-dimensional sub-box
{(@1,..,2) € [0,p1r — 1] x oo X [0, p — 1] s 2y = Mgy, .oy, = My, )

For example if M = 30 = 2 -3 -5, the congruence class 7(10) corresponds to the

one-dimensional subbox
{($17$27x3) LT = 170 S 1) S 27:[;3 - 2}7

since 7 mod 2 =1 and 7 mod 5 = 2. In other words a covering system (with square-
free M) is nothing but a way of expressing a certain k-dimensional discrete box as a
union of sub-boxes. This was the beautiful insight of Marc Berger, Alex Felzenbaum,

and Aviezri Fraenkel, nicely exposited in [36].

5.1.4 Erdé6s’s Famous Problem and Bob Hough’s Refutation
Erdés [12] famously asked whether there exists a distinct covering system
a; (modm;), 1<i<N, mp<mg<--<my,

with the smallest modulo, mq, arbitrarily large.

As computers got bigger and faster, people (and their computers) came up with
examples that progressively made m; larger and larger, and many humans thoughts
that indeed m; can be made as large as one wishes. This was brilliantly refuted by
Bob Hough [15] who proved that m; < 10'6. This is definitely not sharp, and the true

largest my is probably less than 1000.

5.2 Boolean Functions

Let’s now move on from number theory to something apparently very different: logic!
First, recall some basic definitions. A Boolean function (named after George Boole

[7]) of n variables is a function from {False, True}" to {False, True}. Altogether
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there are 22" Boolean functions of n variables. Any Boolean function f(z1,...,z,)
is determined by its truth table, or equivalently, by the set f~!(True), one of the 22"
subsets of {False, True}".

The simplest Boolean functions are the constant Boolean functions True (the tau-
tology) corresponding to the whole of {False, True}™, and False (the anti-tautology)
corresponding to the empty set.

In addition to the above constant Boolean functions, there are three atomic func-

tions. The simplest is the unary function NOT, denoted by Z, that is defined by

False, if x=True
True, if x= False.

The two other fundamental Boolean functions are the (inclusive) OR, denoted by
V and AND, denoted by A. xV y is True unless both x and y are false, and = A y is
true only when both x and y are true.

By iterating these three operations on n variables, one can get many Boolean ex-
pressions, and each Boolean function has many possible expressions.

From now on we will denote, as usual, true by 1 and false by 0. Also let 2! = x and
PV=z=1-2z.

One particularly simple type of expression is a conjunction (also called term). It

is anything of the form, for some ¢, called its size,

A A gt
A Nxy,

where 1 <i; < -+ <i; <mnand j € {0,1} forall 1 <i <t
Of interest to us in this article is the type of expression called the Disjunctive Normal

Form (DNF). It simply has the form

where each C; are pure conjunctions. Its dual is the Congunctive Normal Form (CNF).
Every Boolean expression corresponds to a unique function, but every function can

be expressed in many ways, and even in many ways that are DNF. One way that is the
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most straightforward way is the canonical DNF form
n
Vo A
fvef~1(1)} =1

Note that a pure conjunction of length ¢

azgl/\---/\xj-t
1 1t

corresponds to a sub-cube of dimension n — ¢, namely to
{(xl,... ,q:n) Ty :jl,...,.fit :jt}

Hence, one can view a DNF as a (usually not exact) covering of the set f~1(1) of
truth-vectors by sub-cubes. In particular, a DNF tautology is a covering of the whole
n-dimensional unit cube by lower-dimensional sub-cubes.

DNFs and the Million Dollar Problem: The most fundamental problem in
theoretical computer science, the question of whether P is not NP (of course it is not,
but proving it rigorously is another matter), is equivalent to the question of whether
there exists a polynomial time algorithm that decides if a given Disjunctive Normal
Form expression is the tautology (i.e. the constant function 1). Of course, there is an
obvious algorithm: For each term, find the truth-vectors covered by it, take the union,
and see whether it contains all the 2" members of {0,1}". But this takes ezponential
time and exponential memory.

The Covering System Analog: Input a system of congruences
a; (mod m;), 1<i<N,

and decide, in polynomial time, whether it is a covering system. Initially it seems that
we need to check infinitely many cases, but of course (as already noted above), it suffices
to check whether every integer between 1 and lem (my, ..., my) belongs to at least one
of the congruences. This seems fast enough! Alas, the size of the input is the sum
of the number of digits of the a;’s and m;’s and this is less than a constant times the
logarithm of lem (my,...,my), so just like for Boolean functions, the naive algorithm

is exponential time (and space) in the input size.
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5.2.1 Boolean Analogs of Covering Systems

We next consider Boolean function analogs of covering systems. The first one to consider
such analogs was Melkamu Zeleke [41]). Here we continue his pioneering work.

We saw that a DNF tautology is nothing but a covering of the n-dimensional unit
cube {0,1}" by sub-cubes. So it is the analog of a covering system.

The analog of ezact covering systems is obvious: all the terms should cover disjoint

sub-cubes. For example, when n = 2, (from now on xy means z A y)
r1x2 V 1T V 122 V T1T2,

1V Tir2 V T1T9,

are such.

In order to define distinct DNF, we define the support of a conjunction as the set
of the variables that participate. For example, the support of the term Zi1Z3xsxg is
the set {z1,x3,24,26}. In other words, we ignore the negations. For each t¢-subset
of {x1,...,x,} there are 2! conjunctions with that support. Geometrically speaking,
two terms with the same support correspond to sub-cubes which are “parallel” to each
other.

Note that the supports correspond to the modulus, m, and the assignments of
negations (or no negation) corresponds to a residue class modulo m. Thus, we say a
DNF tautology is distinct if it has distinct supports.

The Boolean analog of the Mirsky-Newman-Davenport-Rado theorem is almost triv-
ial. First, suppose we have an exact DNF tautology where the largest support has size
n. That corresponds to a point (a 0-dimensional subcube). If it is the only one, then
since a conjunction of length t covers 2"~! points, if all the other ones are strictly
smaller than n, and since they are all disjoint, they cover an even number of points,
hence there is no way that an exact DNF tautology would only have one term of size
n.

If the largest size of a term is < n, then by projecting on appropriate sub-boxes one

can reduce it to the former case, and see that it must have a mate.
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5.2.2 The Boolean Analog Erdos’ Minimum Modulus Question

An obvious example of a distinct DNF tautology in n variables is
n
\ @i VAL
i=1
More generally, for every 1 < ¢t < n, (¢t # n/2) the following is a distinct DNF

tautology:

\/ Ly = Ly \% \/ Tjr = Ljn_y

1< <ig < <ig<n, 1<j1<ge<-<jn—t<n

This follows from the fact that by the pigeon-hole principle, every 0-1 vector of length
n either has > ¢ 1’'sor > n —t 0’s.

Taking n to be odd, the above DNF tautology with ¢ = (n — 1)/2 has “minimal
moduli” (supports) of size (n — 1)/2, and that can be made as large as one wishes.
So in the Boolean case, the answer to Erdds’ question “can the minimum modulus (or

rather, support size) be made arbitrarily large” is yes!

5.2.3 First Challenge

This leads to a more challenging problem: For each specific n, how large can the
minimum clause size, let’s call it k, in a distinct DNF tautology, be?
An obvious necessary condition, on density grounds, is that
" /n\ 1
§<i>2iz1. (5.1)
(Each subset of size i of {1,...,n} can only show up once and covers 2"~ vertices
of the n-dimensional unit cube. Now use Boole’s inequality that says that the number
of elements of a union of sets is < than the sum of their cardinalities).

Let A, be the largest such k satisfying (5.1]). The first 14 values of A,, are
1,1,1,2,3,4,4,5,6,7,7,8,9,10....

We were able to find such optimal distinct DNF tautologies (i.e., with smallest clause

size A,) for all n < 14 except for n = 10, where the best that we came up with was
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one that covers 1008 out of the 1024 vertices of the 10-dimensional unit cube, leaving
16 points uncovered, and for n = 14, where 276 out of the 2'* = 16384 points were left
uncovered.

See the output file odt2.txt listed in Appendix [A]

5.2.4 Second Challenge

Another challenge is to come up with distinct DNF tautologies with all the terms of the

size. By density arguments a necessary condition for the existence of such a distinct

n 1
— > 1.
() 272

Let By, be the largest such m. The first 14 values are

DNF tautology

0,0,1,2,3,3,4,5,6,6,7,8,9,9....

Obviously for n = 3, where Bs = 1, it is not possible, since z1 V 22 V 3 can’t cover
everything. We were also unable to find such optimal DNF' tautologies for n = 5, where
Bs = 3 and we had to leave one vertex uncovered, n = 9, (with By = 6), where 13
vertices were left uncovered, and n = 13 (with By = 9) where 23 —8090 = 102 vertices
were left uncovered. For the other cases with n < 14, we met the challenge. See the
output file odt1.txt listed in Appendix [A] You are also welcome to experiment for

yourself with the package dt.txt!
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Appendix A

Accessing the Supplemental Computer Material

This thesis references Maple packages and computer-generated data that can be found
on the author’s site, http://sites.math.rutgers.edu/~az202/, and/or Dr. Zeil-
berger’s site, http://sites.math.rutgers.edu/~zeilberg/.

All packages and data are text files. They can be read into Maple by saving them
in the working directory and executing read(<file_name>) ; at the Maple prompt.

Table lists URLs for specific materials mentioned. In some cases, we list a link

to the “front” of one of our articles, which in turn links to the relevant materials.

Keyword URL

Armin http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/armin.html

core http://sites.math.rutgers.edu/~zeilberg/tokhniot/core.txt

core2 http://sites.math.rutgers.edu/~az202/Z/core/core2.txt |

dt http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/dt.html

Feller http://sites.math.rutgers.edu/~az202/Z/Feller.txt

0ddArmin http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/oddarmin.html

odt1 http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/dt.html

odt2 http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/dt.html

00ddArmin2 | http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/oddarmin.html

00ddArmin3 | http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/oddarmin.html

ramsey http://sites.math.rutgers.edu/~azQOQ/Z/ramsey/ramsey.txt44

sat http://sites.math.rutgers.edu/~az202/Z/sat/sat.txt ]

theorems http://sites.math.rutgers.edu/~az202/Z/core/theorems.txt |

Table A.1: Supplemental computer materials.


http://sites.math.rutgers.edu/~az202/
http://sites.math.rutgers.edu/~zeilberg/
http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/armin.html
http://sites.math.rutgers.edu/~zeilberg/tokhniot/core.txt
http://sites.math.rutgers.edu/~az202/Z/core/core2.txt
http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/dt.html
http://sites.math.rutgers.edu/~az202/Z/Feller.txt
http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/oddarmin.html
http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/dt.html
http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/dt.html
http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/oddarmin.html
http://sites.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/oddarmin.html
http://sites.math.rutgers.edu/~az202/Z/ramsey/ramsey.txt
http://sites.math.rutgers.edu/~az202/Z/sat/sat.txt
http://sites.math.rutgers.edu/~az202/Z/core/theorems.txt

Appendix B

Index of Notation

The page reference gives the first occurrence of the term.

Term Description Page
ay(w) number of losing times 5
az(w) number of break-even times 5
as(w) last break-even time 6
as(w) number of sign changes 6
A the poset Ps ¢41 41
CNF conjunctive normal form 53
distinct (covering system) 64
distinct (tautology) 69
DNF disjunctive normal form 53
e (s) a sequence 43
e (s) another sequence 43
EO(a,b) a poset 26
exact (covering system) 64
exact (tautology) 69
Ga,s(q) g.f. of (s,ds — 1)-cores with distinct parts | 35
Gs(q) g.f. of (s,s+ 1)-cores with distinct parts | 16
l(w) length of walk w 5
moment (straight, central, standardized) 7
Ny(s) generalized Fibonacci number 33
OE(a,b) a poset 27
order ideal | (of a poset) 24
partition (core, hook length) 14
pre-moment | moment before normalizing 37
Py (s,s+ 1)-cores with distinct parts 16
P poset whose order ideals < (s, t)-cores 24
R(k, k) diagonal Ramsey number 51
Ss(q) a Straub polynomial 29
w up/right walks 6
Whon walks to (n,n) 6
ws walks with step set S 10

Table B.1: Index of notation.
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Here, we list terms and notation that are potentially unfamiliar or specific to this thesis.
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