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Experimental mathematics involves using computation and algorithms to study math-

ematical objects, typically with computer-assisted proving. This dissertation demon-

strates experimental methods in researching various problems.

The first project expands upon Haglund, Rhoades, and Shimonozo’s work on

finding the reduced Gröbner basis of the ideal of elementary symmetric polynomials

in n variables of degree d for d = n− k + 1, . . . , n. Using symbolic computation and

experimentation, we construct the reduced Gröbner basis for the ideal generated by

the elementary symmetric polynomials in n variables of arbitrary degrees.

The remaining projects focus on Dyck, Motzkin, and similar paths. Using Zeil-

berger’s automated procedures to find the weight enumerator for specific families of

restricted Dyck paths, we extend these findings to infinite families through gram-

matical proofs. We then generalize the procedures to find the weight enumerator for

restricted Motzkin paths. The next project explains how to automatically generate

the weight enumerator of generalized Dyck paths, i.e. paths in the xy−plane from

(0, 0) to (n, 0) with an arbitrary set of atomic steps that never go below the x−axis.

Expanding on this, we compute the generating functions for the sum of the areas
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under such paths as well as the sum of a given power of the areas.
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Introduction

This dissertation focuses on the application of experimental mathematics to a number

of problems, demonstrating its methodology. In the most general sense, experimen-

tal mathematics is the methodology of using computation and algorithms to study

mathematical objects, typically involving computer-assisted proving. Programming

and developing algorithms are important tools in generating ideas and tackling po-

tential problems. While mathematical investigation is traditionally done by hand, the

methodology of experimental mathematics has shown itself to be invaluable. Com-

puters can provide mathematicians with a vast amount of data used to form new

conjectures, which would be extremely tedious – if not impossible – to obtain by

hand. As computers become increasingly powerful and allow more flexibility in pro-

gramming, mathematicians need to adapt and develop new research methods. By

designing algorithms, mathematicians can “teach” computers to form and rigorously

prove conjectures, unlocking their untapped potential in furthering mathematical

studies.

One form of experimental mathematics involves using a computer to investigate

mathematical objects and then using this data to form conjectures on their general

properties, which are easier to prove a posteriori. Here, a mathematician may write a

code to generate sufficiently many examples, study these examples, and identify (or
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even program the computer to guess) patterns among them.

For example, Chapter 1 implements this approach to study the reduced Gröbner

bases of ideals generated by elementary symmetric functions. With a Maple package

co-written with Doron Zeilberger, Solomon.txt, we can efficiently generate the re-

duced Gröbner bases of many specific ideals using symbolic computation. Through

experimental methods, we deduce a pattern for the reduced Gröbner bases of the ide-

als ⟨e1,n(x), . . . , ek,n(x)⟩ and ⟨e1,n(x), ek,n(x)⟩ for arbitrary k ≤ n, and prove them by

combinatorial means. We then find a basis for the general case ⟨ek1,n(x), . . . , ekm,n(x)⟩,

proving that it generates the ideal and showing empirically that it is a Gröbner ba-

sis. The work presented in this chapter was published in the Electronic Journal of

Combinatorics [7].

The joint work with Robert Dougherty-Bliss presented in Chapter 2 also takes

this approach, using Doron Zeilberger’s Maple package DyckClever.txt from [14] to

study the generating functions of restricted Dyck paths. Let A,B,C, and D be arbi-

trary sets of positive integers – either finite sets, infinite sets defined by arithmetical

progressions, or the finite union of such sets. DyckClever.txt includes algorithms

which directly compute the bivariate polynomial F (t,X) such that F (t, f(t)) = 0,

where f(t) is the generating function for the sequence of the number of Dyck paths

of semi-length n which avoid peak heights in A, valley heights in B, upward-runs

with lengths in C, and downward-runs with lengths in D. While these algorithms

can find the desired equations satisfied by the generating functions for given sets

A,B,C, and D, they cannot produce identities for infinite families, or arbitrary sets

of a given form. For example, running the appropriate procedure outputs the desired

equation for the sequence of Dyck paths avoiding upward-runs of length ar + b for

given non-negative integers a and b (e.g. 5r + 2), where r is a variable ranging over

the non-negative integers. By running the procedure for various values a and b, we
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extend these findings to the infinite family of Dyck paths avoiding upward-runs of

length ar + b for arbitrary non-negative integers a and b. Using this approach, we

form conjectures on other infinite families of restricted Dyck paths and prove that

certain infinite families have an explicit context-free grammar which yields the equa-

tion satisfied by the generation function. The work in this chapter was published in

Integers [8].

In another form of experimental mathematics, if the mathematician already has

a conjecture, they can program the computer to either prove or disprove it. For

example, say the mathematician can prove that, if a counterexample exists, then the

minimal counterexample must have a given form. The computer can then either show

that such a minimal counterexample cannot exist – which is famously done in the

Appel-Haken proof of the Four Color Theorem [1] – or find a counterexample.

Furthermore, the mathematician may program the computer to automatically

form and prove a conjecture. In the code, the mathematician provides the general

form of the desired solution and outline of the proof. The computer can then try to

identify patterns and form rigorous proofs by following the outline provided by the

mathematician. For example, the mathematician may translate certain properties

of a mathematical object into a system of polynomial equations. Such polynomials

generate an ideal. Since any basis will give the same set of solutions, it can be

advantageous to change bases. To form and prove conjectures, the computer may for

instance use Buchberger’s algorithm to compute a Gröbner basis, making it easier to

manipulate and solve the system of equations.

We use this approach in Chapter 3, where we generalize Zeilberger’s method for

the automatic counting of restricted Dyck paths in [14] to the Motzkin paths. This

chapter describes the procedures implemented in the accompanying Maple packages
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Motzkin.txt and MotzkinClever.txt, which include programs to find the polyno-

mial F (t,X) such that F (t, f(t)) = 0, where f(t) the generating function for the

sequence counting Motzkin paths of length n avoiding peak heights in A, valley

heights in B, upward-runs with lengths in C, downward-runs with lengths in D,

and flat-runs with lengths in E. Motzkin.txt uses numeric dynamic programming

to generate sufficiently many terms of the sequence enumerating Motzkin paths with

the desired restrictions, and then guesses the recurrence. MotzkinClever.txt gener-

ates a finite system of algebraic equations by using symbolic dynamic programming

and then solves the system to get the algebraic equation satisfied by the generating

function directly. The work presented in this chapter was published in Enumerative

Combinatorics and Applications [5].

This experimental approach is also demonstrated in Chapter 4 and Chapter 5,

where we study generalized Dyck paths. Generalized Dyck paths are paths in the

xy−plane from the origin (0, 0) to (n, 0) with an arbitrary set of atomic steps and

that never go below the x−axis. Chapter 4 covers joint work with Doron Zeilberger,

where we use symbolic dynamic programming to automatically generate F (t,X) such

that F (t,X) = 0 when X := f(t), the weight enumerator for such paths of length n.

These methods are fully automated in the Maple package GDW.txt. This work has

been uploaded to the arXiv [9] and has been submitted for publication.

In Chapter 5, we begin to study the area under generalized Dyck paths. We

continue to discuss the joint work with Doron Zeilberger found in [9]. We present

similar methods as those presented in Chapter 4 to generate the algebraic equation

satisfied by the generating function for the total area under generalized Dyck paths

of length n. These methods are also fully automated in the accompanying Maple

package GDW.txt. The rest of the chapter contains research from the article [6],

which is uploaded to the arXiv and has been submitted for publication. We describe
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how to find the weight enumerator for such paths when, instead of a set of steps S,

we are given bivariate polynomials P (t, q), Q(t, q), and R(t, q) such that the weight

enumerator f(t, q) satisfies

f(t, q) = P (t, q) +Q(t, q)f(t, q) +R(t, q)f(t, q)f(qt, q).

We then present a method for finding f (k)(x, 1) :=
dk

dqk
[f(t, q)]

∣∣
q=1

. Rather than out-

putting the algebraic equations presented earlier, this procedure produces closed-form

expressions in terms of radicals. We demonstrate these methods with the bivariate

weight enumerators for both Motzkin paths and Dyck paths with length n and area

m. Moreover, we show how these procedures can be used to produce the Maclaurin

series of dk

dqk
[f(t, q)]

∣∣
q=1

, allowing us to find the generating function for the total area

under such paths of length n as well as for the sum of a given power of the areas. We

implemented these methods in the Maple package qEW.txt.

Gröbner Bases

Multiple procedures discussed in this dissertation implement Buchberger’s algorithm

and Gröbner bases to form and prove conjectures. Designing such algorithms that

use Gröbner bases for efficient computations is a key problem in computer algebra.

For potential readers unfamiliar with Gröbner bases, we will briefly elaborate on their

general use in proofs.

Definition 0.1. A Gröbner basis of an ideal I ⊂ k[x1, ..., xn] (with respect to a

monomial order >) is a finite subset G = {g1, ..., gt} of I such that, for every nonzero

polynomial f in I, f is divisible by the leading term of gi for some i.

Definition 0.2. A Gröbner basis G is reduced if, for every element g ∈ G,
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1. the leading coefficient of g is 1, and

2. no monomial in g is in the ideal generated by the leading terms of the other

elements in G.

It is known that every nonzero polynomial ideal I has a unique reduced Gröbner

basis. In general, the Gröbner basis makes it easier to interpret the properties and

structure of the ideal. It simplifies solving the ideal membership problem and finding

solutions to a system of polynomial equations. A polynomial f lies in the ideal

I ⊂ k[x1, ..., xn] with Gröbner basis G if and only if the remainder on division of f

by G is zero.

In forming conjectures, however, our problems will not already be stated as poly-

nomials. By letting variables represent certain properties, we can translate various

structures into polynomials, as was done in MotzkinClever.txt, the Maple pack-

age used in Chapter 3. Thus, if we let I be the ideal generated by the polynomials

describing the properties of the given object, and f be the polynomial representing

some claim about the mathematical object, then this claim is true if and only if f

is in I. Therefore, the computer can prove or disprove the claim algorithmically,

using Buchberger’s algorithm to find a Gröbner basis and then applying the division

algorithm. A more in depth explanation of Gröbner bases as well as examples can be

found in [25] and [26].
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Chapter 1

Gröbner Bases for Ideals

Generated by Elementary

Symmetric Functions

In their paper [21], Mora and Sala use computational and algebraic means to find the

reduced Gröbner basis of the ideal generated by the elementary symmetric polynomi-

als in n variables of degrees d = 1, . . . , n. Haglund, Rhoades, and Shimonozo expand

upon this, finding the reduced Gröbner basis of the ideal of elementary symmetric

polynomials in n variables of degree d for d = n − k + 1, . . . , n for k ≤ n [17]. In

this chapter, we further generalize their findings by using symbolic computation and

experimentation to conjecture the reduced Gröbner basis for the ideal generated by

the elementary symmetric polynomials in n variables of arbitrary degrees and prove

that it is in fact a basis of the ideal.

Definition 1.1. Let k and n be natural numbers. The elementary symmetric poly-
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nomial of degree k in n variables x1, . . . , xn is

ek,n(x) =
∑

1≤i1<···<ik≤n

xi1 . . . xik .

Definition 1.2. The homogeneous symmetric polynomial of degree k in n variables

x1, . . . , xn is

hk,n(x) =
∑

1≤i1≤···≤ik≤n

xi1 . . . xik .

Given a set or multiset S with elements in {1, . . . , n}, define the weight of S to be

wt(S) =
∏
s∈S

xm(s)
s ,

where m(s) is the multiplicity of s in S. For example,

wt({1, 2, 5}) = x1x2x5, and wt({1, 1, 3, 4}) = x2
1x3x4.

Then, ek,n(x) (respectively, hk,n(x)) is the weight enumerator of the sets (respectively,

multisets) with cardinality k whose elements are in {1, . . . , n}. Moreover, considering

subsets of {1, . . . , n} which do and do not contain n separately, we have the following

recursive definition

ek,n(x) =


0, if n < k

1, if k = 0

ek,n−1(x) + xnek−1,n−1(x), otherwise.
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Similarly, when looking at multisets, we get

hk,n(x) =


0, if n = 0 and k > 0

1, if k = 0

hk,n−1(x) + xnhk−1,n(x), otherwise.

We use the recursive definitions to write Maple functions eknS(x,k,n) and hknS(x,k,n),

which output ek,n(x) and hk,n(x), respectively. These functions – along with others

used to investigate the Gröbner basis of ideals generated by elementary symmetric

polynomials – can be found in the accompanying Maple package Solomon.txt, writ-

ten by AJ Bu and Doron Zeilberger.

In [21], Mora and Sala proved that {h1,n(x), h2,n−1(x), . . . , hn,1(x)} is a Gröbner

basis of the ideal ⟨e1,n(x), . . . , en,n(x)⟩. Using the accompanying package to efficiently

generate the reduced Gröbner bases of many specific ideals, we can extend their

findings. We first use experimental methods to deduce a pattern for the reduced

Gröbner bases of the ideals ⟨e1,n(x), . . . , ek,n(x)⟩ and ⟨e1,n(x), ek,n(x)⟩ for arbitrary

k ≤ n, and prove them by combinatorial means. We then investigate other cases to

expand upon our results to the ideal ⟨ek1,n(x), . . . , ekm,n(x)⟩. We find a basis for this

general case, proving that it generates the ideal, and show empirically that it is a

Gröbner basis.

1.1 The Ideal ⟨e1,n(x), . . . , ek,n(x)⟩

The procedure Gkn(k,n,x) in Solomon.txt outputs the reduced Gröbner basis (with

respect to lexicographical order where xn > xn−1 > · · · > x1) for the ideal ⟨e1,n(x), . . . , ek,n(x)⟩.

After running the procedure for multiple values k and n, we can conjecture that the
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reduced Gröbner basis is {hi,n−i+1(x)|i = 1 . . . k}. Indeed, for the case k = n, this

agrees with the Gröbner basis that Mora and Sala proved in their paper [21]. In order

to prove our conjecture, we use the following two relations between the elementary

and homogeneous symmetric polynomials. This is essentially a well-known classical

identity that can be found in [20], Eq. (2.6’). It has a very quick proof using gen-

erating functions, which is left to the reader. Nevertheless, we prefer the following

somewhat longer, but more insightful combinatorial proof, inspired by Zeilberger’s

proof [30].

Lemma 1.1. Let k and n be natural numbers. Then

hk,n−k+1(x) =
k∑

i=1

(−1)i+1ei,n(x)hk−i,n−k+1(x)

Proof. This is equivalent to proving

k∑
i=0

(−1)iei,n(x)hk−i,n−k+1(x) = 0.

This is trivial when k > n because hk−i,n−k+1(x) = 0 when 0 ≤ i ≤ k−1, and ek,n = 0.

So, assume k ≤ n. Then, the left-hand side is the weight enumerator of the set Sk,n

of pairs (A,B), where

• A is a subset of {1, . . . , n} of order |A|,

• B is a multiset with cardinality k−|A| whose elements are in {1, . . . , n−k+1},

and the weight of (A,B) is

w(A,B) = (−1)|A|wt(A)wt(B).
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Let f : Sk,n → Sk,n be defined as

f(A,B) =


(A ∪ {min(B)}, B − {min(B)}), if min(B) < min(A)

(A∖ {min(A)}, B + {min(A)}), otherwise.

Note that this mapping is defined for all possible pairs of sequences, and it changes

sign since the size of the first subset is either increasing or decreasing by 1. Moreover,

if min(A) > min(B) then

f(A,B) = (A ∪ {min(B)}, B − {min(B)}) =: (A′, B′), and

f(A′, B′) = (A,B),

since clearly min(A′) = min(B) ≤ min(B′). If min(A) ≤ min(B) then

f(A,B) = (A∖ {min(A)}, B + {min(A)}) =: (A′, B′), and

f(A′, B′) = (A,B),

since min(B′) = min(A) < min(A′). Thus, all elements of Sk,n can be paired up into

mutually cancelling pairs, concluding our proof.

Lemma 1.2. For any n, k ∈ N,

ek,n(x) =
k∑

i=1

(−1)i+1hi,n−i+1(x)ek−i,n−i(x).

Proof. Note that this is equivalent to

k∑
i=0

(−1)ihi,n−i+1(x)ek−i,n−i(x) = 0.

Again, this is trivial for k > n, so assume k ≤ n. The left-hand side is the weight
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enumerator of the set Sk,n of ordered pairs (A,B), where

• A is a multiset with elements in {1, . . . , n−|A|+1}, where |A| is the cardinality

of A,

• B is a subset of {1, . . . , n− |A|} of order |B| := k − |A|,

and the weight of (A,B) is

w(A,B) = (−1)|A|wt(A)wt(B).

Let f : Sk,n → Sk,n be defined as

f(A,B) =


(A+ {min(B)}, B ∖ {min(B)}), if min(B) < min(A)

(A− {min(A)}, B ∪ {min(A)}), otherwise.

As in the previous proof, this involution pairs all elements of Sk,n into mutually

cancelling pairs.

We use the polynomial identities in the preceding lemmas to construct the Gröbner

basis of the ideal ⟨e1,n(x), . . . , ek,n(x)⟩ generated by the elementary symmetric poly-

nomials of low degree. To start, we determine a basis of this ideal.

Lemma 1.3. Let k and n be natural numbers such that k ≤ n.

⟨e1,n(x), . . . , ek,n(x)⟩ = ⟨h1,n(x), h2,n−1(x), . . . , hk,n−k+1(x)⟩.

Proof. For i = 1, . . . , k, we have hi,n−i+1(x) ∈ ⟨e1,n(x), . . . , ek,n(x)⟩, and ei,n(x) ∈

⟨h1,n(x), h2,n−1(x), . . . , hk,n−k+1(x)⟩ by Lemmas 1.1 and 1.2, respectively. It immedi-

ately follows that ⟨e1,n(x), . . . , ek,n(x)⟩ = ⟨h1,n(x), h2,n−1(x), . . . , hk,n−k+1(x)⟩.
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Proposition 1.1. Let k and n be natural numbers. The set G := {hi,n−i+1(x) | 1 ≤

i ≤ k} is the reduced Gröbner basis of the ideal ⟨e1,n(x), . . . , ek,n(x)⟩ with respect to

lexicographical order, where xn > xn−1 > · · · > x1.

Proof. By Lemma 1.3, the set G generates the ideal I := ⟨e1,n(x), . . . , ek,n(x)⟩. The

S-polynomial of any two distinct elements hi,n−i+1(x) and hj,n−j+1(x) in G is

S(hi,n−i+1(x), hj,n−j+1(x)) = xj
n−j+1hi,n−i+1(x)− xi

n−i+1hj,n−j+1(x)

= hj,n−j+1(x)
i−1∑
ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x)

− hi,n−i+1(x)

j−1∑
ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x).

To prove the second equality, note that it is equivalent to

hi,n−i+1(x)

j∑
ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x) = hj,n−j+1(x)

i∑
ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x).

xℓ
n−j+1hj−ℓ,n−j(x) is the weight enumerator of all multisets of cardinality j with ele-

ments taken from {1, . . . , n− j + 1}, where n− j + 1 appears exactly ℓ times. Thus,

it is clear that
j∑

ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x) = hj,n−j+1(x).

It follows that

S(hi,n−i+1(x), hj,n−j+1(x)) = hj,n−j+1(x)
i−1∑
ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x)

− hi,n−i+1(x)

j−1∑
ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x).
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Moreover, for i ̸= j

LT

(
hi,n−j+1(x)

i−1∑
ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x)

)
= xj

n−j+1x
i−1
n−i+1xn−i

̸= xi
n−i+1x

j−1
n−j+1xn−j

= LT

(
hi,n−i+1(x)

j−1∑
ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x)

)
.

Hence,

LT (S(hi,n−i+1(x), hj,n−j+1(x))) = max(xj
n−j+1x

i−1
n−i+1xn−i, x

i
n−i+1x

j−1
n−j+1xn−j)

and, by the division algorithm,

S(hi,n−i+1(x), hj,n−j+1(x))
G
= 0.

Therefore, G is a Gröbner basis of I by Buchberger’s Criterion. Furthermore, G

is a reduced Gröbner basis because, for any distinct i, j, LT (hi,n−i+1(x)) = xi
n−i+1

cannot divide the terms in hj,n−j+1(x). This follows from the fact that the terms

of hj,n−j+1(x) have lower degree if i > j, and they cannot be multiples of xn−i+1 if

i < j.

1.2 Investigation into the General Case

The procedure GSn(S,n,x) in Solomon.txt inputs a set S = {k1, . . . , km}, a non-

negative integer n, and a variable x. It outputs the reduced Gröbner basis (with re-

spect to lexicographical order where xn > xn−1 > · · · > x1 ) for the ideal ⟨ek1,n(x), . . . , ekm,n(x)⟩.

Using this procedure to analyze the reduced Gröbner bases for various ideals, we con-
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jecture the following basis for arbitrary S and n.

Proposition 1.2. Let k1, . . . , km, and n be positive integers such that 1 ≤ k1 < · · · <

km ≤ n. Let I be the ideal

I := ⟨ek1,n(x), . . . , ekm,n(x)⟩,

and let M be the set of matrices of the form


ekm−im−1,n−im−1(x) . . . ekm−i1,n−i1(x) ekm,n(x)

... . . .
...

ek1−im−1,n−im−1(x) . . . ek1−i1,n−i1(x) ek1,n(x)

 ,

where i1 ∈ {1, 2, . . . , k1, k2} and ij ∈ {ij−1 + 1, ij−1 + 2, . . . , kj, kj+1} for j > 1. Then

the set G := {det(m) | m ∈ M} is a basis of I.

Proof. Note that the entries of the last column of any matrix in M are the elementary

symmetric polynomials

ek1,n(x), . . . , ekm,n(x)

that generate I. It immediately follows that ⟨G⟩ ⊆ I.

For the other containment, let m1 be the matrix in M where ij = kj+1. Then,

det(m1) = det





1 ekm−km−1,n−km−1(x) . . . ekm−k2,n−k2(x) ekm,n(x)

0 1 . . . ekm−1−k2,n−k2(x) ekm−1,n(x)

... 0
. . .

...
...

...
...

. . . 1 ek2,n(x)

0 0 . . . 0 ek1,n(x)




= ek1,n(x).
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Therefore, ek1,n(x) ∈ ⟨G⟩. Now suppose that for L > 1, ekℓ,n(x) ∈ ⟨G⟩ for all

1 ≤ ℓ < L. Let mL denote the matrix in M such that ij = kj for j < L and ij = kj+1

for j ≥ L. Then,

mL =

AL BL

0 CL

 ,

where A is an (m− L)× (m− L) triangular matrix with whose diagonal entries are

all 1, and 0 is an L× (m− L) zero matrix. Therefore, detmL = detCL, where CL is

the L× L matrix



ekL−kL−1,n−kL−1
(x) ekL−kL−2,n−kL−2

(x) . . . ekL−k1,n−k1(x) ekL,n(x)

1 ekL−1−kL−2,n−kL−2
(x) . . . ekL−1−k1,n−k1(x) ekL−1,n(x)

0 1
. . .

...
...

...
. . . . . . ek2−k1,n−k1(x) ek2,n(x)

0 . . . 0 1 ek1,n(x)


.

Define ci to be the (L− 1)× (L− 1) matrix formed by removing the i− th row and

the last column from CL. Then,

det(CL) =
L∑
i=1

(−1)i+1eki,n(x) det(cL+1−i).

Since det c1 = 1, it follows that

detM = detCL

= (−1)L+1ekL,n(x) +
L−1∑
i=1

(−1)i+1eki,n(x) det(cL+1−i).

Since detM ∈ ⟨G⟩ and, by our inductive hypothesis, eki,n(x) ∈ ⟨G⟩ for 1 ≤ i ≤ L−1,

it follows ekL,n(x) is in the ideal as well. Thus, eki,n(x) ∈ ⟨G⟩ for i = 1, . . . ,m, and

I = ⟨G⟩.
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Since we found this basis by studying specifically the reduced Gröbner bases of

various ideals, we further conjecture that it is the reduced Gröbner basis for arbitrary

S and n. Indeed, the following proposition states that this conjecture holds for the

ideal ⟨e1,n(x), ek,n(x)⟩.

Proposition 1.3. Let k and n be natural numbers such that n ≥ k. Let I be the ideal

⟨e1,n(x), ek,n(x)⟩, and let M be the set of matrices

M =


1 ek,n(x)

0 e1,n

 ,

ek−1,n−1(x) ek,n(x)

1 e1,n(x)


 .

Then the set

G := {det(m) | m ∈ M}

is the reduced Gröbner basis of I with respect to lexicographical order, where xn >

xn−1 > · · · > x1.

Proof. By Proposition 1.2, G generates I := ⟨e1,n(x), ek,n(x)⟩. Note that by evaluating

the determinants and then using the recursive properties of the elementary symmetric

polynomials, we can rewrite G as

G = {e1,n(x), e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)}.

Taking the S-polynomial of the elements in G, we have

S(e1,n(x),e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))

= x2
n−1xn−2 . . . xn−k+1e1,n(x)− xn

(
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)

)
=
(
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)

)
e1,n−1(x)

− e1,n(x)
(
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)− x2

n−1xn−2 . . . xn−k+1

)
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Note that the second equality obviously holds since it can be rewritten as

e1,n(x)
(
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)) =

(
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))e1,n(x).

It is also clear that

LT
(
(e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))e1,n−1(x)

)
< LT

(
e1,n(x)(e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)− x2

n−1xn−2 . . . xn−k+1)
)
,

since the latter is a multiple of xn. Hence,

S(e1,n(x), e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))
G
= 0,

and G is a Gröbner basis. It is clearly reduced since no term in e1,n−1(x)ek−1,n−1(x)−

ek,n−1(x) is divisible by xn and no term in e1,n(x) is divisible by x2
n−1.

Upon further investigation, we can show that our basis for the general case also

gives the reduced Gröbner basis of the ideal ⟨e1,n(x), . . . , ek,n(x)⟩. We show that this

is true in the following proposition, which is equivalent to Proposition 1.1.

Proposition 1.4. Let k and n be positive integers such that 1 ≤ k ≤ n. Let I be the

ideal

I := ⟨e1,n(x), . . . , ek,n(x)⟩,

and let M be the set of matrices of the form


ek−ik−1,n−ik−1

(x) . . . ek−i1,n−i1(x) ek,n(x)

... . . .
...

...

e1−ik−1,n−ik−1
(x) . . . e1−i1,n−i1(x) e1,n(x)

 ,
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where 1 ≤ i1 < · · · < ik−1 ≤ k. Then the set

G := {det(m) | m ∈ M}

is the reduced Gröbner basis of I.

Proof. By Proposition 1.2, G is a basis of I. Moreover, by Proposition 1.1, the reduced

Gröbner basis of I is G′ := {hi,n−i(x) | 1 ≤ i ≤ k}. Thus, it suffices to prove that

G = G′.

For any positive integer L, let mL denote the matrix such that no ij = L. Then,

as shown in the proof of Proposition 1.2,

detmL = detCL,n,

where

CL,n =



e1,n−L+1(x) e2,n−L+2(x) . . . eL−1,n−1(x) eL,n(x)

1 e1,n−L+2(x) . . . eL−2,n−1(x) eL−1,n(x)

0 1
. . .

...
...

...
. . . . . . e1,n−1(x) e2,n(x)

0 . . . 0 1 e1,n(x)


.

For any positive integers L and n where L ≤ n, we claim

detCL,n = hL,n−L+1(x).

To prove this claim, we use induction over L, where for each L ∈ N, we will show

that the claim holds for all n. We begin with the base case; for any positive integer
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n, we have C1,n =

[
e1,n(x)

]
, so clearly

detC1,n = e1,n(x)

= h1,n(x).

Now suppose that for any given L ≥ 2, we have detCℓ,N = hℓ,N−ℓ+1(x) for any

0 < ℓ < L and N > ℓ. Since

detCL,n =
L∑
i=1

(−1)i+1ei,n(x) det(cL+1−i),

where ci is formed by removing the i− th row and the last column from CL,n, and we

have shown that

hk,n−k+1(x) =
k∑

i=1

(−1)i+1ei,n(x)hk−i,n−k+1(x),

it is enough to show that det ci = hi−1,n−L+1. Since c1 is a triangular matrix whose

diagonal entries are 1, it is obvious that

det c1 = 1

= h0,n−L+1.

For i > 1, ci can be written as

ci =

ai bi

0 di,


where di is an (L − i) × (L − i) triangular matrix whose diagonal entries are all 1,



21

and ai = Ci−1,n−L+i−1. Therefore,

det ci = detCi−1,n−L+i−1

= hi−1,n−L+1,

by our inductive hypothesis. Thus,

detCL,n =
L∑
i=1

(−1)i+1ei,n(x) det(cL+1−i)

=
L∑
i=1

(−1)i+1ei,n(x)hL−i,n−L+1(x)

= hL,n−L+1(x),

as desired.

Further Study

One direction for further research is to formally prove that the basis we have found

for the general case is the reduced Gröbner basis. We can also try to find similar

identities for other ideals, such as those generated by various power sum symmetric

polynomials or homogeneous symmetric polynomials of arbitrary degrees.
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Chapter 2

Enumerating Restricted Dyck

Paths with Context-Free

Grammars

As Flajolet and Sedgewick masterfully demonstrate in their seminal text, Analytic

Combinatorics [16], mathematicians have occasionally borrowed the study of formal

languages from computer science and linguistics for combinatorial reasons. Many

combinatorial classes can be reinterpreted as languages generated by certain gram-

mars, and these grammars often make writing down generating functions, another

favorite combinatorial tool, routine. Such grammars are sometimes called “combina-

torial specifications.”

For example, consider the well-known Dyck paths.

Definition 2.1. A Dyck path of semi-length n is a path in the xy−plane from the

origin (0, 0) to (2n, 0) with atomic steps U := (1, 1) and D := (1,−1) that never goes

below the x−axis.
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Note that a Dyck path must have even length, and for this reason we often refer

to Dyck paths of semilength n (length 2n). The following are all Dyck paths:

UUDD

UDUD

UUUDUDDD

The number of Dyck paths of semilength n equals the nth Catalan number,

Cn =
1

n+ 1

(
2n

n

)
.

There are many proofs of this fact, but here is a grammatical proof.

Let P denote the set of all Dyck paths. Then, P is generated by the unambiguous,

context-free grammar

P = {EmptyPath} ∪ UPDP . (2.1)

In words, a path is either empty or begins with a U , is followed by a Dyck path

(shifted to height 1), a D, then another Dyck path.1 This is a unique parsing of all

Dyck paths.

Given a set of objects E each with a non-negative integer size, let GF (E) =∑
k≥0 |E(k)|tk be a formal generating function, where |E(k)| is the number of objects

of size k in E. The main result about formal grammars is that, in an unambiguous

context free grammar,

GF (A ∪B) = GF (A) +GF (B),

1Note that D denotes the first time the path returns to height 0.
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for disjoint clauses A and B, and

GF (AB) = GF (A)GF (B),

where A ∪ B is the union of the words of A and the words of B, and AB stands for

“concatenation of words of A with words in B.” The “sizes” of a grammar are the

lengths of the words it generates.

In our case, if f(t) is the generating function for the number of Dyck paths of

semilength n, then the grammar (2.1) implies

f(t)) = GF ({EmptyPath}) +GF (UPDP)

= 1 + t
[
f(t)

]2
.

The generating function C(t) for the Catalan numbers also satisfies

C(t) = 1 + t
[
C(t)

]2
,

and since there are only two possible solutions, it is not hard to see that f(t) = C(t).

The grammatical technique offers a unifying framework: Devise a grammar and

you get an equation. Sometimes the equations turn out to be well-known or simple.

Other times they are new and messy. The enumeration of all Dyck paths is one

application of this framework, and here we want to demonstrate others. In particular,

we will give grammatical proofs of several combinatorial facts about restricted Dyck

paths, and also establish several infinite families of grammars in closed form.

First, let us define the restrictions we shall consider.

Definition 2.2. Given a Dyck path, the height of the path at position k is the partial



25

sum of its first k terms. A peak of a Dyck path at height h (or simply “at h”) is the

bigram UD where the height of the path after the U is h. Similarly, a valley occurs

at the bigram DU , and its height is analogously defined. The empty path has, by

convention, a peak at 0 but no valley.

Definition 2.3. Given a sequence of steps L, define Ln to be the repetition of L

n times. (For example, U2 = UU and (UD)3 = UDUDUD.) A Dyck path has an

up-run of length n provided that it contains at least one Un that is not preceded nor

followed by U . Similarly, it contains a down-run of length n provided that it contains

at least one Dn that is neither preceded nor followed by D.

We will study Dyck paths whose peak heights, valley heights, up-run lengths, and

down-run lengths avoid certain sets. We will, for example, discuss the set of all Dyck

paths whose peak heights avoid {2, 4, 6, . . . } and have no up-run of length greater

than 2.

For arbitrary sets of positive integers A, B, C, and D, let P(A,B,C,D) be the set

of Dyck paths whose peak heights avoid A, whose valley heights avoid B, whose up-

run lengths avoid C, and whose down-run lengths avoid D. Let fA,B,C,D(t) be be the

generating function for the number of Dyck paths of semi-length n in P(A,B,C,D).

Some of these sets have been studied. In [24], Peart andWoan provide a continued-

fraction recurrence for the generating functions f{k},∅,∅,∅(t). In [15], Eu, Liu, and Yeh

take this idea further and express fA,∅,∅,∅(t) as a finite continued fraction whenever

A is finite or an arithmetic progression. In [18], Hein and Huang enumerate the

number of Dyck paths which avoid up-runs of length k after a down step. In [14],

Zeilberger presents a rigorous experimental method to derive equations for fA,B,C,D(t)

when the sets involved are finite or arithmetic progressions. Proving “by hand” some

of Zeilberger’s interesting discoveries ex post facto was a motivation for the present
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work. We generalize some of Zeilberger’s results to infinite families which are likely

out of reach for symbolic methods.

Our results include several explicit grammars (and therefore generating function

equations) for infinite families of the sets A and B, and also grammatical proofs of

several interesting special cases suggested in [14]. Many of these—any grammars

referencing restrictions on up- or down-runs—are not in [15]. Some of our results are

suggested in the OEIS [22]; see, for example, A1006 (Motzkin numbers) and A004148

(generalized Catalan numbers).

The remainder of the chapter is organized as follows. Section 2.1 presents some

results discovered by experimentation with software from [14] and proven with gram-

matical methods. Section 2.2 presents some infinite families of explicit grammars.

2.1 Combinatorial results

In this section we will present a number of results with grammatical proofs.

Proposition 2.1. The number of Dyck paths of semilength n whose peak heights

avoid {2r + 3 | r ≥ 0} and whose up-runs are no longer than 2 is 1 when n = 0, and

2n−1 when n ≥ 1.

Proof. Let P be the set of all such Dyck paths, and Q the set of all Dyck paths which

avoid peaks in {2r+2} and up-runs longer than 2. Let their generating functions be

f(t) and g(t), respectively. Note that P and Q satisfy the following grammar:

P = {EmptyPath} ∪ UDP ∪ UUDQDP

Q = {EmptyPath} ∪ UDQ.
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This implies the following system of equations:

f(t) = 1 + tf(t) + t2g(t)f(t)

g(t) = 1 + tg(t).

Thus, g(t) = (1− t)−1 (the only path in Q of semilength n is (UD)n), and

f(t) =
1− t

1− 2t
.

Therefore, [t0]f(t) = 1, and [tn]f(t) = 2n−1.

The following proposition concerns generalized Catalan numbers (see A4148 in the

OEIS and [28]). These numbers are defined by the recurrence

G0 = 1

G1 = 1

Gn+2 = Gn+1 +
∑

1≤k<n+1

GkGn−k.

Proposition 2.2. The number of Dyck paths of semilength n whose peak heights

avoid {2r + 3 | r ≥ 0} and whose up-runs are no longer than 3 equals the (n + 1)-th

generalized Catalan number.

Proof. Let P , O, and E be the set of all Dyck paths with up-runs no longer than 3,

and whose peak heights avoid {2r+3 | r ≥ 0}, {2r+2 | r ≥ 0}, and {2r+1 | r ≥ 0},

respectively. Let f(t), g(t), and h(t) denote their generating functions, respectively.

Observe that P , O, and E satisfy the following grammar:
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P = {EmptyPath} ∪ UDP ∪ UUDODP

O = {EmptyPath} ∪ UDO ∪ UUUDODEDO

E = {EmptyPath} ∪ UUDODE .

This grammar implies the following equations:

f(t) = 1 + tf(t) + t2g(t)f(t)

g(t) = 1 + tg(t) + t3h(t)
[
g(t)

]2
h(t) = 1 + t2g(t)h(t).

This system has two possible solutions for f(t), but only one is holomorphic near the

origin, namely

f(t) =
2

1− t− t2 + (t4 − 2t3 − t2 − 2t+ 1)1/2
.

The generating function G(t) for the generalized Catalan numbers is (see A4148 in

the OEIS)

G(t) =
1− t+ t2 − (1− 2t− t2 − 2t3 + t4)1/2

2t2
,

and it is routine to verify that G(t) = tf(t) + 1. Therefore Gn+1 = [tn]f(t) for

n ≥ 0.

The following proposition is concerned with Motzkin numbers (see A1006 in the

OEIS and [13]). A Motzkin path is like a Dyck path, but includes a “sideways” step

S which does not change the height. The nth Motzkin number Mn is the number of

Motzkin paths of length n. The generating function M = M(t) for Mn satisfies the

quadratic equation

M = 1 + tM + t2M2.
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There are numerous bijections between Motzkin paths and various restricted

classes of Dyck paths. Such bijections are often variations of the “folding” map

UD 7→ S

DU 7→ S

UU 7→ U

DD 7→ D,

which in general is not injective, but many restrictions on Dyck paths make it in-

jective. For example, this idea shows that the Dyck paths of semilength n with no

up-runs longer than 2 are in bijection with the Motzkin paths of length n. We offer

a grammatical proof of this fact.

Proposition 2.3. The number of Dyck paths of semilength n which avoid up-runs of

length 3 or more equals the nth Motzkin number Mn.

Proof. Let P be the set of such paths, and let f(t) be the enumerator for paths in P

of semi-length n. A grammar for P is

P = {EmptyPath} ∪ UUDPDP ∪ UDP .

Our grammar implies that

f(t) = 1 + tf(t) + t2
[
f(t)

]2
.

This is the same equation satisfied by the Motzkin generating function, and it is easy

to check that f(t) = M(t).

Proposition 2.4. Consider the set of Dyck paths such that no peak or valley has
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positive, even height. The numbers of such paths of semilength 2n and 2n + 1 are(
2n−1
n

)
and

(
2n
n

)
, respectively.

Proof. Let P denote the set of such paths, and let O denote the set of all Dyck paths

whose peaks and valleys avoid odd heights. Let their weight enumerators be f(t) and

g(t), respectively. These sets satisfy the following grammars

P = {EmptyPath} ∪ UODP ,

O = {EmptyPath} ∪ UUODDO.

This grammar can be translated into the following equations:

f(t) = 1 + tg(t)f(t), and

g(t) = 1 + t2
[
g(t)

]2

Solving this system for g(t), we get two solutions for g(t), but only the following

is holomorphic near the origin

g(t) =
1−

√
1− 4t2

2t2
.

Thus,

f(t) =
2t− 1−

√
1− 4t2

2(2t− 1)
,
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and it is easy to check that

[t2n]f(t) =

(
2n− 1

n

)
, and

[t2n+1]f(t) =

(
2n

n

)
.

Now, let us define a mapping which allows us to translate restrictions on up-run

(respectively, down-run) lengths into restrictions on down-run (respectively, up-run)

lengths. Let P denote the set of all Dyck paths. Define the mapping

ϕ : P → P , P 7→ Q, (2.2)

where applying ϕ reverses the order and direction of the steps in P . For example,

ϕ(UUUDUUDDDDUD) = UDUUUUDDUDDD.

It is obvious that ϕ(P ) must be a Dyck path. Moreover, it is easy to check that ϕ is an

involution. Note that the up-runs (respectively, down-runs) in P become down-runs

(respectively, up-runs) in ϕ(P ) of the same length.

Proposition 2.5. Let A and B be arbitrary sets of positive integers. The number

of Dyck paths of semi-length n which avoid up-runs and down-runs with lengths in

A and B, respectively, equals the number of Dyck paths of semi-length n which avoid

down-runs with lengths in A and up-runs with lengths in B.

Proof. Let P(A,B) be the set of Dyck paths such that no up-run has length in A and

no down-run has length in B, and P(B,A) be the set of Dyck paths such that no up-

run has length in B and no down-run has length in A. Then ϕ – defined in equation
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2.2 – gives a one-to-one correspondence between the Dyck paths of semi-length n in

P(A,B) and the Dyck paths of semi-length n in P(B,A).

Note that ϕ also allows us to translate the grammar of P(A,B) into the grammar

of P(B,A), as seen in the following section.

2.2 Grammatical families

In this section we provide some explicit grammars for infinite families of restricted

Dyck paths. In many cases, such grammars are guaranteed to exist. The reasoning

in [14] shows that, for every set of Dyck paths whose peaks, valleys, and up- and

down-runs avoid specific arithmetic progressions, we may construct a finite, context-

free grammar which generates them. The method implied in [14] to compute these

grammars gives no hint as to their form, and this is what we try to provide here.

Our first two results are about Dyck paths whose up-run lengths avoid a fixed

arithmetic progression {Ar+B | r ≥ 0}; each of these is accompanied by a corollary

on Dyck paths that avoid down-run lengths in {Ar + B | r ≥ 0}. It turns out that

when B < A, there is a simple context-free grammar for such paths. When B ≥ A

the situation is more complicated, but we can derive a “grammatical equation” which

again leads to a generating function.

Proposition 2.6. Let B < A be non-negative integers. The set P of Dyck paths

whose up-run lengths avoid {Ar +B | r ≥ 0} has the unambiguous grammar

P =

 ⋃
0≤k<A
k ̸=B

Uk(DP)k

 ∪ UA(PD)AP ,
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and therefore

f(t) =

 ∑
0≤k<A
k ̸=B

tk
[
f(t)

]k
+ tA

[
f(t)

]A+1
,

where f(t) is the weight-enumerator of P.

Proof. The grammar clearly uniquely parses the empty path, so suppose that P ∈ P

has length n > 0. Then P starts with a up-run of length k > 0 for some k ̸≡ B

mod A. If k < A, then write P = UkDW , where W is a walk from height k − 1 to

height 0 with the same restrictions on up-runs as P . For 0 ≤ i < k−1, let Di indicate

the down-step in W which hits the height i for the first time. Then

W = Pk−1Dk−2Pk−2Dk−3...P1D0P0,

where Pi is a Dyck path shifted to height i with the same restrictions on up-runs as

P . This uniquely parses P into the case Uk(DP)k in the grammar.

If the initial up-run has length k ≥ A, then write P = UAW , where W is a walk

from height A to height 0 whose up-run lengths avoid {Ar+B | r ≥ 0}. By argument

analogous to the previous paragraph, we can decompose W as

W = PADA−1PA−1DA−2...P1D0P0,

where Pi ∈ P . Thus W is of the form (PD)AP , and this uniquely parses P into the

final case of the grammar.

We have shown that P is contained in the language generated by this grammar,

and it is easy to see that the first k cases of the grammar are contained in P . The

final case, UA(PD)AP , is also contained in the grammar, because concatenating UA
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to the beginning of a path does not change the length any of the up-runs modulo A.

The different cases are clearly disjoint, so the grammar is also unambiguous.

Corollary 2.1. Let A,B ∈ Z≥0 such that B < A. The set P of Dyck paths avoiding

down-run lengths in {Ar +B|r ∈ Z≥0} has the unambiguous grammar

P =

 ⋃
0≤k<A

k ̸=B

(PU)kDk

 ∪ P(UP)ADA,

and therefore

f(t) =

 ∑
0≤k<A
k ̸=B

tk
[
f(t)

]k
+ tA

[
f(t)

]A+1
,

where f(t) is the weight-enumerator of P.

Proof. Let ϕ be the involution defined in equation 2.2, and let Q be the set of Dyck

paths avoiding up-run lengths in {Ar +B|r ∈ Z≥0}. By proposition 2.6,

Q =
⋃

0≤k<A
k ̸=B

Uk(DQ)k ∪ UA(QD)AQ.

Since

ϕ(Q) = P ,

ϕ(Uk(DQ)k) = (PU)kDk, for all 0 ≤ k < A, and

ϕ(UA(QD)AQ) = P(UP)AUA,

ϕ translates the grammar of Q into the desired grammar for P .

Proposition 2.7. Let A ≤ B be nonnegative integers. The set P of Dyck paths
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avoiding up-run lengths in {Ar +B | r ≥ 0} satisfies the “grammatical equation”

P ∪ UB(DP)B =

( ⋃
0≤k<A

Uk(DP)k

)
∪ UA(PD)AP ,

and therefore

f(t) + tB
[
f(t)

]B
=

( ∑
0≤k<A

tk
[
f(t)

]k)
+ tA

[
f(t)

]A+1
,

where f(t) is the weight-enumerator of P.

Note that the right-hand side is nearly identical to proposition 6; the difference

being that we can get paths in UB(DP)B, which we will show below.

Proof. If P is a path in P , then we can uniquely parse P into a case of the right-hand

side by the same argument given in the previous proposition. Note that

UB(DP)B = UAUB−A(DP)B

= UA{UB−A(DP)B−A}(DP)A

= UA[{UB−A(DP)B−A}D(PD)A−1]P .

The expression in brackets, UB−A(DP)B−A, is in P , which shows that UB(DP)B is

contained in UA(PD)AP .

Conversely, it remains to show that the left-hand side is all that the right-hand

side can generate.
⋃

0≤k<A Uk(DP)k is contained in P as in the previous proposition.

For W ∈ UA(PD)AP , write

W = UAP1D . . . PADPA+1.
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Let ℓ be the length of the initial up-run in P1. If ℓ ̸≡ B (mod A), then W contains

no up-runs of lengths in {Ar + B | r ≥ 0} and is a path in P . If ℓ ≡ B (mod A),

then ℓ ≤ B−A. If ℓ < B−A then the initial run of W has length less than B. Thus,

W contains no up-runs of lengths in {Ar+B | r ≥ 0}. For ℓ = B −A, let Di denote

the first time W steps down to height i for A < i < B and write

W = UAP1D . . . PADPA+1

= UA(UB−ADB−1WB−1 . . . DAWA)DP2D . . . PADPA+1

= UBDB−1WB−1 . . . DAWADP2D . . . PADPA+1.

Wi is Dyck path shifted to height i by the definition ofDi. Hence,W ∈ UB(DP)B.

Corollary 2.2. Let A,B ∈ Z≥0 such that B ≥ A. The set P of Dyck paths avoiding

down-run lengths in {Ar +B|r ∈ Z≥0} satisfies the grammatical equation

P ∪ (PU)BDB =
(⋃

0≤k<A
(PU)kDk

)
∪ P(UP)ADA.

and therefore

f(t) + tB
[
f(t)

]B
=

( ∑
0≤k<A

tk
[
f(t)

]k)
+ tA

[
f(t)

]A+1
,

where f(t) is the weight-enumerator of P.

Proof. Let ϕ be the involution defined in equation 2.2, and let Q be the set of Dyck

paths avoiding up-run lengths in {Ar + B|r ∈ Z≥0}. Applying ϕ to each clause of

the grammar of Q given in proposition 2.7, we get

P ∪ (PU)BDB =
(⋃

0≤k<A
(PU)kDk

)
∪ P(UP)ADA,
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as desired.

Proposition 2.8. Let r ∈ Z+. The set P of Dyck paths avoiding ascending and

descending runs of lengths in {1, ..., r} satisfies the grammatical equation

P ∪ UDP = {EmptyPath} ∪ U r+1Dr+1P ∪ UPDP .

and therefore

f(t) + tf(t) = 1 + tr+1f(t) + t
[
f(t)

]2
,

where f(t) is the weight-enumerator of P.

Proof. If P ∈ P is the empty path, then the grammar uniquely parses P . Otherwise,

P ∈ P must begin with an ascending run of length ℓ > r. If ℓ = r + 1, then clearly

U r+1 must be immediately followed by the descending run Dr+1, and P is uniquely

parsed into the case U r+1Dr+1P .

If ℓ > r + 1, then let D0 denote the step where P returns to height 0 for the first

time and write

P = UP1D0P2.

It is obvious that P2 ∈ P and P1 is a Dyck path shifted to height 1. By restrictions

on P , the final descending run in P1 must have length L ≥ r. If L = r then the

preceding ascending run ends at height r+1. But the ascending runs in P must have

length of at least r+1, and hence P1 hits height 0, contradicting the definition of D0.

From here, it is clear that P1 has the same restrictions on ascending and descending

runs as P . Thus, P is uniquely parsed into the case UPDP .

Since it is trivial that UDP is contained in UPDP , we have shown that the left-

hand side of the given equation is generated by the right-hand side. It is also obvious
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that the cases defined on the right-hand side are disjoint and that ϵ ∪ U r+1Dr+1P is

contained in P . A path UP1DP2 ∈ UPDP is contained in UDP if P1 is the empty

path and P otherwise. Thus, P satisfies the given grammatical equation

Proposition 2.9. Let m,n ∈ Z+. The set P of Dyck paths avoiding ascending

runs of lengths in {1, ...,m} and descending runs of lengths in {1, ..., n} satisfies the

grammatical equation

P ∪ UDP = {EmptyPath} ∪ UPDP ∪ Um+1Dn+1(PD)m−nP , if m ≥ n (2.3)

P ∪ PUD = {EmptyPath} ∪ PUPD ∪ P(UP)n−mUm+1Dn+1, if m ≤ n. (2.4)

Proof. We have already shown that this statement is true for m = n. Suppose m > n.

If P ∈ P is the empty path, then the grammar uniquely parses P . Otherwise, P must

begin with an ascending run of length ℓ > m. If ℓ = m+ 1 then Um+1 is followed by

a descending chain of length of at least n+ 1. Let Di denote the first time P returns

to height i for 0 ≤ i ≤ m− n− 1, and write

P = Um+1Dn+1Pm−nDm−n−1...P1D0P0.

It is obvious that Pi is a Dyck path, shifted to height i, that has the same restrictions

on ascending runs and descending runs (with the exception of the final descending

run) as P . Since Pi is a Dyck path, its final descending run must be at least as long

as the ascending run preceding it. Thus, Pi is either the empty path or ends with

a descending run of length L > m > n. Thus, P is uniquely parsed into the case

Um+1Dn+1(PD)m−nP .
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If ℓ > m+ 1 then, letting D0 denote the first time P returns to height 0, write

P = UP1D0P0.

Clearly, P0 ∈ P , and P1 is a Dyck path shifted to height 1 and has the same restrictions

on ascending runs as P . Using the same argument as for Pi in the previous case, the

descending runs in P1 also have the same restrictions as P . This uniquely parses P

into the case UPDP . Finally, it is obvious that UDP is contained in UPDP , so the

left-hand side of (1) is generated by the right-hand side.

It is clear that the cases on the right-hand side are disjoint, and the empty path

is an element of P . Also, UP1DP2 ∈ UPDP is contained in P if P1 is not the empty

path, and is contained in UDP otherwise. Um+1Dn+1(PD)m−nP is contained in P ,

since all ascending runs clearly avoid restrictions on P and the descending runs are

formed by concatenating down-steps to descending runs of length of at least n − 1.

Thus, we have proved the grammar for the case m ≥ n.

Now assume that n ≥ m. Applying the involution ϕ from equation 2.2, we can

directly translate the grammar 2.3 into the desired grammar 2.4.

Proposition 2.10. Let r, k ∈ Z+ and let P be the set of Dyck paths avoiding ascend-

ing runs of length {1, ..., r} and descending runs of length {k + 1, ..., r}. Then the

‘grammar’ of P is

P∪UDP∪U r+1Dk(DP)r+1−k = {EmptyPath}∪UPDP∪U r+1Dr+1P∪U r+1(DP )r+1

Proof. If P ∈ P is the empty path, then the grammar uniquely parses P . Otherwise,

P begins an ascending run of length ℓ > r, and we can deduce that it also ends with

a descending run of length L > r. If ℓ > r+ 1, then let D0 denote the first time that
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P returns to the x−axis and write

P = UP1D0P0.

It is easy to see that P0 is a path in P and P1 is a Dyck path shifted to height 1. The

initial ascending run in P1 has length ℓ− 1 > r. Thus, all ascending runs in P1 have

length of at least r+ 1 and, since P1 is a shifted Dyck path, the final descending run

in P1 must also have length of at least r+ 1. From here, it is easy to see that P1 has

the same restrictions on ascending and descending runs as P . P is therefore uniquely

parsed into the case UPDP .

Suppose ℓ = r + 1. Let Di be the step where P returns to height i for the first

time and write

P = U r+1DrPr...D0P0.

Pi is a Dyck path for all i and, if Pi is not the empty path, it must end with a

descending run of length r + 1 by restrictions on ascending runs. Thus Pi is a path

in P , and P is parsed into the case U r+1(DP)r+1.

It is trivial that UDP is contained in UPDP and U r+1Dk(DP)r+1−k is contained

in U r+1(DP)r+1. Thus, the left-hand side is generated by the right-hand side. Note

that, on the left-hand side,

UDP ∩ P = UDP ∩ U r+1Dk(DP)r+1−k = ∅,

however

P ∩ U r+1Dk(DP)r+1−k = U r+1Dr+1P .

Looking at the right-hand side, it is clear that ϵ, UPDP , and U r+1(DP)r+1 are
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disjoint, and U r+1Dr+1P is contained in U r+1(DP)r+1. Note that this resolves the

issue of double counting paths in U r+1Dr+1P on the left-hand side. Thus, all that

remains to show is that all the paths generated by the right-hand side are contained

in the left-hand side.

The path UP1DP0 in UPDP is clearly in P if P1 is not the empty path and in

UDP otherwise. For W in U r+1(DP)r+1, write

W = U r+1DrPr...D1P1D0P0.

Choose the smallest i such that Pr−i is not the empty path or, if no such i exists,

set i = r. Then the first descending run in W has length i + 1. If i ≥ k then W is

an element of U r+1Dk(DP)r+1−k. Otherwise, we claim that W is a path in P . It is

clear that W is a Dyck path and we have seen that nonempty Pj ∈ P must end in a

descending run of length of at least r + 1. Thus, we only need to show that the first

descending run in W follows the restrictions in P . This is clearly true since i < k.

Hence W ∈ P , and P satisfies the grammatical equation as desired.

Conclusion

We have given several grammatical proofs of various combinatorial results about re-

stricted Dyck paths and established some infinite families of grammars. Our methods

work because we are able to derive context-free grammars describing certain restricted

classes Dyck paths, namely when our restrictions involved sets of arithmetic progres-

sions.

It is natural to ask if context-free grammars exist for other types of restrictions.
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Parikh’s theorem [23] states that the set of lengths of any context-free language is

the union of finitely-many arithmetic progressions, so it seems likely that restric-

tions involving arithmetic progressions are essentially all that can be done. However,

addressing this question in full is beyond our current scope.
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Chapter 3

Automated Counting of Motzkin

Paths

Doron Zeilberger introduced methods of counting restricted Dyck paths using nu-

meric dynamic programming and symbolic dynamic programming in his paper ”Au-

tomatic Counting of Restricted Dyck Paths via (Numeric and Symbolic) Dynamic

Programming” [14]. Here, I generalize his findings to the Motzkin paths with the

accompanying maple packages, which are Motzkin analogues to Zeilberger’s maple

packages in [14].

Definition 3.1. A Motzkin path of length n is a path in the xy−plane from the origin

(0, 0) to (n, 0) with atomic steps U := (1, 1), D := (1,−1), and F := (1, 0) that never

goes below the x-axis.

For example, the following paths are Motzkin paths of length 6:

UUUDDD,UDUFDF,UUFFDD,FUDFUD,FFFFFF.
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To count the number of Motzkin paths with a given set of restrictions, let P

denote the set of such paths and consider the weight enumerator

f(t) :=
∑
P∈P

tLength(P ).

Note that this equals the ordinary generating function

∞∑
n=0

a(n)tn,

of the sequence {a(n)}∞n=0, counting the Motzkin paths of length n with the desired

restrictions.

This paper presents two methods for finding the polynomial F (t,X) that is zero

when X := f(t). For example, let P denote the set of all Motzkin paths. Note that

P ∈ P either is the empty path, begins with the step F , or begins with the step U .

If P begins with the step F , then we can write

P = FP0,

and it is obvious that P0 must also be a Motzkin path. If P begins with the step U ,

then let D0 denote the first time P returns to the x−axis and write

P = UP1D0P2.

It is easy to see that P1 must be a Motzkin path shifted to height 1 and P2 is also a

Motzkin path. Note that, for the paths in P , these decompositions are unambiguous.

Moreover, given any Motzkin paths P0, P1, and P2, it is clear that the empty path,
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FP0, and UP1DP2 are also Motzkin paths. P therefore has the grammar

P = {EmptyPath} ∪ FP ∪ UPDP .

Thus, setting X equal to the weight enumerator of P , we get the recurrence

X = 1 + tX + t2X2.

There are a fair number of papers that discuss the enumeration of certain families

of Motzkin paths – [15], [3], and [2] to name a few. Recall that Dyck paths are also a

family of restricted Motzkin paths, as they are Motzkin paths with no flat steps. In

“Automatic Counting of Restricted Dyck Paths via (Numeric and Symbolic) Dynamic

Programming” [14], Zeilberger considers Dyck paths with restrictions on peak heights,

valley heights, upward-runs, and down-ward runs. In this paper, we will look at

similar restrictions. Due to the allowance of flat-steps in Motzkin paths, however, we

reevaluate what peaks and valleys are. We also introduce restrictions on flat-runs.

Definition 3.2. A Motzkin path has a flat-run of length n if it contains a run F n

that is not directly followed by nor directly follows a flat-step.

The Maple Packages

This chapter covers procedures in the following Maple packages:

• Motzkin.txt: Uses numeric dynamic programming to generate sufficiently many

terms of the sequence of Motzkin paths with the desired restrictions, and then

guesses the recurrence to get the desired equation.
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• MotzkinClever.txt: Generates a finite system of algebraic equations by using

symbolic dynamic programming and then solves the system to get the equation

satisfied by the generating function directly.

These packages and example input and output files can be found at

https://ajbu1.github.io/Papers/AutocountMotzkin/AutocountMotzkin.html.

3.1 Numeric Dynamic Programming (Motzkin.txt)

Let us start by looking at the most basic case - finding the number of all Motzkin

paths of length N . By definition, every Motzkin path must end with either a down-

step or a flat-step. If a Motzkin path ends with a downwards-run on length r, then

the preceding run is either an ascending-run or a flat-run that ends at height r. We

introduce the following notation.

u(m,n) = the number of walks from (0, 0) to (m,n) that never goes below the x−axis

and ends with an up-step.

d(m,n) = the number of walks from (0, 0) to (m,n) that never goes below the x−axis

and ends with a down-step.

f(m,n) = the number of walks from (0, 0) to (m,n) that never goes below the x−axis

and ends with a flat-step.

 https://ajbu1.github.io/Papers/AutocountMotzkin/AutocountMotzkin.html
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These give us the following equalities:

d(m,n) =
m∑
r=1

u(m− r, n+ r) + f(m− r, n+ r),

f(m,n) =
m∑
r=1

u(m− r, n) + d(m− r, n), and

u(m,n) =
m∑
r=1

f(m− r, n− r) + d(m− r, n− r),

with the initial conditions f(0, 0) = 0 = u(0, 0) and d(0, 0) = 1, and the boundary

conditions d(m, k) = u(m, k) = f(m, k) = 0 for k > m.

Motzkin.txt implements these equations through the procedures u(m,n), d(m,n),

and f(m,n). Thus, to get the first N +1 terms of the sequence {a(n)}∞n=0 where a(n)

is defined to be the number of Motzkin paths of length n, run

seq(d(m,0)+f(m,0),m=0..N)

For example,

seq(d(m,0)+f(m,0),m=0..10)

outputs

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188.

3.1.1 Restricted Motzkin Paths

Let A,B,C,D and E be arbitrary sets of positive integers – either finite sets or infinite

sets defined by the union of arithmetic progressions. We consider restricted Motzkin

paths that avoid
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• peak heights in A,

• valley heights in B,

• upward-runs with lengths in C,

• downward-runs with lengths in D, and

• flat-runs with lengths in E.

In coming up with an analogue to u(m,n), d(m,n), and f(m,n), we notice that

flat-runs complicate how we count paths with restrictions on peak heights and valley

heights. For example, the path

UUFUDDD

avoids peaks with height 2 even though it contains an upward-run that ends at height

2. To address this, we need to define subcases for u(m,n), d(m,n) and f(m,n) as

follows:

ud(m,n) =


0 if n ∈ A

u(m,n) otherwise

,

du(m,n) =


0 if n ∈ B

d(m,n) otherwise

,

fu(m,n) =
∑

1≤r≤m
r ̸∈E

u(m− r, n) + du(m− r, n)), and

fd(m,n) =
∑

1≤r≤m
r ̸∈E

ud(m− r, n) + d(m− r, n).
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When counting restricted paths from (0, 0) to (m,n) ending in a downward run of

length r, the preceding run is either an upward-run or a flat-run. If it is preceded by

an upward-run that ends at a height in A, then the path violates the restriction on

peak heights. Thus, we only want to consider the paths counted by ud(m− r, n+ r).

Otherwise, it is preceded by a flat-run. If this flat-run is preceded by an upward-run

ending at a height in A, then the path again has a forbidden peak height. Thus,

we are interested in exactly the paths counted by fd(m − r, n + r). Similarly, when

counting restricted paths from (0, 0) to (m,n) ending in an upward-run of length r,

we only consider the paths counted by du(m− r, n− r) and fu(m− r, n− r) to avoid

forbidden valley heights. Note that our definitions of fu(m,n) and fd(m,n) ensure

that the sub-path being counted does not end in a flat-run of length in E. We can

use similar restrictions to ensure that our paths do not contain any forbidden run

lengths.

We set

d(m,n) =
∑

1≤r≤m
r ̸∈D

ud(m− r, n+ r) + fd(m− r, n+ r),

f(m,n) =
∑

1≤r≤m
r ̸∈E

d(m− r, n) + u(m− r, n), and

u(m,n) =
∑

1≤r≤m
r ̸∈C

du(m− r, n− r) + fu(m− r, n− r).

These functions are implemented in Motzkin.txt and are used to get

SeqABCDE(A,B,C,D,E,N) and SeqABCDEr(A,B,C,D,E,r,N),

which generate the terms a(n) – the number of Motzkin paths of length n with the de-

sired restrictions – for 0 ≤ n ≤ N . SeqABCDE(A,B,C,D,E,N) is used when A,B,C,D
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and E are finite sets of non-negative integers, and SeqABCDEr(A,B,C,D,E,r,N) is

used when the sets are defined by linear equations.

For example,

SeqABCDE({},{},{1},{1},{1},11)

outputs

[1, 0, 1, 1, 2, 1, 5, 4, 12, 13, 34, 38],

and

SeqABCDEr({2*r+1},{2*r+1},{},{},{},r,11)

outputs

[1, 1, 1, 1, 2, 6, 16, 36, 73, 145, 301, 661].

The first output tells us, for example, that there are four Motzkin paths of length

7 avoiding upward, downward, and flat runs of length 1. We can verify that this

is true by noting that such paths must either be all flat steps or a permutation of

three consecutive flat-steps, two consecutive up-steps, and two consecutive down-

steps. Since the up-steps must occur before the down-steps by the definition of

Motzkin paths, the set of desired paths is

{FFFFFFF, FFFUUDD,UUDDFFF,UUFFFDD}.

The second output states that there are six Motzkin paths of length 5 avoiding peaks

and valleys with odd heights. We can easily check that the set of such paths is

{FFFFF, FUUDD,UFUDD,UUDDF,UUDFD,UUFDD}.
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Note that

SeqABCDEr({},{},{},{},{r+1},r,30).

outputs the number of Motzkin paths of length n avoiding flat-steps for n = 0, . . . , 30.

This outputs 0 when n is odd, and the terms for even n give us the list

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845.

Inputting these terms into OEIS, we can easily verify that this is in fact the sequence

of the number of Dyck paths of semi-length n.

3.1.2 Finding the Equation Satisfied by the Generating Func-

tion

The desired F (t,X) is a polynomial, so there exist polynomials q0(t), . . . , qd(t) such

that

F (t,X) = q0(t) + q1(t)X + ...+ qd(t)X
d.

F (t,X) is zero when X := f(t), the generating function of the desired sequence,

thus f(t) is algebraic. Therefore, f(t) satisfies a linear differential equation with

polynomial coefficients, and so there is a linear recurrence equation with polynomial

coefficients for the terms a(n) in our sequence. (For more details see [19], particu-

larly Sections 6.2 and 7.2.) To get the desired polynomial, we borrow directly from

Zeilberger’s method of using undetermined coefficients to guess the recurrence used

in Dyck.txt in [14].
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3.2 Symbolic Dynamic Programming

MotzkinClever.txt uses symbolic dynamic programming to find F (t,X). More

specifically, the recurrence for the set of restricted Motzkin paths is expressed as

a polynomial by assigning different variables to different sets of restrictions. In addi-

tion to our original set of restricted Motzkin paths, we look at the “children” of this

set. These are sets of Motzkin paths with other restrictions such that any element

of our original set can be written in some form concatenating certain steps with such

paths. This process is described more concretely below. We then continue to look at

the children of the new sets until no new children can be produced. We will see that

this must happen eventually, yielding a finite system of polynomial equations that

contains the same number of equations as variables. We use this system of equations

to find the equation satisfied by the generating function.

3.2.1 Avoiding Peak and Valley Heights in Finite Sets:

Let A and B be two arbitrary finite sets of non-negative integers. We consider the

ordinary generating function fA,B of the sequence of Motzkin paths avoiding

• peak-heights in A, and

• valley-heights in B.

First, note that the sequence of walks with only flat-steps with weight tLength(P ) has

the generating function
∑∞

n=0 t
n = 1

1−t
. For convention, we say that a path has a peak

at height 0 if and only if it is a flat run. Now, let P denote the set of Motzkin paths

avoiding peak heights in A and valley heights in B, and let F denote the set of flat

runs. Consider the following three cases:
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Case 1: If 0 ∈ A then let A1 := A\{0}.

Let P1 be the set of Motzkin paths avoiding peak heights in A1 and valley

heights in B. Then it is clear P is the union of the disjoint sets F and P , giving

the following grammar

P ∪ F = P1.

This gives us the following equation

fA,B(t) = fA1,B(t)−
1

1− t
.

Case 2: If 0 ̸∈ A and 0 ∈ B then let A1 := {a− 1|a ∈ A} and B1 := {b− 1|b ∈ B\{0}}.

Let P1 denote the set of Motzkin paths avoiding peak heights in A1 and valley

heights in B1. Then any non-flat path P in P starts with either an up-step

or a flat-run followed by an up-step, and ends with either a down-step or a

down-step followed by a flat-run. Note that, since P avoids valleys with height

0, it can only return to the x−axis once. We can therefore write

P = F k1UP1DF k2 ,

where k1 and k2 are non-negative integers, and P1 is some path in P1. Thus,

we get the grammar

P = F ∪ FUP1DF ,

which gives the following equation

fA,B(t) =
1

1− t
+

t2

(1− t)2
fA1,B1(t).

Case 3: If 0 ̸∈ A and 0 ̸∈ B then let A1 := {a− 1|a ∈ A} and B1 := {b− 1|b ∈ B}.
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Let P1 denote the set of Motzkin paths avoiding peak heights in A1 and valley

heights in B1. Any non-flat path P in P starts with either an up-step or a

flat-run followed by an up-step. Then, letting D denote the first time P returns

to the x−axis, we can write

P = F kUP1DP ′,

where k is a non-negative integer, P1 is some path in P1, and P ′ some path in

P . We then have the grammar

P = F ∪ FUP1DP .

Hence,

fA,B(t) =
1

1− t
+

t2

1− t
fA,B(t)fA1,B1(t).

Thus, P has the child P1. We then apply this procedure to P1 and so on. Note that

we will eventually remove all the elements of A and B and will therefore have finitely

many “descendants” of our original set. Moreover, since we have an equation to find

the children of each variable, we have as many equations as variables. Each equation

has only two variables, except the last equation which has one, and the variables are

raised to degree at most 1. Thus, we can eliminate every variable except the one

representing our original fA,B from the first generated equation. This gives us the

polynomial satisfied by the generating function of the Motzkin paths with the desired

restrictions.

This procedure is implemented in MotzkinClever.txt by the procedure fAB(A,B,t,X).

For example, say we want the equation satisfied by the generating function of the se-

quence {a(n)}∞n=0, where a(n) is the number of Motzkin paths avoiding peak heights
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in {1, 4} and valley heights in {1, 3}. Running

fAB({1,4},{1,3},t,X)

outputs the polynomial

t8 − 2t7 + 5t6 − 12t5 + 29t4 − 38t3 + 25t2 − 8t+ 1

+ (t6 − 16t3 + 24t2 − 12t+ 2)(−1 + t)3X

+ (t6 + 2t5 − t4 − 8t3 + 12t2 − 6t+ 1)(−1 + t)4X2.

Setting this polynomial equal to zero gives us the desired equation.

3.2.2 Avoiding Peak and Valley Heights in Infinite Sets

Let A and B be two sets of arithmetic progressions ar + b for non-negative integers

a and b. Slight modifications to the procedure fAB(A,B,t,X) give us the procedure

fABr(A,B,r,t,X), which outputs the polynomial F (t,X) such that F (t,X) = 0 is

satisfied by the generating function for the sequence of Motzkin paths avoiding peak

heights in A and valley heights in B.

For example,

fABr({2*r+1},{2*r+1},r,t,X)

outputs

(−1 + t)2 + (−1 + t)3X + t4X2.

Thus, the generating function of the sequence enumerating the Motzkin paths
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avoiding odd peak and valley heights satisfies the equation

(−1 + t)2 + (−1 + t)3X + t4X2 = 0.

3.2.3 Avoiding Upward-Run Lengths, Downward-Run Lengths,

and Flat-Run Lengths in Finite Sets

Let C,D, and E be finite sets of positive non-negative integers. Here, we want to

find the generating function fC,D,E of the sequence of Motzkin paths avoiding

• upward-runs with lengths in C,

• downward-runs with lengths in D, and

• flat-runs with lengths in E.

Let hC,C1,D,D1,E,E1,E2(t) weight enumerate Motzkin paths such that

• the initial run is not an upward-run with length in C1 nor a flat-run with

length in E1,

• the initial run is an upward-run if 0 ∈ C1, and a flat-run if 0 ∈ E1,

• the final run is not a downward run with length in D1 nor a flat-run with

length in E2,

• the final run is a downward-run if 0 ∈ D1, and a flat-run if 0 ∈ E2,

• all remaining upward-run lengths are not in C,

• all remaining downward-run lengths are not in D, and
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• all remaining flat-run lengths are not in E.

Let P denote the set of such paths. For any path P in P , P either leaves the

x−axis no more than once or it can be uniquely written as

P = P1P2P3,

where

- P1 is a path that leaves the x−axis no more than once and has the same re-

strictions as paths in P except it ends in a downward-run avoiding lengths in

D,

- P2 is a path avoiding upward-runs with lengths in C, downward-runs with

lengths in D, and flat-runs with lengths in E, and

- P3 is a path that leaves the x−axis no more than once and has the same re-

strictions defined in P except it begins with an upward run avoiding lengths in

C.

LetHC,C1,D,D1,E,E1,E2(t) enumerate the Motzkin paths counted by hC,C1,D,D1,E,E1,E2(t)

that leave the x−axis no more than once.Then we have

hC,C1,D,D1,E,E1,E2(t) =HC,C1,D,D1,E,E1,E2(t)

+HC,C1,D,D∪{0},E,E1,E2(t)hC,C,D,D,E,E,E(t)HC,C∪{0},D,D1,E,E1,E2(t).

Note that we will never have 0 ∈ C1 and 0 ∈ E1 or 0 ∈ D1 and 0 ∈ E2, since the

former statement says that the path starts with both an up-step and a flat-step, and

the latter states that the path ends with both a down-step and a flat-step. To get the
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desired system of equations and find the children of the set P of paths weight-counted

by HC,C1,D,D1,E,E1,E2 , let P be any path in P and consider the following cases.

Case 1: If 0 ∈ E1, then P begins with a flat-step. Let E ′
1 = {e− 1|e ∈ E1\{0}}. Then

we can write

P = FP1,

where P1 is a path weight-counted by HC,C,D,D1,E,E′
1,E2

(t). Hence,

HC,C1,D,D1,E,E1,E2(t) = t ·HC,C,D,D1,E,E′
1,E2

(t)

Case 2: If 0 ̸∈ E1 and 0 ∈ E2 then P ends with a flat-step. Let E ′
2 = {e−1|e ∈ E2\{0}},

and write

P = P1F,

where P1 is a path weight-counted by HC,C,D,D1,E,E1,E′
2
(t). This gives us

HC,C1,D,D1,E,E1,E2(t) = t ·HC,C,D,D1,E,E1,E′
2
(t)

Case 3: If 0 ̸∈ E1, 0 ̸∈ E2, 0 ∈ C1, and 0 ∈ D1, then P starts with an up-step and

ends with a down-step. Letting C ′
1 = {c− 1|c ∈ C1\{0}} and D′

1 = {d− 1|d ∈

D1\{0}}, we can write

P = UP1D,

where P1 is a path weight-counted by hC,C′
1,D,D′

1,E,E1,E2
(t). (Note that P1 is able

to return to the height it begins at more than once.) Thus,

HC,C1,D,D1,E,E1,E2(t) = t2 · hC,C′
1,D,D′

1,E,E,E(t)

Case 4: If 0 ̸∈ E1, 0 ̸∈ E2, 0 ̸∈ C1, and 0 ̸∈ D1 then P is either the empty path, starts
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with an up-step, or starts with a flat-step. We therefore get

HC,C1,D,D1,E,E1,E2(t) = HC,C1∪{0},D,D1,E,E,E2,(t) +HC,C1,D,D1,E,E1∪{0},E2(t) + 1

Case 5: If 0 ̸∈ E1, 0 ̸∈ E2, 0 ̸∈ C1, and 0 ∈ D1, then P is non-empty and starts with

either an up-step or a flat-step. Hence,

HC,C1,D,D1,E,E1,E2(t) = HC,C1∪{0},D,D1,E,E,E2(t) +HC,C1,D,D1,E,E1∪{0},E2(t)

Case 6: If 0 ̸∈ E1, 0 ̸∈ E2, 0 ∈ C1, and 0 ̸∈ D1, then P is non-empty and ends with

either a down-step or a flat-step. Thus,

HC,C1,D,D1,E,E1,E2(t) = HC,C1,D,D1∪{0},E,E,E2(t) +HC,C1,D,D1,E,E1,E2∪{0}(t).

We again generate finitely many descendants from the original set, as we will even-

tually remove all of the elements in C, D, and E. We also have as many equations

as variables. Note that these polynomials generate an ideal. Since any basis will give

the same set of solutions, we can look at the reduced Gröbner basis of the generated

ideal.

Choosing the correct monomial ordering (namely, pure lexicographic order) will

allow us to ensure that the smallest element of the reduced Gröbner basis is in the

form to most easily find the desired equation satisfied by the generating function.

This is due to the following theorem. (Here, we assign each descendant found in our

system of equations a variable xi, and let xn be the variable representing the original

family of restricted Motzkin paths. We do not consider x as one of these variables.)

Theorem 3.1 (Elimination Theorem). If G is a Gröbner basis for I with respect to
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lex order x1 > x2 > · · · > xn, then

Gℓ = G ∩ k[xℓ+1, ..., xn]

is a Gröbner basis of the ℓ-th elimination ideal Iℓ = I ∩ k[xℓ+1, ..., xn].

If f(x) denotes the generating function of the sequence enumerating our original

family of restricted Motzkin paths, then xn = f(t) is a partial solution to our system

of equations represented by I. By the Elimination Theorem, if q denotes the smallest

polynomial of the reduced Gröbner basis, then either q ∈ Gn−1 or In−1 = ⟨0⟩. In−1 =

⟨0⟩, however, contradicts the existence of the desired nonzero polynomial F (t,X).

Thus, q ∈ G is a polynomial in terms of t and xn and is zero when xn = f(t).

Factoring q completely, we can write

q = qd11 . . . qdkk ,

where di ≥ 1. If k = 1, then we are done and F (t,X) := q1. Otherwise, xn = f(t)

also satisfies qi = 0 for one of the factors qi. We can then use the first m terms, where

m is sufficiently large, of the sequence of interest to determine which factor is the

desired qi. We thereby get the desired polynomial F (t,X) := qi.

This process is implemented in fCDE(C,D,E,t,X).

fCDE({1,2,3},{},{},t,X)

outputs

1 + (−t2 + t− 1)X − t2(t− 1)X2 +X4t8 +X5t9,
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and

fCDE({},{1},{1},t,X)

outputs

t2 − t+ 1 + (−t4 + t3 − t2 + t− 1)X + t2(t4 − t3 + t2 − t+ 1)X2 +X3t6.

Thus, when X =
∑∞

n=0 a(n)t
n, where a(n) is the number of Motzkin paths of

length n avoiding upward runs of lengths 1, 2, and 3,

1 + (−t2 + t− 1)X − t2(t− 1)X2 +X4t8 +X5t9 = 0.

If a(n) is the number of Motzkin paths of length n avoiding downward-runs and

flat-runs of length 1, then

t2 − t+ 1 + (−t4 + t3 − t2 + t− 1)X + t2(t4 − t3 + t2 − t+ 1)X2 +X3t6 = 0.

3.2.4 Avoiding Upward-Run Lengths, Downward-Run Lengths,

and Flat-Run Lengths in Infinite Sets

Suppose C,D, and E are sets of arithmetic progressions ar + b for non-negative

integers a and b. Through slight modifications to fCDE(C,D,E,t,X), we get the

procedure fCDEr(C,D,E,r,t,X). fCDEr(C,D,E,r,t,X) finds the desired polynomial

F (t,X) that is zero when X is the generating function for the sequence of Motzkin

paths avoiding upward-run lengths in C, downward-run lengths in D, and flat-run
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lengths in E. Running

fCDEr({2*r+1},{2*r+1},{2*r+1},r,t,X)

tells us that when X is the generating function of the sequence enumerating Motzkin

paths avoiding upward, downward, and flat runs of odd length, we have

1 + (t− 1)(t+ 1)X +X2t4 = 0

To get the equation satisfied by the generating function of the sequence enumerat-

ing Motzkin pats avoiding upward runs of odd lengths and flat-runs of positive even

length, input

fCDEr({2*r+1},{},{2*r+2},r,t,X).

This tells us that our desired equation is

t2 − t− 1− (t− 1)(t+ 1)X + t4(t2 − t− 1)X3 = 0.

Further Study

Using similar approaches, we can create ways to automate counting of other ob-

jects. The approach of using numeric dynamic programming can efficiently generate

many terms of the desired sequence. Guessing the algebraic equation, however, will

not always work well. Thus, for larger problems, we need to use symbolic dynamic

programming instead. Here, we identify recursive relations for the sets of relevant

objects. Then, we use this system of equations to find an equality solved by the

weight-enumerator of the set of combinatorial objects of interest.
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Chapter 4

Automated Counting of

Generalized Dyck Paths

In this chapter, we discuss how to enumerate generalized Dyck paths using symbolic

computation. The Maple code discussed in this chapter is found in the package

GDW.txt, written by AJ Bu and Doron Zeilberger. The package, along with sample

outputs, can be found at

https://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/area.html.

Definition 4.1. A generalized Dyck path is a path in the xy−plane from the origin

(0, 0) to (n, 0) with an arbitrary set of atomic steps and that never goes below the

x−axis.

Given a set of integers S, let P denote the set of generalized Dyck paths with

steps in {(1, s) : s ∈ S}. To count the number of such paths, we have the following

weight enumerator

f(t) :=
∑
P∈P

tLength(P ).

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/area.html
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Equivalently, the weight enumerator is the ordinary generating function

∞∑
n=0

aS(n)t
n

of the sequence {aS(n)}∞n=0, where aS(n) is the number of paths in the xy−plane from

(0, 0) to (n, 0) with steps in {(1, s) : s ∈ S}.

Note that if S consists of only positive integers (or only negative integers), then no

such path can exist. In this case, clearly f(t) = 1. Thus, for things to be non-trivial,

S must have at least one positive member and at least one negative member.

4.1 Generating the Weight Enumerator

Given a set of legal steps, we can find the polynomial F (t,X) such that F (t, f(t)) = 0,

where f(t) is the generating function for the sequence counting generalized Dyck paths

of length n with steps in S. As was done in Chapter 3 Section 3, we generate a system

of equations that will allow us to solve for the desired weight enumerator. First, we

introduce the some notation for given non-negative integers a and b and a set of

integers S.

Pa,b = the set of generalized Dyck paths with a set of steps given by S that

start at (0, a) and end at height b,

f [a, b](t) =the desired weight-enumerator for the paths in Pa,b.
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We also want to look at the subset of paths that only touch the x−axis at an endpoint,

so we define the following.

Qa,b =the subset of Pa,b that contains all non-empty paths that stay strictly

above the x− axis, except at an endpoint if a = 0 or b = 0,

g[a, b](t) =the desired weight-enumerator for the paths in Qa,b.

We start with P0,0, but we generate more “children” sets Pa,b and Qa,b with various

starting and ending heights. The children are the sets such that any element of the

original set can be written in the form of concatenating certain steps with paths in

the children sets. We then use the enumerating function for the children to get the

enumerator for the original set. Sometimes, we will replace a child set with one that

has the same number of elements but is easier to work with. For example, decreasing

the height of the paths in Q1,1 by 1 gives a bijection with P0,0, so we can use f [0, 0](t)

instead of g[1, 1](t). We then repeat this whole process with each child set until no

more children are produced. Assigning different variables to each of these sets gives

us our system of equations.

Forming the equations for f [a, b](t)

This section discusses how to find the equation for f [a, b](t) for given non-negative in-

tegers a and b. This process is implemented by the procedure MakeEqF(f,g,t,a,b,S)

in the Maple package GDW.txt. To form the equations for each f [a, b](t), consider the

following cases:

Case 1: Suppose a > 0 and b > 0.

Since the paths in Qa,b never touch the x−axis, they must always have a height
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of at least 1. Lowering the paths in Qa,b by 1 unit gives a bijection with the

paths in Pa−1,b−1. These paths are therefore enumerated by f [a− 1, b− 1](t).

The remaining paths in Pa,b must touch the x−axis at least once. For any such

path P , we can uniquely rewrite P as

P = QP1,

where Q ∈ Qa,0 and P1 ∈ P0,b. Moreover, it is clear that for any Q′ ∈ Qa,0 and

P ′ ∈ P0,b, we have Q′P ′ ∈ Pa,b. Thus, Pa,b \ Qa,b has the following grammar

Pa,b \ Qa,b = Qa,0P0,b

and therefore is weight counted by g[a, 0](t) · f [0, b](t). Thus,

f [a, b](t) = g[a, 0](t) · f [0, b](t) + f [a− 1, b− 1](t).

Case 2: If a > 0 and b = 0 then the paths in Pa,0 must touch x−axis for a first time. It

is therefore easy to see Pa,0 satisfies the following grammar

Pa,0 = Qa,0P0,0.

Thus,

f [a, 0](t) = g[a, 0](t) · f [0, 0](t).

Case 3: Suppose a = 0 and b > 0. Now, we observe that the paths in P0,b must hit

the x−axis a final time. It is therefore obvious that P0,b satisfies the following

grammar

P0,b = P0,0Q0,b,
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and so

f [0, b](t) = f [0, 0](t) · g[0, b](t).

Case 4: Suppose a = 0, b = 0, and 0 ̸∈ S. P0,0 contains the empty path, and any

nonempty path P ∈ P0,0 must touch the x−axis for a first time. We can

therefore derive the following grammar

P0,0 = {EmptyPath} ∪ Q0,0P0,0.

It follows that

f [0, 0](t) = 1 + g[0, 0](t) · f [0, 0](t).

Case 5: Suppose a = 0, b = 0, and 0 ∈ S. Again, P0,0 contains the empty path. Let R

denote the set of paths in P0,0 that begin with the step F = (1, 0). It is easy to

derive the grammar

R = FP0,0.

Let S denote the set of non-empty paths in P0,0 that do not start with a flat

step. Then, the elements of S must return to the x−axis for a first time, giving

the grammar

S = Q0,0P0,0.

Thus, we have

P0,0 = {EmptyPath} ∪ R ∪ S

= {EmptyPath} ∪ FP0,0 ∪Q0,0P0,0.

Hence,

f [0, 0](t) = 1 + tf [0, 0](t) + g[0, 0](t) · f [0, 0](t).
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Forming the equations for g[a, b](t)

We also need to find the desired equations for necessary g[a, b](t). This process is im-

plemented by the procedure MakeEqG(f,g,t,a,b,S) in the Maple package GDW.txt.

Let P be the subset of S consisting of the (strictly) positive members of S, and

let N be the subset of S consisting of the (strictly) negative members of S, so if 0 ∈ S

then

S = P ∪N ∪ {0},

while, if 0 ̸∈ S then

S = P ∪N.

Note, as seen in the previous section, any g[a, b](t) will have at least one of a or b

being 0. We only need to consider the following cases for g[a, b](t).

Case 1: Suppose a = 0 and b > 0. Note that the set of possible first steps of any path

in Q0,b is {sk = (1, k) : k ∈ P}. So,

Q0,b =
⋃
k∈P

skQk,b.

Since the sub-path in Qk,b must always have height of at least 1, shifting it

down by 1 unit gives a bijection between Qk,b and Pk−1,b−1. Since the first step

sk has weight t, we have

g[0, b](t) = t
∑
k∈P

f [k − 1, b− 1](t).

Case 2: Suppose a > 0 and b = 0. The set of legal final steps of any path in Qa,0 is
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{sℓ = (1, ℓ) : ℓ ∈ N}. Thus,

Qa,0 =
⋃
ℓ∈N

Qa,−ℓsℓ.

Since the sub-path in Qa,−ℓ must always have height of at least 1, shifting it

down by 1 unit gives a bijection between Qa,−ℓ and Pa−1,−ℓ−1. Thus,

g[a, 0](t) = t
∑
ℓ∈N

f [a− 1,−ℓ− 1](t).

Case 3: Suppose a = 0 and b = 0. The set legal starting steps for the paths in Q0,0 are

{sk : k ∈ P} and the legal final steps are {sℓ : ℓ ∈ N}. Therefore,

Q0,0 =
⋃
k∈P

⋃
ℓ∈N

skQk,−ℓsℓ,

and any path in Qk,−ℓ always has height of at least 1. Thus, shifting the paths

in Qk,−ℓ down by 1 unit gives a bijection between Qk,−ℓ and Pk−1,−ℓ−1. Thus,

g[0, 0](t) = t2
∑
k∈P

∑
ℓ∈N

f [k − 1,−ℓ− 1](t).

4.1.1 Solving the system of equations

Now, we have a set of of variables (from the f [a, b](t) and g[a, b](t) that we found), and

an equation for each of these variables. To get the list of equations and variables, use

MakeSysT(f,g,t,S) from the Maple package GDW.txt. It returns the set of equations,

followed by the set of quantities that participate.

For example

MakeSysT(f, g, t, {1, 2,−1,−2})[1];
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outputs

{f00 = f00g00 + 1 , f01 = f00g01 , f10 = g10f00 , f11 = f01g10 + f00,

g00 = t2f00 + t2f01 + t2f10 + t2f11 , g01 = tf00 + tf10 , g10 = tf00 + tf01} ,

while

MakeSysT(f, g, t, {1, 2,−1,−2})[2];

outputs the set of quantities

{f00 , f01 , f10 , f11 , g00 , g01 , g10} .

We now assign a variable xi to each descendent, and let xn denote the set of generalized

Dyck paths. We look at the ideal generated by each of the polynomials from the

equations. Using the Elimination Theorem and Gröbner bases, we can ensure that

the smallest element in the reduced Gröbner basis is in the form to most easily find

F (t,X) = 0. A more detailed explanation of this application of the Elimination

Theorem was given in Chapter 3 Section 2.3. This final step is implemented in the

procedure EqGFt(S,X,t).

For example,

EqGFt(1,2,-1,-2,X,t)

outputs

1 + (−2t− 1)X + t(3t+ 2)X2 − t2(2t+ 1)X3 +X4t4.

We can also use similar methods to count strict generalized Dyck paths, i.e. paths

that never touch the x-axis except at the endpoints. This is implemented by the

procedure EqGFtS(S,X,t).
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For example,

EqGFtS(1,2,-1,-2,X,t)

outputs

(−t−1+X)(X4+2X3t+3X2t2+2Xt3+t4−3X3−4X2t−5Xt2−2t3+3X2+2Xt+2t2−X).
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Chapter 5

The Sum of the Areas under Dyck

and Motzkin paths and Their

Powers

In this chapter, we are interested in the generating functions for the sum of the areas

under generalized Dyck paths, with a focus on Dyck and Motzkin paths. For example,

the following are some Motzkin paths of length 4.

UDUD UFFD UFDF FUDF FFFF.

The areas of these paths are 2, 4, 3, 1, and 0, respectively.

The bivariate weight enumerator for Motzkin paths with length n and area m

satisfies the following functional equation

M(t, q) = 1 + tM(t, q) + t2qM(t, q)M(t, q).
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To prove this, let M denote the set of all Motzkin paths. Note that any path in M

must fall into exactly one of the following cases – the empty path, Motzkin paths

that start with a flat step, or Motzkin paths that start with an up step.

If M ∈ M is the empty path, then it clearly has both area and length 0. Thus

the bivariate weight enumerator is

m0(t, q) = 1

If M begins with a flat step F , then we can write

M = FM0,

where M0 must also be a Motzkin path with the same area as M , since it still starts

at height 0. Thus, the bivariate weight enumerator for this case of Motzkin paths is

m1(t, q) = tM(t, q)

If M begins with the step U , then let D denote the first time M returns to the x−axis

and write

M = UM1DM0.

M1 must be a Motzkin path shifted to height 1, and M0 is a Motzkin path starting

at height 0. Since M0 begins at height 0, the area under the Motzkin path M0 is the

same as the area under the portion of M it represents. Since M1 is shifted to height

1, however, every step in M1 has one more unit block below it. Thus, every step t in

M1 must be replaced with qt to get the correct area for that portion of M . Since the

extra U and D steps give a combined area of 1, the bivariate weight enumerator for
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Motzkin paths beginning with an up step is

m2(t, q) = qt2M(qt, q)M(t, q),

resulting in the desired weight enumerator for all Motzkin paths.

Similarly, the bivariate weight enumerator for Dyck paths with length n and area

m satisfies the following functional equation

D(t, q) = 1 + t2qD(qt, q)D(t, q).

Accompanying Maple Packages

This chapter presents procedures in the Maple packages qEW.txt and qGDW.txt. The

Maple package qEW.txt and some sample outputs can be found at

https://ajbu1.github.io/Papers/MotzArea/MotzArea.html .

The Maple package GDW.txt, along with sample outputs, can be found at

https://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/area.html

5.1 Enumerating Generalized Dyck Paths of Length

n = 0, . . . , K with Steps in S by Area

The procedure qnwdK(S,K,q) in the Maple package qEW.txt uses dynamic program-

ming to find the enumerating function for the area of generalized Dyck paths with

https://ajbu1.github.io/Papers/MotzArea/MotzArea.html
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/area.html
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steps in S of length n = 0, . . . , K. This procedure can be used to check the findings

presented later in this chapter.

First, consider Wm,n, the set of paths of length n ≥ 0 with steps in S that end

at height m ≥ 0 and never have negative height. Let Am,n(q) be the enumerating

function for the area of paths in Wm,n.

Clearly, for n = 0, the empty path gives an area of 0. Thus, the enumerating

function is

Am,0(q) = 1.

For n = 1, the only path that can end at height m is the single step {(1,m)}, which

has area m
2
. Thus,

Am,1(q) =


q

m
2 , (1,m) ∈ S

0, (1,m) ̸∈ S.

For n > 1, consider each possible final step for any path in Wm,n. A step s ∈ S can

be the last step if m− s ≥ 0 and there exists a path W of length n− 1 with steps in

S that ends at height m− s and never has a negative height. In other words,

Wm,n = {Ws|s ∈ S, m− s ≥ 0, W ∈ Wm−s,n−1}.

The area under the last step (1, s) is 2m−s
2

. Thus, the weight enumerator for the area

of paths in Wm,n is

Am,n(q) =
∑
s∈S

m−s≥0

q
2m−s

2 Am−s,n−1(q).

This process is implemented in the procedure qnmwd(S,n,m,q), which is then used

in qnwdK(S,K,q). For example, looking at Motzkin paths,

qnwdK({[1,1],[1,0],[1,-1]},5,q)
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outputs

[1, 1, q + 1, q2 + 2q + 1, q4 + q3 + 3q2 + 3q + 1, q6 + 2q5 + 3q4 + 4q3 + 6q2 + 4q + 1] .

Note that, to avoid negative height, any Motzkin path must end with D = (1,−1) or

F = (1, 0). Since the paths end at height 0, the area under these steps are 1
2
and 0,

respectively. Thus,

A0,n = q
1
2A1,n−1 + A0,n−1.

Breaking down the algorithm described above to find the first four terms of this

outputted list,

• The only path of length 1 is [F ] = [(1, 0)], so

A0,1(q) = 1.

• Since W1,1 = {[U ]} = {[(1, 0)]}, it follows that A1,1(q) = q
1
2 . Thus,

A0,2 = q
1
2A1,1(q) + A0,1(q)

= q + 1.

• For paths of length 3 ending with D = (1,−1), note that

W1,2 = {FU,UF} = {[(1, 0), (1, 1)], [(1, 1), (1, 0)]},
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and so A1,2 = q
1
2 + q

3
2 . Thus,

A0,3 = q
1
2A1,2(q) + A0,2(q)

= q
1
2 (q

1
2 + q

3
2 ) + q + 1

= q2 + 2q + 1.

• For paths of length 4, note that

W1,3 = {FFU, FUF, UFF,UDU}

= {[(1, 0), (1, 0), (1, 1)], [(1, 1), (1,−1), (1, 1)], [(1, 0), (1, 1), (1, 0)],

[(1, 1), (1, 0), (1, 0)]}.

Therefore, A1,3 = q
1
2 + 2q

3
2 + q

5
2 , and

A0,4 = q
1
2A1,3(q) + A0,3(q)

= q4 + 3q2 + 3q + 1.

5.2 Weighted Enumeration of Generalized Dyck

Paths According to the Area

Now, we present a method analogous to the one presented in Chapter 4 but, in

addition to enumerating generalized Dyck paths of length n, we also keep track of

the area under the paths. Given a set of legal steps, we want to find the polynomial

F (t,X) such that F (t, f(t, q)) = 0, where f(t, q) is the desired bi-variate weight

enumerator.
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Note that we have have the additional variable q, which we can treat as a pa-

rameter. Therefore, in this section, we will write f [0, 0](t) instead of f [0, 0](t, q). For

given non-negative integers a and b and a set of integers S, let

Pa,b = the set of generalized Dyck paths with a set of steps given by S that

start at (0, a) and end at height b,

f [a, b](t) =the desired weight-enumerator for the paths in Pa,b, where the weight

of a path P is tLength(P ) · qAreaUnder(P ),

Qa,b =the subset of Pa,b that contains all non-empty paths that stay strictly

above the x− axis, except at an endpoint if a = 0 or b = 0,

g[a, b](t) =the desired weight-enumerator for the paths in Qa,b, where the weight

of a path P is tLength(P ) · qAreaUnder(P ).

Again, we start with P0,0 and rewrite it by concatenating specific steps with paths

of “children” sets, which will have the form Pa,b and Qa,b with various starting and

ending heights. We then use the enumerating function for the children to get the

enumerator for the original set. We repeat this whole process with each descendent

set until no more children are produced.

Note that our children sets are the same as in Chapter 4, but we need to adjust

the bi-variate weight-enumerator to account for any changes in area. Additionally,

the generating function for the sum of the areas of all legal walks of length n will be

given by [
d

dq
f [0, 0](t)

]
q=1

.
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Forming the Functional Equations for f [a, b](t)

The procedure qMakeEqF(f,g,t,q,a,b,S) in the Maple package GDW.txt generates

the functional equation for f [a, b](t), where a and b are given non-negative integers.

To form the functional equation, we need to look at the following cases:

Case 1: Suppose a > 0 and b > 0.

Since the paths in Qa,b never touch the x-axis, they must always have a height

of at least 1. Thus, lowering these paths by 1 unit gives a bijection between

Qa,b and Pa−1,b−1. While the number of such paths are equal, this mapping

changes the area under the path. Note that for each step in the path, the area

is reduced by 1 unit2. Thus, the paths in Qa,b are bi-weight-enumerated by

f [a− 1, b− 1](qt).

The remaining paths in Pa,b must touch the x−axis at least once (and therefore

for a first time). As shown in Chapter 4, the following grammar is clear

Pa,b \ Qa,b = Qa,0P0,b.

Thus, we have the following equation

f [a, b](t) = g[a, 0](t) · f [0, b](t) + f [a− 1, b− 1](qt).

Case 2: Suppose a > 0 and b = 0. Each path in Pa,0 hits the x−axis for a first time.

Thus, it is easy to prove that

Pa,b = Qa,0P0,0,
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and

f [a, 0](t) = g[a, 0](t) · f [0, 0](t).

Case 3: Similarly, for a = 0 and b > 0, the paths in P0,b must hit the x−axis for a final

time. We therefore have the grammar

P0,b = P0,0Q0,b,

and so

f [0, b](t) = f [0, 0](t) · g[0, b](t).

Case 4: If a = 0 and b = 0 and 0 ̸∈ S, then the walks in P0,0 must either be the empty

path, which has weight 1 since its area and length are both 0, or it must meet

the x−axis for the first time. Hence,

P0,0 = {EmptyPath} ∪ Q0,0P0,0,

and

f [0, 0](t) = 1 + g[0, 0](t) · f [0, 0](t).

Case 5: Suppose a = 0, b = 0, and 0 ∈ S. Again, P0,0 contains the empty path. Let R

denote the set of paths in P0,0 that begin with the step F = (1, 0). It is easy to

derive the grammar

R = FP0,0.

Let S denote the set of non-empty paths in P0,0 that do not start with a flat

step. Then, the elements of S must return to the x−axis for a first time, giving

the grammar

S = Q0,0P0,0.
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Thus, we have

P0,0 = {EmptyPath} ∪ R ∪ S

= {EmptyPath} ∪ FP0,0 ∪Q0,0P0,0.

Hence,

f [0, 0](t) = 1 + tf [0, 0](t) + g[0, 0](t) · f [0, 0](t).

Forming the Functional Equations for g[a, b](t)

We also need to set up equations for g[a, b](t) for those (a, b) that would be required.

As seen in the previous section, at least one of a or b will be 0. Let P be the subset

of S consisting of the (strictly) positive members of S, and let N be the subset of S

consisting of the (strictly) negative members of S. Now, consider the following cases

for g[a, b](t).

Case 1: Suppose a = 0 and b > 0. Note that the set of possible first steps of any path

in Q0,b is {sk = (1, k) : k ∈ P}. So,

Q0,b =
⋃
k∈P

skQk,b.

The step sk has length 1 and area k
2
, so its weight is tq

k
2 . Moreover, since the

sub-path in Qk,b must always have height of at least 1, shifting it down by 1

unit gives a bijection between Qk,b and Pk−1,b−1. This mapping however reduces

the area by 1 unit2 for each step in the path. Thus,

g[0, b](t) = t
∑
k∈P

qk/2f [k − 1, b− 1](qt).
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Case 2: Suppose a > 0 and b = 0. The set of legal final steps of any path in Qa,0 is

{sℓ = (1, ℓ) : ℓ ∈ N}. Thus,

Qa,0 =
⋃
ℓ∈N

Qa,−ℓsℓ.

The step sℓ has weight tq
ℓ
2 , and shifting the paths in Qa,−ℓ down by 1 unit gives

a bijection between Qa,−ℓ and Pa−1,−ℓ−1. Adjusting for the change in area, we

have

g[a, 0](t) = t
∑
ℓ∈N

q−ℓ/2f [a− 1, b− j − 1](qt).

Case 3: Suppose a = 0 and b = 0. The set legal starting steps for the paths in Q0,0 are

{sk : k ∈ P} and the legal final steps are {sℓ : ℓ ∈ N}. Therefore,

Q0,0 =
⋃
k∈P

⋃
ℓ∈N

skQk,−ℓsℓ,

and any path in Qk,−ℓ always has height of at least 1. Thus, shifting the paths

in Qk,−ℓ down by 1 unit gives a bijection between Qk,−ℓ and Pk−1,−ℓ−1. Thus,

g[0, 0](t) = t2
∑
k∈P

∑
ℓ∈N

qk/2−ℓ/2f [k − 1,−ℓ− 1](qt).

The above process is implemented in procedure qMakeEqGt(f,g,t,q,a,b,S) in the

Maple package GDW.txt.

Solving the System of Functional Equations

The procedure qMakeSysT(f,g,t,q,S) in the Maple package GDW.txt outputs the

full system of functional equations, followed by the quantities that feature in them.

For example, to get the system of equations for the generalized Dyck paths with steps
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in S = {2, 1, 0,−1,−2}, typing

qMakeSyst(f,g,t,q, { 2,1,0,-1,-2 } )[1];

outputs

{f01(t)− f00(t) g01(t) , f10(t)− g10(t) f00(t) ,

f11(t)− f01(t) g10(t)− f00(qt) , g01(t)− t
√
q f00(qt)− tqf10(qt) ,

g10(t)− tqf01(qt)− t
√
q f00(qt) , f00(t)− f00(t) g00(t)− f00(t) t− 1 ,

g00(t)− t2q
3
2f01(qt)− t2qf00(qt)− t2q2f11(qt)− t2q

3
2f10(qt)}.

To see the set of featured quantities, type

qMakeSyst(f, g, t, q, {2, 1, 0,−1,−2})[2];

which outputs

{f00(t) , f00(qt) , f01(t) , f01(qt) , f10(t) , f10(qt) ,

f11(t) , f11(qt) , g00(t) , g01(t) , g10(t)} .

After the computer finds the system of functional equations described above, we

instruct it to find a system algebraic equations for the ‘components’ of the f [a, b](t)

(and we also need g[a, b](t)). To do this, we will use the the Taylor Series expansions

about q = 1:

f [a, b](t) =
∞∑
n=0

1

n!

[
dn

dqn
f [a, b](t)

]
q=1

(q − 1)n.

We will also use the following lemma from Calculus:

Lemma 5.1. If f(t) is the formal power series of a single variable t, and q is another
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variable, then

f(qt) =
∞∑
n=0

1

n!
tn
[
dn

dtn
f(t)

]
(q − 1)n.

Recall that the generating function for the sum of the areas of all legal walks of

length n is fq[0, 0](t)
∣∣∣
q=1

. Therefore, we are really only interested in the powers up to

n = 1. We will rewrite all of our f [a, b](t) and g[a, b](t) as

f [a, b](t) =
[
f [a, b](t)

]
q=1

+
[
fq[a, b](t)

]
q=1

(q − 1) +O((q − 1)2), and

g[a, b](t) =
[
g[a, b](t)

]
q=1

+
[
gq[a, b](t)

]
q=1

(q − 1) +O((q − 1)2).

We expand in powers of q − 1, then collect terms, use Lemma 5.1, and get more

equations by differentiating with respect to t each of these equations using implicit

differentiation.

Note that this method works for higher order derivatives. Because of the extreme

complexity, we decided to only implement this scheme for k = 1 to find the algebraic

equation satisfied by the generating function for the sum of the areas.

This is implemented in procedure qEqGFt(S,X,t) . For example, to get the al-

gebraic equation for the generating function for ‘sum of areas’ of the classical Dyck

paths, type:

qEqGFt({1,−1}, X, t)

getting

t2 − (4t2 − 1)(2t2 − 1)X + t2(4t2 − 1)2X2 = 0.

(This is A8549 of [22], https://oeis.org/A008549).

https://oeis.org/A008549
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For Motzkin walks, typing

qEqGFt({1, 0,−1}, X, t)

gives

t2 − (3t− 1) (t+ 1)
(
t2 + 2t− 1

)
X + t2 (3t− 1)2 (t+ 1)2X2 = 0.

(This is A57585 of [22], https://oeis.org/A057585).

For a more complicated example, to get the pure algebraic equation satisfied by

the generating function for the ‘sum of the areas under generalized Dyck paths with

set of steps {[1, 2], [1, 1], [1, 0], [1,−1], [1,−2]}, type:

qEqGFt({2, 1, 0,−1,−2}, X, t),

getting, after less than a minute,

t2
(
775t4 − 1460t3 + 1006t2 − 264t+ 24

)
+ (t− 1) (5t− 1)

(
425t6 − 1520t5 + 1527t4 − 68t3 − 282t2 + 88t− 8

)
X

− t
(
150t5 + 540t4 − 889t3 − 240t2 + 228t− 32

)
(t− 1)2 (5t− 1)2X2

− 2t2 (5t+ 4)
(
5t3 − t2 − 17t+ 4

)
(t− 1)3 (5t− 1)3X3 + t4 (5t+ 4)2 (t− 1)4 (5t− 1)4X4

=0.

https://oeis.org/A057585
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This is not (yet, May 15, 2023) in the OEIS. The first 30 terms are

0, 0, 3, 18, 113, 636, 3487, 18656, 98429, 514012, 2664690, 13737758, 70522801,

360806214, 1840913908, 9371761174, 47621259557, 241601881822, 1224111502194,

6195045902854, 31321134873744, 158217553824544, 798622703316154, 4028438371631942,

20308239308212037, 102323623873153810, 515313296262175206, 2594054240062008690,

13053194513626873348, 6565988995314204337

Note that the straight enumeration version is A104184 of [22], https://oeis.org/A104184.

Strict Generalized Dyck paths

To look at the area under strict generalized Dyck paths, i.e. paths that never touch

the x-axis except at the endpoints, use procedure qEqGFtS(S,X,t). For the algebraic

equation for the generating function for the sum of the areas under strict classical

Dyck paths, type

qEqGFtS({1,−1}, X, t);,

which gives us the equation

(
4t2 − 1

)
X + t2 = 0.

Therefore,

X(t) =
t2

1− 4t2
,

confirming, purely automatically, the following elegant proposition first discovered,

and proved, in [27].

Proposition 5.1. (Shapiro, Rogers, and Woan) The sum of the areas of the strict

https://oeis.org/A104184
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Dyck paths of length 2n is 4n−1.

Looking at strict Motzkin paths, typing

qEqGFtS({1, 0,−1}, X, t);

outputs (
3t2 + 2t− 1

)
X + t2 = 0.

Thus,

X(t) =
t2

1− 2t− 3t2
.

This is A015518[n-1] of [22] (see https://oeis.org/A015518). This sequence has

numerous combinatorial interpretations, but so far, the connection to the sum of the

areas under strict Motzkin paths escaped notice.

5.3 Perturbation Expansions of Solutions to Quadratic

Functional Equations

Suppose that a function f(t, q) satisfies the functional equation

f(t, q) = P (t, q) +Q(t, q)f(t, q) +R(t, q)f(t, q)f(qt, q),

for given bivariate polynomials P (t, q), Q(t, q), and R(t, q). To find f(t, q) up to

degree k in t, first set f0(t, q) := 1. For i > 0, let

fi(t, q) = P (t, q) +Q(t, q)fi−1(t, q) +R(t, q)fi−1(qt, q)fi−1(t, q),

https://oeis.org/A015518
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and find n > 0 such that fn(t, q) and fn+1(t, q) agree up to degree k in t. Note that

for any i > n, fn(t, q) and fi(t, q) will also agree up to degree k in t, and thus f(t, q)

and fn(t, q) will as well.

This process is implemented in the Maple package qEW.txt by the procedure

SeqF1(P,Q,R,q,t,K), which inputs bivariate polynomials P , Q, and R, variables q

and t, and a non-negative integer K, and outputs f(t, q) up to degree K in t. For

example, the weight enumerator for the area under Dyck paths of lengths k = 0, . . . , 8

is found by

SeqF1(1,0,t∧2*q,q,t,8),

which outputs

1+t2q+(q4+q2)t4+(q9+q7+2q5+q3)t6+(q16+q14+2q12+3q10+3q8+3q6+q4)t8.

The weight enumerator for the area under Motzkin paths of lengths k = 0, . . . , 5 is

found by

SeqF1(1,t,t∧2*q,q,t,5),

which outputs

1+t+(q+1)t2+(q2+2q+1)t3+(q4+q3+3q2+3q+1)t4+(q6+2q5+3q4+4q3+6q2+4q+1)t5.

Note that the coefficient of tk and the k-th term of the list output by

qnwdK([1,1],[1,0],[1,-1]),5,q)

are equal, as desired. Using this method, the expression is found through the following
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calculations

f0(t, q) = 1

f1(t, q) = 1 + tf0(t, q) + t2qf0(t, q)f0(qt, q)

= 1 + t+ t2q

f2(t, q) = 1 + tf1(t, q) + t2qf1(t, q)f1(qt, q)

= 1 + t+ (q + 1)t2 + (q2 + 2q)t3 + (q4 + 2q2)t4 + (q4 + q3)t5 + . . .

f3(t, q) = 1 + tf2(t, q) + t2qf2(t, q)f2(qt, q)

= 1 + t+ (q + 1)t2 + (q2 + 2q + 1)t3 + (q4 + q3 + 3q2 + 3q)t4

+ (q6 + 2q5 + 2q4 + 3q3 + 5q2)t5 + . . .

f4(t, q) = 1 + tf3(t, q) + t2qf3(t, q)f3(qt, q)

= 1 + t+ (q + 1)t2 + (q2 + 2q + 1)t3 + (q4 + q3 + 3q2 + 3q + 1)t4

+ (q6 + 2q5 + 3q4 + 4q3 + 6q2 + 4q)t5 + . . .

f5(t, q) = 1 + tf4(t, q) + t2qf4(t, q)f4(qt, q)

= 1 + t+ (q + 1)t2 + (q2 + 2q + 1)t3 + (q4 + q3 + 3q2 + 3q + 1)t4

+ (q6 + 2q5 + 3q4 + 4q3 + 6q2 + 4q + 1)t5 + . . .

f6(t, q) = 1 + tf4(t, q) + t2qf4(t, q)f4(qt, q)

= 1 + t+ (q + 1)t2 + (q2 + 2q + 1)t3 + (q4 + q3 + 3q2 + 3q + 1)t4

+ (q6 + 2q5 + 3q4 + 4q3 + 6q2 + 4q + 1)t5 + . . .

Since f5(t, q) and f6(t, q) agree up to degree 5 in t, the procedure outputs

1+t+(q+1)t2+(q2+2q+1)t3+(q4+q3+3q2+3q+1)t4+(q6+2q5+3q4+4q3+6q2+4q+1)t5.
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5.4 Finding dk

dqk
[f (t, q)]

∣∣
q=1

If the weight enumerator of a set of paths is satisfied by the following functional

equation

f(t, q) = P (t, q) +Q(t, q)f(t, q) +R(t, q)f(t, q)f(qt, q)

for some given bivariate polynomials P (t, q), Q(t, q), and R(t, q), then plugging in

q = 1 gives

f(t, 1) = P (t, 1) +Q(t, 1)f(t, 1) +R(t, 1)f(t, 1)2,

which we can use to solve for f(t, 1). The order n Taylor polynomial of f(t, q) about

q = 1 satisfies

n∑
k=0

(q − 1)k

k!
f (k)(t, 1) = P +Q

n∑
k=0

(q − 1)k

k!
f (k)(t, 1)

+R
n∑

k=0

(q − 1)k

k!
f (k)(t, 1)

n∑
k=0

(q − 1)k

k!
f (k)(qt, 1),

where f (k)(t, q) := dk

dqk
f(t, q). Looking at the coefficient of (q − 1)k, we can express

f (k)(t, 1) as the sum of derivatives f (ℓ)(t, 1) where ℓ < k and derivatives of functions

of t with respect to t. Since we have an expression for f(t, 1), we can simply compute

any order derivative with respect to t as well as fq(t, 1). Thus, to find f (n)(t, 1), we

can repeat this process with the coefficient of f (k)(t, 1) for k = 1, . . . , n.

This process is implemented by the procedure DerK(P,Q,R,q,t,K,f), which out-

puts a list whose k-th entry is dk−1

dqk−1 [f(t, q)]
∣∣
q=1

. Rather than outputting algebraic

equations as seen in Section 5.2, this procedure produces closed-form expressions in

terms of radicals.
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Motzkin Paths

As previously noted, the Motzkin paths satisfy the following functional equation

M(t, q) = 1 + tM(t, q) + t2qM(qt, q)M(t, q).

Solving this functional equation for q = 1, we get that

M(t, 1) =
1− t+

√
−3t2 − 2t+ 1

2t2
or M(t, 1) =

1− t−
√
−3t2 − 2t+ 1

2t2
.

Since only the second equation has a Taylor series expansion about t = 0, we know

that this is M(t, 1). Now, for finding the first derivative, note that

n∑
k=0

(q − 1)k

k!
M (k)(t, 1) = 1 + t

n∑
k=0

(q − 1)k

k!
M (k)(t, 1)

+ qt2
n∑

k=0

(q − 1)k

k!
M (k)(t, 1)

n∑
k=0

(q − 1)k

k!
M (k)(qt, 1).

The coefficient of q − 1 on both sides give us

Mq(t, 1) = tMq(t, 1) + t2M(t, 1)

(
tMt(t, 1) + 2Mq(t, 1) +M(t, 1)

)
.

Therefore,

Mq(t, 1) =
t3M(t, 1)Mt(t, 1) + t2M2(t, 1)

1− t− 2t2M(t, 1)
.

Plugging in M(t, 1) = 1−t−
√
−3t2−2t+1
2t2

, we get

Mq(t, 1) =

(
t− 1 +

√
−3t2 − 2t+ 1

)2
4t2(−3t2 − 2t− 1)

To find M (n)(t, 1), we can repeat this process with the coefficient of M (k)(t, 1) for

k ≤ n.
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In a little over 2 seconds,

DerK(1,t,t2*q,q,t,10,f),

can output the list whose entries are M (k)(t, 1) := dk

dqk
[M(t, q)] |q=1 for k = 0, . . . , 10.

For example, looking at the first two terms of the output, we have

M(t, 1) =
1− t−

√
−3t2 − 2t+ 1

2t2
, and

Mq(t, 1) =

(
1− t−

√
−3t2 − 2t+ 1

)2
4t2(−3t2 − 2t+ 1)

The Maclaurin Series of M(t, 1) is

1+ t+2t2+4t3+9t4+21t5+51t6+127t7+323t8+835t9+2188t10+5798t11+O(t12),

and it is the weight enumerator of the number of Motzkin paths of length n, which

is A001006 on OEIS. The Maclaurin series of Mq(t, 1) is

t2+4t3+16t4+56t5+190t6+624t7+2014t8+6412t9+20219t10+63284t11+O(t12),

which is the weight enumerator of the total area under all Motzkin paths of length n

and A057585 on OEIS.

We also get higher factorial moments. For example,

Mqq(t, 1) = 1/2(6(−3t2 − 2t+ 1)1/2t2 + 9t2 − (−3t2 − 2t+ 1)1/2t+ 6t+ 3(−3t2 − 2t+

1)1/2 − 3)(−1 + t+ (−3t2 − 2t+ 1)1/2)/(3t2 + 2t− 1)3,

and

Mqqq(t, 1) = −3/2(9(−3t2−2t+1)1/2t4−9t5+18(−3t2−2t+1)1/2t3+51t4−23(−3t2−
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2t+1)1/2t2 − 19t3 +4(−3t2 − 2t+1)1/2t+29t2 − 4(−3t2 − 2t+1)1/2 − 8t+4)(t− 1+

(−3t2 − 2t+ 1)1/2)/(3t2 + 2t− 1)4.

The Maclaurin series of Mqq(t, 1) is

2t3 + 24t4 + 142t5 + 720t6 + 3224t7 + 13478t8 + 53508t9 + 204698t10 +O(t11),

and the Maclaurin series of Mqqq(t, 1) is

30t4 + 336t5 + 2742t6 + 17268t7 + 95388t8 + 477900t9 + 2235876t10 +O(t11).

The weight enumerator for the sum of the squares of the areas of Motzkin paths of

length n is given by the Maclaurin series of Mqq(t, 1) +Mq(t, 1),

t2 + 6t3 + 40t4 + 198t5 + 910t6 + 3848t7 + 15492t8 + 59920t9 + 224917t10 +O(t11),

and the weight enumerator for the sum of the cubes of the areas of Motzkin paths of

length n is given by the Maclaurin series of Mqqq(t, 1) + 3Mqq(t, 1) +Mq(t, 1),

t2+10t3+118t4+818t5+5092t6+27564t7+137836t8+644836t9+2870189t10+O(t11).

None of these appear on OEIS as of September 12, 2023.

Dyck Paths

Looking at Dyck paths, we input

DerK(1,0,t2*q,q,t,10,f).
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The first three terms of the output gives

D(t, 1) =
1−

√
1− 4t2

2t2

Dq(t, 1) =
(1−

√
1− 4t2)2

16t4 − 4t2

Dqq(t, 1) =
(8t2

√
1− 4t2 + 12t2 + 3

√
1− 4t2 − 3)(−1 +

√
1− 4t2)

2

The Maclaurin series of D(t, 1) is

1 + t2 + 2t4 + 5t6 + 14t8 + 42t10 + 132t12 + 429t14 + 1430t16 +O(t18),

which is the weight enumerator of all Dyck paths of length n and A000108 on OEIS

[22], https://oeis.org/A000108. The Maclaurin series of Dq(t, 1) is

t2 + 6t4 + 29t6 + 130t8 + 562t10 + 2380t12 + 9949t14 + 41226t16 +O(t18),

the weight enumerator for the total area of all Dyck paths of length n, which is

A008549 on OEIS [22], https://oeis.org/A008549.

The Maclaurin series of Dqq(t, 1) is

14t4+160t6+1226t8+7864t10+45564t12+247136t14+1279810t16+6404424t18+O(t20),

and the Maclaurin series of Dqqq(t, 1) is

24t4 + 840t6 + 11736t8 + 114744t10 + 922224t12 + 6541776t14 + 42543480t16 +O(t18).

https://oeis.org/A000108
https://oeis.org/A008549
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The weight enumerator for the sum of the squares of the areas of Dyck paths of length

n is given by the Maclaurin series of Dqq(t, 1) +Dq(t, 1),

t2 + 20t4 + 189t6 + 1356t8 + 8426t10 + 47944t12 + 257085t14 + 1321036t16 +O(t18).

The weight enumerator for the sum of the cubes of the areas of Dyck paths of length

n is given by the Maclaurin series of Dqqq(t, 1) + 3Dqq(t, 1) +Dq(t, 1),

t2+72t4+1349t6+15544t8+138898t10+1061296t12+7293133t14+46424136t16+O(t18).

None of these appear on OEIS as of September 12, 2023.

Further Study

For further study, we can look at the average areas and the variance. Given a family

of paths, let a0(n) be the number of such paths of length n, a1(n) be the total area

under such paths of length n, and a2(n) be the sum of the squares of the areas under

such paths of length n. Using the accompanying Maple package qEW.txt, we can

generate 10,000 (or more) terms of the sequences of the average areas

{
a1(n)

a0(n)

}
and

the variances

{
a2(n)

a0(n)
−
(
a1(n)

a0(n)

)2
}

and use numerics for the asymptotics.
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