Thebault's Theorem

Thebault:=proc() local m,n,t,p1,p2, I1,T,A,M,eq1,eq2,lu,Ci,Ci1,i,j,SOL,lua:

T:=Te(m,n):   A:=T[3]:  I1:=Incenter(m,n): M:=[t,0]:

Ci:=Ce(T):   Ci1:=(x-p1)^2+(y-p2)^2-p2^2:

eq1:=TouchCeLe1 (Ci1,Ci):   lu:=solve(eq1,p2): if   subs({m=1/3,n=1/3,t=1/2,p1=1/2},lu[1])>0 then lu:=lu[1]: else lu:=lu[2]:   fi:

eq2:=TouchCeLe1 (Ci1,Le(A,M)): eq2:=numer(normal(subs(p2=lu,eq2))):
lua:=solve(eq2,p1): SOL:=[seq([lua[i], subs(p1=lua[i],lu)],i=1..nops([lua]))]:

for i from 1 to nops(SOL) do for j from i+1 to nops(SOL) do

if Colinear(I1,SOL[i],SOL[j]) then RETURN(true): fi: od:od:

false:

end:


Previous    Definitions     Theorems     Next