Solutions to Dr. Z.'s Math 354 REAL Quiz \#9

1. Consider the following transportation problem, where \mathbf{s} is the supply vector, \mathbf{d} is the demand vector, and \mathbf{C} is the cost matrix between the supply sites and the demand sites.

$$
\mathbf{C}=\left[\begin{array}{ccc}
5 & 10 & 3 \\
10 & 7 & 4 \\
5 & 5 & 5
\end{array}\right] \quad, \quad \mathbf{s}=\left[\begin{array}{c}
162 \\
166 \\
29
\end{array}\right] \quad, \quad \mathbf{d}=\left[\begin{array}{c}
153 \\
193 \\
11
\end{array}\right]
$$

(a) (1 point) Explain why

$$
\left[\begin{array}{ccc}
151 & 0 & 11 \\
0 & 166 & 0 \\
2 & 27 & 0
\end{array}\right]
$$

is a basic fesible solution.
(b): (7 points) Perform one iteration in the transportation algorithm to get a cheaper solution, or prove that none exists (i.e. that the above solution is optimal).

Sol. to $\mathbf{1}(\mathbf{a})$: The entries of the solutions are all non-negative (i.e. 0 or positive),
The sum of the first row, $151+0+11=162$ equals the first component of s
The sum of the second row, $0+166+0=166$ equals the second component of s
The sum of the third row, $2+27+0=29$ equals the third componet of s
The sum of the first column, $151+0+2=153$ equals the first component of d
The sum of the second column, $0+166+27=193$ equals the second component of d
The sum of the third column, $11+0+0=11$ equals the third component of d.
Sol. of 1 (b): The set of basic variables is

$$
\text { Basic }=\left\{x_{11}, x_{13}, x_{22}, x_{31}, x_{32}\right\} .
$$

The set of non-basic variables is

$$
\text { NonBasic }=\left\{x_{12}, x_{21}, x_{23}, x_{33}\right\}
$$

The dual variables are $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}$, and the set of equations (in the dual problem) that we have to solve (recall that each basic variable $x_{i j}$ yields an equation $v_{i}+w_{j}=c_{i j}$) is

$$
\begin{aligned}
& x_{11}: v_{1}+w_{1}=5, \\
& x_{13}: v_{1}+w_{3}=3, \\
& x_{22}: v_{2}+w_{2}=7, \\
& x_{31}: v_{3}+w_{1}=5, \\
& x_{32}: v_{3}+w_{2}=5 .
\end{aligned}
$$

Setting $v_{1}=0$ and plugging-in we get the following solution

$$
\begin{array}{ll}
v_{1}=0 \quad, & v_{2}=2, \quad v_{3}=0 \\
w_{1}=5, & w_{2}=5,
\end{array}
$$

Plugging them into the Non-Basic cells, we get

$$
\begin{gathered}
x_{12}: v_{1}+w_{2}-c_{12}=0+5-10=-5 \\
x_{21}: v_{2}+w_{1}-c_{21}=2+5-10=-3 \\
x_{23}: v_{2}+w_{3}-c_{23}=2+3-4=1 \\
x_{33}: v_{3}+w_{3}-c_{33}=0+3-5=-2
\end{gathered}
$$

The largest value (and in this case, the only positive one) is for x_{23}, so the departing variable is x_{23}, and we have to find an alternating horizontal-vertical path from cell [2,3] back to it only visiting basic cells (i.e. cells with currently positive values).

The only such path is the following path of length 6 (or its reverse, i.e. the same path travelled in the opposite direction)

$$
[2,3] \rightarrow[2,2] \rightarrow[3,2] \rightarrow[3,1] \rightarrow[1,1] \rightarrow[1,3] \rightarrow[2,3]
$$

The even-indexed locations (variables) are $x_{22}=166, x_{31}=2, x_{13}=11$. The smallest value is 2 and it is at cell $[3,1]$. We update the cells along the above path by subtracting 2 from the even-indexed cells and adding 2 to the odd-indexed cells. Hence

$$
\begin{gathered}
x_{23} \leftarrow x_{23}+2=0+2=2, \\
x_{22} \leftarrow x_{22}-2=166-2=164, \\
x_{32} \leftarrow x_{32}+2=27+2=29, \\
x_{31} \leftarrow x_{31}-2=2-2=0, \\
x_{11} \leftarrow x_{11}+2=151+2=153
\end{gathered},
$$

$$
x_{13} \leftarrow x_{13}-2=11-2=9
$$

The other cells (variables), namely x_{21}, x_{21} and x_{33} remain the same. The outcome of the first iteration, hence is.

Ans. to 1(b):
$\left[\begin{array}{ccc}153 & 0 & 9 \\ 0 & 164 & 2 \\ 0 & 29 & 0\end{array}\right]$

