1. (8 pts.) Find the dual of the given linear programming problem.

Minimize $5 x_{1}+2 x_{2}+6 x_{3}$
subject to

$$
\begin{gathered}
4 x_{1}+2 x_{2}+x_{3} \geq 12 \quad, \quad 3 x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, \quad x_{3} \geq 0
\end{gathered}
$$

Sol. to 1 We first convert do pre-processing by converting to standard form.
Maximize $z=-5 x_{1}-2 x_{2}-6 x_{3}$
subject to

$$
\begin{gathered}
-4 x_{1}-2 x_{2}-x_{3} \leq-12 \quad, \quad 3 x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, \quad x_{3} \geq 0 .
\end{gathered}
$$

In matrix notation this is
Maximize $\mathbf{c}^{\mathbf{T}} \mathbf{x}$ subsject to

$$
A \mathbf{x} \leq \mathbf{b} \quad, \quad \mathbf{x} \geq \mathbf{0}
$$

where

$$
\mathbf{c}=\left[\begin{array}{l}
-5 \\
-2 \\
-6
\end{array}\right] \quad, \quad \mathbf{b}=\left[\begin{array}{c}
-12 \\
6
\end{array}\right] \quad, \quad A=\left[\begin{array}{ccc}
-4 & -2 & -1 \\
3 & 2 & 3
\end{array}\right]
$$

The dual problem is
Minimize $\mathbf{b}^{\mathbf{T}} \mathbf{w}$ subsject to

$$
A^{T} \mathbf{w} \geq \mathbf{c} \quad, \quad \mathbf{w} \geq \mathbf{0}
$$

where \mathbf{c} and \mathbf{b} are as above, and the transpose of A, A^{T} is

$$
A^{T}=\left[\begin{array}{ll}
-4 & 3 \\
-2 & 2 \\
-1 & 3
\end{array}\right]
$$

This spells out to
Minimize $z^{\prime}=-12 w_{1}+6 w_{2}$ subject to the constraints

$$
\begin{aligned}
& -4 w_{1}+3 w_{2} \geq-5 \\
& -2 w_{1}+2 w_{2} \geq-2 \\
& -w_{1}+3 w_{2} \geq-6 \\
& w_{1} \geq 0 \quad, \quad w_{2} \geq 0
\end{aligned}
$$

This is an acceptable answer.
But it can (optionally) be made nicer by post-processing.
Maximize $z^{\prime}=12 w_{1}-6 w_{2}$ subject to the constraints

$$
\begin{gathered}
4 w_{1}-3 w_{2} \leq 5 \\
2 w_{1}-2 w_{2} \leq 2 \\
w_{1}-3 w_{2} \leq 6 \\
w_{1} \geq 0 \quad, \quad w_{2} \geq 0 .
\end{gathered}
$$

This is an even better-looking answer.

Another Way to get the nice-looking answer:

Do much less pre-processing by only changing the second constraint:
Minimize $5 x_{1}+2 x_{2}+6 x_{3}$
subject to

$$
\begin{gathered}
4 x_{1}+2 x_{2}+x_{3} \geq 12 \quad, \quad-3 x_{1}-2 x_{2}-3 x_{3} \geq-6, \\
x_{1} \geq 0 \quad, \quad x_{2} \geq 0 \quad, \quad x_{3} \geq 0 .
\end{gathered}
$$

Now it is exactly in the format of the dual. Since the dual of the dual is (equivalent) to the same, the nicer-looking answer is gotten immediately.

