Solutions to Dr. Z.'s Math 354 REAL Quiz \#5

1. (8 pts.) Use the simplex method (no credit for other methods) to solve the following linear programming problem.

Maximize $z=x+y$, subject to

$$
2 x+y \leq 6 \quad, \quad x+2 y \leq 6 \quad, \quad x \geq 0 \quad, \quad y \geq 0 .
$$

Sol. to 1: We first convert to canonical form by introducing the slack variables u, v.
The problem now is
Maximize $z=x+y$ subject to the restrictions

$$
\begin{aligned}
& 2 x+y+u=6 \quad, \quad x+2 y+v=6, \\
& x \geq 0 \quad, \quad y \geq 0 \quad, \quad u \geq 0 \quad, \quad v \geq 0 .
\end{aligned}
$$

Writing $z=x+y$ as $-x-y+z=0$, the initial tableau is

We look at the most negative entry in the bottom row. In this case there is a tie, so we pick any of them. Let's pick the first column as the pivot column. To decide on the pivot row, we form the θ-ratios. The θ-ratio of the first row is $6 / 2=3$, while that of the second row is $6 / 1=6$. We pick the row that gives the smallest, so the pivot row is the first row, and the pivot entry is the $(1,1)$ entry of the tableau. Also the entering basic-variable is x and the departing basic-variable is u. Let's make the pivot entry 1 by dividing the first row by 2 , doing $\frac{1}{2} r_{1} \rightarrow r_{1}$, and indicate by arrows the entering and departing basic variables.

Since x is going to be the new basic variable, we must make everything in the first column (except for the pivot) 0 . We perform the elementary row operations $r_{2}-r_{1} \rightarrow r_{2}$ and $r_{3}+r_{1} \rightarrow r_{3}$ and at the same time replace the u on the basic variable column by x.

$$
\begin{array}{c:ccccc:c}
& x & y & u & v & z & \\
x & 1 & 1 / 2 & 1 / 2 & 0 & 0 & 3 \\
v & 0 & 3 / 2 & -1 / 2 & 1 & 0 & 3 \\
& & & & & \\
& 0 & -1 / 2 & 1 / 2 & 0 & 1 & 3
\end{array} .
$$

Now the most negative entry in the bottom row is the $-1 / 2$ (in fact it is the only one) at the second column. So the second column is the pivot column. The θ-ratio of the first row is $3 /(1 / 2)=6$, while that if the second row is $3 /(3 / 2)=2$. Since the second is the smallest, the pivot row is the second row and the pivot entry is the (2,2)-entry. Let's first make it 1 by doing $\frac{2}{3} r_{2} \rightarrow r_{2}$, and indicate by arrows the entering basic variable (y), and the departing basic variable (v).

We get the tableau

Everything in the pivot column, i.e. the y-column, except for the pivot entry must be 0 .
Doing $r_{1}-\frac{1}{2} r_{2} \rightarrow r_{1}$ and $r_{3}+\frac{1}{2} r_{2} \rightarrow r_{3}$ gives the tableau

$$
\begin{array}{c|ccccc:c}
& x & y & u & v & z & \\
x & 1 & 0 & 2 / 3 & -1 / 3 & 0 & 2 \\
y & 0 & 1 & -1 / 3 & 2 / 3 & 0 & 2 \\
& & & & & & \\
& 0 & 0 & 1 / 3 & 1 / 3 & 1 & 4
\end{array} .
$$

At long last, there are no negative entries in the bottom row, so we are done.
The basic variables are now x and y and we have $x=2$ and $y=2$. The non-basic variables, u and v, are of course 0 . So the optimal solution is $(x, y, u, v)=(2,2,0,0)$, and the optimal value is 4 .

Going back to the original problem, we can ignore the slack variable, and get.
Ans. to 1: The optimal solution is $x=2, y=2$. The optimal value is $z=4$.

