Solutions to Dr. Z.'s Math 354 REAL Quiz \#4

1. (8 pts.) (a) Find the extreme points of the set of feasible solutions for the following linear programming problem (b) Find the optimal solution(s)

Minimize $z=5 x-3 y$ subject to

$$
x+2 y \leq 4 \quad, \quad x+y \geq 3 \quad, \quad x \geq 0 \quad, \quad y \geq 0
$$

Sol. of 1(a)

The feasible region, in the postive quadrant is the region below the line $x+2 y=4$ and above the line $x+y=3$. It is a triangle whose vertices are

- $(3,0)$ where the line $x+y=3$ meets the line $y=0$ (aka as the x axis)
- $(4,0)$ where the line $x+2 y=4$ meets the line $y=0$ (aka as the x axis)
- $(2,1)$ where the lines $x+2 y=4$ and $x+y=3$ meet each other.
[This is gotten by solving the sytem of two equations $\{x+2 y=4, x+y=3\}$ with the set of two unknowns $\{x, y\}$. Subtractiong the first equation from the second gives $y=1$ and plugging into the first gives $x=4-2 \cdot 1=2$, (or if you wish, plugging into the second, also getting $x=3-1=2$].

These vertices of the feasible regions are the extreme points.
Answer to 1(a): The extreme points of the set of feasible solutions for the following linear programming problem are $(3,0),(4,0)$ and $(2,1)$.

Solution to 1(b): Now comes the final contest. We plug the above finalists into the goal function, $z(x, y)=5 x-3 y$ and find who gives the mininal value.

- For $(x, y)=(3,0)$, we have $z(3,0)=5 \cdot 3-3 \cdot 0=15$,
-: For $(x, y)=(4,0)$, we have $z(4,0)=5 \cdot 4-3 \cdot 0=20$,
- For $(x, y)=(2,1)$, we have $z(2,1)=5 \cdot 2-3 \cdot 1=7$.

Since the smallest value is 7 the lucky winner is $(x, y)=(2,1)$, and the value of the optimal solution is 7 .

Ans. to 1(b): The optimal solution is $x=2, y=1$ with the optimal value being 7 .

