Solutions to Dr. Z.'s Math 354 REAL Quiz \#3

Corrected thanks to Keonho Roh

1. (3 pts.) Write the following linear programming problem in matrix form. First introduce slack variables, and give them names.

Maximize $w=2 x+3 y+5 z$ subject to

$$
x+5 y+z \geq 5 \quad, \quad 4 x+2 y+5 z \geq 12 \quad, \quad x+y+z=10 \quad, \quad x \geq 0 \quad, \quad y \geq 0 \quad, \quad z \geq 0
$$

Sol. to 1: First we have to convert the constraints to standard form

Maximize $w=2 x+3 y+5 z$ subject to
$-x-5 y-z \leq-5 \quad, \quad-4 x-2 y-5 z \leq-12 \quad, \quad x+y+z=10 \quad, \quad x \geq 0 \quad, \quad y \geq 0 \quad, \quad z \geq 0$.
(To convert \geq to \leq we multiply both sides by -1

There are two inequalities (we can leave the equality alone), so we need two slack-variables, let's call them u and v. We have, in everyday notation

$$
\begin{gathered}
-x-5 y-z+u=-5 \quad, \quad-4 x-2 y-5 z+v=-12 \quad, \quad x+y+z=10 \\
x \geq 0 \quad, \quad y \geq 0 \quad, \quad z \geq 0 \quad, \quad u \geq 0 \quad, \quad v \geq 0
\end{gathered}
$$

In matrix notation this is:
Maximize $z=\left[\begin{array}{lllll}2 & 3 & 5 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ y \\ u \\ v\end{array}\right]$
subject to

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
-1 & -5 & -1 & 1 & 0 \\
-4 & -2 & -5 & 0 & 1 \\
1 & 1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
u \\
v
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-12 \\
10
\end{array}\right]} \\
{\left[\begin{array}{l}
x \\
y \\
z \\
u \\
v
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

2. (5 pts .) Sketch the set of feasible solutions to the given linear programming problem

Maximize $z=2 x+3 y$ subject to:

$$
\begin{gathered}
x+y \leq 4 \quad, \quad 3 x+y \leq 6 \quad, \quad x+3 y \leq 6 \\
x \geq 0 \quad, \quad y \geq 0 \quad k=6,12
\end{gathered}
$$

Comment: Since I cancelled the original part (b) (the k part), the goal function is not important for this question, only plotting the feasible region.

The region is the part of the positive quadrant $\{(x, y) \mid x \geq 0, y \geq 0\}$ that is below the line $3 x+y=6$ and below the line $x+3 y=6$ and also under line the $x+y=4$. But the common region below both the lines $3 x+y=6$ and the line $x+3 y=6$ is automatically below the line $x+y=4$, so we can forget about it.

The point of intersection of $3 x+y=6$ and $x+3 y=6$ is $\left(\frac{3}{2}, \frac{3}{2}\right)$, so the feasible region is the quadrilateral with vertices (alias extreme points)

$$
(0,0),(2,0),\left(\frac{3}{2}, \frac{3}{2}\right),(0,2)
$$

Comment: By now you know that to find the maximum you plug-in the above extreme points and see who is the "winner" (or in case of ties, "winners"). This was not required in this quiz, since this is the material of section 1.4 (that will be covered in the next quiz).

Just for fun here it is:

- when $x=0, y=0 z=2 \cdot 0+3 \cdot 0=0$
- when $x=2, y=0 z=2 \cdot 2+3 \cdot 0=4$
- when $x=\frac{3}{2}, y=\frac{3}{2} z=2 \cdot \frac{3}{2}+3 \cdot \frac{3}{2}=\frac{15}{2}$
- when $x=0, y=2 z=2 \cdot 0+3 \cdot 2=6$

Since $\frac{15}{2}$ is the the largest value, the answer is: The maximum is $\frac{15}{2}$ and it takes place when $x=\frac{3}{2}, y=\frac{3}{2}$.

