## Solutions to Dr. Z.'s Math 354 REAL Quiz \# 1

1. (8 pts.) By using Gauss-Jordan Reduction (no credit for other methods), find all solutions to the following linear system:

$$
\begin{gathered}
x+2 y+z=4, \\
2 x+y+3 z=6, \\
4 x+3 y+z=8,
\end{gathered}
$$

Sol. of 1: The augmented matrix is

$$
\left[\begin{array}{lll|l}
1 & 2 & 1 & 4 \\
2 & 1 & 3 & 6 \\
4 & 3 & 1 & 8
\end{array}\right]
$$

Doing $r_{2}-2 r_{1} \rightarrow r_{2}$ and $r_{3}-4 r_{1} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 4 \\
0 & -3 & 1 & -2 \\
0 & -5 & -3 & -8
\end{array}\right]
$$

Doing $-\frac{1}{3} r_{2} \rightarrow r_{2}$ and $-\frac{1}{5} r_{3} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 4 \\
0 & 1 & -\frac{1}{3} & \frac{2}{3} \\
0 & 1 & \frac{3}{5} & \frac{8}{5}
\end{array}\right]
$$

Doing $r_{3}-r_{2} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{ccc:c}
1 & 2 & 1 & 4 \\
0 & 1 & -\frac{1}{3} & \frac{2}{3} \\
0 & 0 & \frac{14}{15} & \frac{14}{15}
\end{array}\right]
$$

Doing $\frac{15}{14} r_{3} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{ccc:c}
1 & 2 & 1 & 4 \\
0 & 1 & -\frac{1}{3} & \frac{2}{3} \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Now it is in row-echelon form.
Doing $r_{1}-r_{3} \rightarrow r_{1}$ and $r_{2}+\frac{1}{3} r_{3} \rightarrow r_{2}$ gives

$$
\left[\begin{array}{lll:l}
1 & 2 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Doing $r_{1}-2 r_{2} \rightarrow$ gives

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Now it is in reduced row-echelon form. In everyday notation this is

$$
x=1 \quad, \quad y=1 \quad, \quad z=1 .
$$

Ans. to 1.: The only solution of the system is $x=1, y=1, z=1$ and in vector notation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

