Solutions to Attendance Quiz for Lecture 8

1. Set up an initial simplex tableau to the following linear programming problem.

Maximize $z = x_1 + 3x_2 + 5x_3 - 4x_4$ subject to the restrictions

$$2x_1 - 3x_2 + 4x_3 - x_4 \le 5 \quad ,$$

$$3x_1 + x_4 \le 6 \quad ,$$

$$2x_3 + 5x_4 \le 7 \quad ,$$

$$x_1 \ge 0 \quad , \quad x_2 \ge 0 \quad , \quad x_3 \ge 0 \quad , \quad x_4 \ge 0$$

Sol. of 1: We must first convert the problem to canonical form. Since there are three inequalities, we need three slack variables, let's call them x_5, x_6, x_7 . The canonical form is

Maximize $z = x_1 + 3x_2 + 5x_3 - 4x_4 + 0 \cdot x_5 + 0 \cdot x_6 + 0 \cdot x_7$ subject to the restrictions

$$\begin{array}{rrrr} 2x_1 - 3x_2 + 4x_3 - x_4 + x_5 = 5 & , \\ & & 3x_1 & + x_4 + x_6 = 6 & , \\ & & & 2x_3 + 5x_4 + x_7 = 7 & , \end{array}$$

$$x_1 \ge 0 & , \quad x_2 \ge 0 & , \quad x_3 \ge 0 & , \quad x_4 \ge 0 & , \quad x_5 \ge 0 & , \quad x_6 \ge 0 & , \quad x_7 \ge 0 \end{array}$$

We first rewrite the goal equation as

$$-x_1 - 3x_2 - 5x_3 + 4x_4 + 0 \cdot x_5 + 0 \cdot x_6 + 0 \cdot x_7 + z = 0 \quad .$$

Now we transcribe the set of constraints in the form of a **simplex** tableau

Г	$ x_1$	x_2	x_3	x_4	x_5	x_6	x_7			
-	-	_	-	-	-	-	-	-	-	
x_5	2	-3	4	-1	1	0	0	0	5	
x_6	3	0	0	1	0	1	0	0	6	
x_7	0	0	2	5	0	0	1	0	7	
_	-	_	_	_	_	_	_	_	_	
L	-1	-3	-5	4	0	0	0	1		

Note that the leftmost column is that of the **basic variables**. At the initial tableau these are always the slack variables. For example the basic variable of the first row is x_5 since, x_5 has coefficient 1 in the first row, but does not show up (i.e. has coefficients 0) in the other rows.

Similarly, the basic variable of the second row is x_6 since the coefficient of x_6 in the second row is 1 but it is 0 in the first and third rows. Finally, the basic variable of the third row is x_7 since the coefficient of x_7 in the third row is 1 but it is 0 in the first and second rows.

This is the **initial tableau**. Later on we will construct 'better' and 'better' tableaux and the set of basic-variables will keep changing.