Solutions to Attendance Quiz for Lecture 7

1. Consider the linear programming problem

Maximize $z=3 x+2 y$ subject to

$$
2 x-y \leq 6 \quad, \quad 2 x+y \leq 10 \quad, \quad x \geq 0 \quad, \quad y \geq 0
$$

(a) Transform this problem to a problem in canonical form.
(b) Find all basic solutions and label them according to whether there are feasible (f) or not faesible (n)
(c) Find the optimal solution (or solutions in case there is more than one) and the optimal value.

Sol. to 1a: Introducing the slack variables, u and v we have that the above linear programming problem in canonical form is

Maximize $z=3 x+2 y$ subject to

$$
2 x-y+u=6 \quad, \quad 2 x+y+v=10 \quad, \quad x \geq 0 \quad, \quad y \geq 0 \quad, \quad u \geq 0 \quad, \quad v \geq 0
$$

Sol. to 1b. There are 4 variables and 2 equations, so we have to look at all $\binom{4}{2}=(4 \cdot 3) / 2$ ways of picking basic variables.

- Non Basic variables $\{x, y\}$; Basic variables $\{u, v\}$. Plugging-in $x=0, y=0$ we have the system

$$
u=6 \quad, \quad v=10,
$$

and hence $(x, y, u, v)=(0,0,6,10)$ is a basic solution. Since none of the variables are negative, it is a feasible basic solution aka as extreme point.

- Non Basic variables $\{x, u\}$; Basic variables $\{y, v\}$. Plugging-in $x=0, u=0$ we have the system

$$
-y=6 \quad, \quad y+v=10
$$

getting $y=-6$ and $v=16$, and hence $(x, y, u, v)=(0,-6,0,16)$ is a basic solution. Since $y=-6$ is negative, this is not a feasible solution hence and it is not an extreme point.

- Non Basic variables $\{y, u\}$; Basic variables $\{x, v\}$. Plugging-in $y=0, u=0$ we have the system

$$
2 x=6 \quad, \quad 2 x+v=10,
$$

getting $x=3$ and hence $v=10-2 \cdot 3=10-6=4$, and hence $(x, y, u, v)=(3,0,0,4)$ is a basic solution. Since none of the variables are negative, it is a feasible basic solution aka as extreme point.

- Non Basic variables $\{y, v\}$; Basic variables $\{x, u\}$. Plugging-in $y=0, v=0$ we have the system

$$
2 x+u=6 \quad, \quad 2 x=10,
$$

getting $x=5$ and $u=6-2 \cdot 5=-4$, and hence $(x, y, u, v)=(5,0,-4,0)$ is a basic solution. Since $u=-6$ is negative, this is not feasible and hence not an extreme point.

- Non Basic variables $\{u, v\}$; Basic variables $\{x, y\}$. Plugging-in $u=0, v=0$ we have the system

$$
2 x-y=6 \quad, \quad 2 x+y=10
$$

Adding them gives $4 x=16$ hence $x=4$, and $y=10-2 \cdot 4=2$ and hence $(x, y, u, v)=(4,2,0,0)$ is a basic solution. Since none of the variables are negative, it is a feasible basic solution aka as extreme point.

Summarizing we have the following

x	y	u	v	Type	z	Truncated
0	0	6	10	f	0	$(0,0)$
0	-6	0	16	n	-	-
0	10	16	0	f	20	$(0,10)$
3	0	0	4	f	9	$(3,0)$
5	0	-4	0	n	-	-
4	2	0	0	f	16	$(4,2)$

Since the largest value is 20 when $(x, y, u, v)=(0,10,16,0)$, whose truncated version is $(x, y)=$ $(0,10)$ we get

Ans. to 1c: The optimal solution is $x=0, y=10$ and the optimal value is 20 .

