Solutions to Attendance Quiz for Lecture 7

1. Consider the linear programming problem

Maximize z = 3x + 2y subject to

$$2x - y \le 6$$
 , $2x + y \le 10$, $x \ge 0$, $y \ge 0$.

(a) Transform this problem to a problem in **canonical form**.

(b) Find all **basic solutions** and label them according to whether there are *feasible* (f) or *not faesible* (n)

(c) Find the optimal solution (or solutions in case there is more than one) and the optimal value.

Sol. to 1a: Introducing the *slack variables*, u and v we have that the above linear programming problem in **canonical form** is

Maximize z = 3x + 2y subject to

2x - y + u = 6 , 2x + y + v = 10 , $x \ge 0$, $y \ge 0$, $u \ge 0$, $v \ge 0$.

Sol. to 1b. There are 4 variables and 2 equations, so we have to look at all $\binom{4}{2} = (4 \cdot 3)/2$ ways of picking basic variables.

• Non Basic variables $\{x, y\}$; Basic variables $\{u, v\}$. Plugging-in x = 0, y = 0 we have the system

$$u = 6$$
 , $v = 10$,

and hence (x, y, u, v) = (0, 0, 6, 10) is a basic solution. Since none of the variables are negative, it is a *feasible* basic solution aka as *extreme point*.

• Non Basic variables $\{x, u\}$; Basic variables $\{y, v\}$. Plugging-in x = 0, u = 0 we have the system

$$-y = 6$$
 , $y + v = 10$

getting y = -6 and v = 16, and hence (x, y, u, v) = (0, -6, 0, 16) is a basic solution. Since y = -6 is **negative**, this is **not** a feasible solution hence and it is **not** an extreme point.

• Non Basic variables $\{y, u\}$; Basic variables $\{x, v\}$. Plugging-in y = 0, u = 0 we have the system

$$2x = 6$$
 , $2x + v = 10$,

getting x = 3 and hence $v = 10 - 2 \cdot 3 = 10 - 6 = 4$, and hence (x, y, u, v) = (3, 0, 0, 4) is a basic solution. Since none of the variables are negative, it is a *feasible* basic solution aka as *extreme point*.

• Non Basic variables $\{y, v\}$; Basic variables $\{x, u\}$. Plugging-in y = 0, v = 0 we have the system

$$2x + u = 6$$
 , $2x = 10$,

getting x = 5 and $u = 6 - 2 \cdot 5 = -4$, and hence (x, y, u, v) = (5, 0, -4, 0) is a basic solution. Since u = -6 is **negative**, this is **not** feasible and hence **not** an extreme point.

• Non Basic variables $\{u, v\}$; Basic variables $\{x, y\}$. Plugging-in u = 0, v = 0 we have the system

$$2x - y = 6$$
 , $2x + y = 10$,

Adding them gives 4x = 16 hence x = 4, and $y = 10 - 2 \cdot 4 = 2$ and hence (x, y, u, v) = (4, 2, 0, 0) is a basic solution. Since none of the variables are negative, it is a *feasible* basic solution aka as *extreme point*.

Summarizing we have the following

x	y	u	v	Type	z	Truncated
0	0	6	10	f	0	(0,0)
0	-6	0	16	n	_	—
0	10	16	0	f	20	(0, 10)
3	0	0	4	f	9	(3,0)
5	0	-4	0	n	_	_
4	2	0	0	f	16	(4, 2)

Since the **largest** value is 20 when (x, y, u, v) = (0, 10, 16, 0), whose **truncated version** is (x, y) = (0, 10) we get

Ans. to 1c: The optimal solution is x = 0, y = 10 and the optimal value is 20.