Solutions to Attendance Quiz for Lecture 4

1. Write the following linear programming problem in matrix form.

Maximize $z=x+3 y$ subject to the restrictions

$$
5 x+y \leq 5 \quad, \quad-x+4 y \leq 8 \quad, \quad-11 x+4 y \leq 12 \quad, \quad x \geq 0 \quad, \quad y \geq 0
$$

Sol. to 1:

$$
\text { Maximize } \quad z=\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

subject to

$$
\begin{gathered}
{\left[\begin{array}{cc}
5 & 1 \\
-1 & 4 \\
-11 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq\left[\begin{array}{c}
5 \\
8 \\
12
\end{array}\right]} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] \geq \mathbf{0} .}
\end{gathered}
$$

2. By introducing slack variables (give them names), write the above problem in canonical form (expressed, again, in matrix form).

Sol. to 2.: Introducting slack variables u, v, and w, the canonical form of the same problem (in scalar notation) is

Maximize $z=x+3 y$ subject to the restrictions

$$
\begin{gathered}
5 x+y+u=5, \quad-x+4 y+v=8, \quad-11 x+4 y+w=12 \\
x \geq 0 \quad, \quad y \geq 0 \quad, \quad u \geq 0 \quad, \quad v \geq 0 \quad, \quad w \geq 0
\end{gathered}
$$

In matrix form, this becomes

$$
\text { Maximize } \quad z=\left[\begin{array}{lllll}
1 & 3 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
u \\
v \\
w
\end{array}\right],
$$

subject to

$$
\left[\begin{array}{ccccc}
5 & 1 & 1 & 0 & 0 \\
-1 & 4 & 0 & 1 & 0 \\
-11 & 4 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
5 \\
8 \\
12
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
u \\
v \\
w
\end{array}\right] \geq \mathbf{0}
$$

