Solutions to Attendance Quiz for Lecture 2

1. Is the following subset of R^{4} also a subspace of R^{4} ?

$$
\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in R^{4} \right\rvert\, x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0\right\}
$$

Explain!

Solution to 1. No. The axiom that if $\mathbf{v} \in V$ and $k \in R$ then $k \mathbf{v} \in V$ is violated. For example if $\mathbf{v}=[1,0,0,0]^{T}$ and $k=-1$, then $k \mathbf{v}=[-1,0,0,0]^{T}$ and does not belong to \mathbf{V}, since if it were, then x_{1}, would have to be -1 , and that's against the defining rule of V.
2. Find the rank of the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 6 & 8
\end{array}\right]
$$

Sol. of 2

First way: We need to bring the matrix to row-echelon form (we do not need to go all the way to reduced-row echelon form, that's a waist of time).

Doing $r_{2}-2 r_{1} \rightarrow r_{2}$ and $r_{3}-3 r_{1} \rightarrow r_{3}$ gives the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & -1 \\
0 & 0 & -1
\end{array}\right]
$$

Doing $r_{3}-r_{2} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] .
$$

Doing $-r_{2} \rightarrow r_{2}$ gives

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Now it is in row-echelon form. The number of pivots (alias the number of not all-zero rows) is 2 hence the rank is 2 .

Ans. to 2: The rank is 2.

Second way: by inspection the third row is the sum of the first and second rows, hence is a linear combination of them, hence can be kicked out. So it is the same as finding the rank of

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5
\end{array}\right]
$$

Again by inspection the second row is not a constant multiple of the first (or vice versa) hence they are linearly independent. Hence the dimension of the row-space is 2 , hence the rank is 2 .

Ans. to 2: The rank is 2.

