Solutions to Attendance Quiz for Lecture 1

1. Use Gauss-Jordan Reduction to find all solutions of the system

$$
x+y+z=3 \quad, \quad 2 x-y+z=2 \quad, \quad 3 x \quad+2 z=5
$$

Sol. of 1: The augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
2 & -1 & 1 & 2 \\
3 & 0 & 2 & 5
\end{array}\right]
$$

Doing $r_{2}-2 r_{1} \rightarrow r_{2}$ and $r_{3}-3 r_{1} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -3 & -1 & -4 \\
0 & -3 & -1 & -4
\end{array}\right]
$$

Doing $r_{3}-r_{2} \rightarrow r_{3}$ gives

$$
\left[\begin{array}{ccc:c}
1 & 1 & 1 & 3 \\
0 & -3 & -1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Doing $-\frac{1}{3} r_{2} \rightarrow r_{2}$ gives

$$
\left[\begin{array}{lll:l}
1 & 1 & 1 & 3 \\
0 & 1 & \frac{1}{3} & \frac{4}{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Now the matrix is in row-echelon form but not yet in reduced row-echelon form. To get it to be in reduced-row echelon form we have to perform $r_{1}-r_{2} \rightarrow r_{1}$ getting

$$
\left[\begin{array}{ccc:c}
1 & 0 & \frac{2}{3} & \frac{5}{3} \\
0 & 1 & \frac{1}{3} & \frac{4}{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x and y are basic variables while z is a free variable.

In everyday notation this is

$$
x+\frac{2}{3} z=\frac{5}{3}
$$

$$
y+\frac{1}{3} z=\frac{4}{3}
$$

Getting

$$
\begin{gathered}
x=\frac{5}{3}-\frac{2}{3} z \\
y=\frac{4}{3}-\frac{1}{3} z \\
z=\text { free }
\end{gathered}
$$

This is the correct answer in scalar form. Since I did not ask for the vector form, this would have given you full credit.

However, if I did ask for the vector form, you would do it as follows.

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{3}-\frac{2}{3} z \\
\frac{4}{3}-\frac{1}{3} z \\
z
\end{array}\right]} \\
{\left[\begin{array}{l}
\frac{5}{3} \\
\frac{4}{3} \\
0
\end{array}\right]+z\left[\begin{array}{c}
-\frac{2}{3} \\
-\frac{1}{3} \\
1
\end{array}\right],\left(\begin{array}{ll}
(z r e e
\end{array}\right) .}
\end{gathered}
$$

This is the final answer in vector form.

