Attendance Quiz for Lecture 17

NAME: (print!) \qquad

E-MAIL ADDRESS: (print!) \qquad

1. Consider the following transportation problem where \mathbf{s} is the supply vector, \mathbf{d} is the demand vector, and \mathbf{C} is the cost matrix between the supply sites and the demand sites.

$$
\mathbf{C}=\left[\begin{array}{ll}
1 & 3 \\
4 & 8
\end{array}\right] \quad, \quad \mathbf{s}=\left[\begin{array}{l}
10 \\
20
\end{array}\right] \quad, \quad \mathbf{d}=\left[\begin{array}{l}
15 \\
10
\end{array}\right] .
$$

(a) Since the total demand is less than the total supply, create an equivalent problem where the supply equals the demand.
(b) By using the Minimal Cost Rule (not Vogel's method!), find initial basic feasible tableau for the problem in (a).
(c) By starting with the basic feasible solution in (b), find the optimal solution. Also find the minimal cost. Make sure that it is the optimal solution by using the optimality criterion.
(d) Use Vogel's method (not the Minimal Cost rule!) to find initial basic feasible tableau for the problem in (a).
(e) Compare the answers to (c) and (d).

